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Abstract—This paper introduces a simulation-based numeri-
cal method for solving dynamic portfolio optimization problem.
We describe a recursive numerical approach that is based on the
Least Squares Monte Carlo method to calculate the conditional
value functions of investors for a sequence of discrete decision
dates. The method is data driven rather than restricted to
specific asset model, also importantly intermediate transaction
costs associated with portfolio rebalancing is considered in the
dynamic optimisation method, and investors’ risk preferences
and risk management constraints are also taken into account
in the current implementation.

In this paper, the presented method is used for a case study
on a global equity portfolio invested in five equity markets,
and foreign exchange risks are also included. We examine the
portfolio performance with three optimizers in a out-of-sample
simulation study together with a benchmark portfolio which is
passively managed with equal weighted position.

Index Terms—Portfolio Optimization, Least-squares Monte
Carlo, Approximate Stochastic Dynamic Programming, Opti-
mal Asset Allocation.

I. INTRODUCTION

DYNAMIC portfolio optimization is one of the important
applications of decision-making under uncertainty in

asset management. Investors with long-term views, particu-
larly major institutional investors such as pension funds, unit
trusts and mutual funds, normally hold a diversified portfolio
across a range of asset classes with different financial markets
including equities, bonds, properties, infrastructure, hedge
funds, etc. For investors, their objectives of investment may
vary greatly, from seeking excess returns over benchmark
indices to hedging against specific risk factors.

For most asset classes, asset returns are uncertain and
stochastic. There is a certain degree of correlation across dif-
ferent asset classes and across different geographical markets.
Additionally, the costs of transaction can make a meaningful
impact on asset returns, so in portfolio rebalancing and risk
management, transaction costs should be included.

Multi-period dynamic portfolio optimization has increas-
ingly become a popular approach, mainly due to the fact that
such multi-period optimisation schemes can now achieve so-
lutions of manageable accuracy within acceptable computing
time. In [5], [6], the authors used a Monte Carlo method and
a Sample Approximation Algorithm to construct scenario
trees, then applied a stochastic programming algorithm to
compute the optimal portfolio positions for each branch of
the scenario tree. A Taylor expansion of the value function
up to second order at rebalancing time was used in [7].
The authors then showed that the optimal position can be
calculated recursively by a dynamic programming scheme
with a least-square learning.

Manuscript received March 21, 2014.
Chenming Bao, Geoffrey Lee and Zili Zhu are from CCI CSIRO,

Australia. e-mail: Chenming.Bao@csiro.au .

In this paper we introduce a new computational method
to solve the dynamic portfolio optimization problem numeri-
cally. The Monte Carlo method is used for simulating a large
number of hypothetical sample paths of asset returns and
state variables. We call these sample paths the training set.
The key idea is that these sample paths should incorporate
the investors’ belief about the stochastic properties of the
future asset dynamics and state variable. For example, the
sample paths may have an arbitrarily complex marginal joint
distribution, correlation structure, path-dependency, and non-
stationarity.

Given the simulated training set, we can solve the opti-
mal portfolio allocation problem by using an approximate
stochastic dynamic programming framework in the form of
the Least Squares Monte Carlo (LSM) method. LSM was
introduced initially by [3] as a numerical methodology to
value American or Bermudian options by a least-squares re-
gression. In this paper we extend the LSM approach to solve
a multiple switching options problem which also incorporates
the complex features of the intermediate transaction cost and
non-linear utility functions.

In the paper, the portfolio weight of each asset is restricted
to discrete increment of equal interval from 0% to 100%.
Additionally, we denote a strategy as one possible combi-
nation of the discrete portfolio weights of all assets subject
to portfolio operation constraints. All the possible strategies
that the investor can adopt as the optimal target portfolio
position at any rebalancing date form the strategy set. A
similar approach for discretizing portfolios is used in [9]
where a finite discretization method is used to transform the
continuous mining operational rates to a set of combinations
of discrete operational rates.

In the Least Squares Monte Carlo (LSM) implementation,
each conditional value function for every strategy in the
whole strategy set is approximated as a linear combination
of basis functions, and is stored for optimisation on each
rebalancing date. The optimal exercise boundaries for each
strategy form the optimal decision rules as a function of
underlying risk factors and state variables. Up to this point,
the LSM model has been fully calibrated.

The calibrated LSM model of this paper can then be
used as a decision support tool for investors in achieving
optimal portfolio rebalancing for various scenarios. At any
decision date t, the inputs of the calibrated model are values
of realized or hypothetical underlying risk factors and past
portfolio strategies. The target optimal portfolio weight can
be chosen by comparing the continuation functions for all
the possible strategies in the strategy set.

One of the key features of this portfolio optimizing algo-
rithm is that it can serve as an information translator. An
investor may have a different belief or forecast for future
market performances. The investor’s forecast ability may
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depend on all the qualitative or quantitative research or
even luck. The optimal portfolio model implemented in this
paper provides an efficient translation of the market forecast
and risk management requirement into the corresponding
portfolio.

In the next section, we describe in detail the framework
of the dynamic portfolio optimization problem and the nu-
merical implementation of the algorithm for the approximate
stochastic dynamic programming. In Section III, we apply
our method on a case study of a global equity portfolio.
Some computational results and implementation issues are
discussed in Section IV. Section V concludes.

II. THE FRAMEWORK

A. The investor’s problem

We consider the dynamic portfolio optimization problem
at time t of an investor. There are N assets that the investor
can invest in, the unit price of buying or selling the i-th asset
at time t is given by Sit . For each asset, the price Sit depends
on some underlying stochastic processes called risk factors
on the probability space (Ω,Ft,P).

We consider the planning time horizon with maturity date
T , and the portfolio can be rebalanced at a sequence of
discrete rebalancing dates t, t+ 1, t+ 2, ..., T . The investor’s
problem is

Vt(ωt) = maxxt

{
E [ft(xt, ωt) + Vt+1(ωt+1)|Ft]

}
, (1)

ωt ∈ Ft

where xt is a vector of portfolio position on the N assets
at time t, Vt is the value function at time t with boundary
condition at the maturity date T : VT (ωT ) = 0 a.s.. The
utility function ft(·) represents the investor’s preference of
the portfolio performance which will be discussed further in
Section III.

The value function Vt can be seen as the expected total
future utility of the investor at time t with condition that all
the portfolio position weights xt, xt+1, ..., xT are optimally
chosen with respect to to all random events ωs ∈ Fs, s =
t, t+ 1, ..., T .

We assume that the value function in Equation (1) is the
objective function of the investor. This is a typical decision
under uncertainty problem where the decision maker has to
make a decision based only on the realizations of historical
performance of the portfolio and taking into consideration
the dynamics of future scenario with all the possible future
decisions which would not be unveiled until the future
decision dates.

The vector of dynamic portfolio position xt(ω) is a Ft-
adapted random variable. The value of xt is decided by
all the information available at time t. This may include
current value of all risk factors and the portfolio history
x0, x1, ...xt−1.

B. Constructing Strategy Set

The position vector xt = {w1, w2, ..., wN} at time t
represents the weight in percentage of the total book size
value of the portfolio invested in asset Si, i = 1, 2, .., N .

We discretize the position weight wi of the asset Sit , i =
1, 2, ..., N in the following way: an m-step discrete grid is

TABLE I
STRATEGY SET FOR 5 ASSETS, 5-STEP DISCRETIZE CASE.

x(1) : (0, 0, 0, 0, 1) x(2) : (0, 0, 0, 0.2, 0.8)

x(3) : (0, 0, 0, 1, 0) x(4) : (0, 0, 0.2, 0.8, 0)

x(5) : (0, 0, 1, 0, 0) x(6) : (0, 0.2, 0.8, 0, 0)

x(7) : (0, 1, 0, 0, 0) x(8) : (0.2, 0.8, 0, 0, 0)

x(9) : (1, 0, 0, 0, 0) x(10) : (0.2, 0, 0.8, 0, 0)

x(11) : (0, 0.4, 0.4, 0, 0) x(12) : (0.4, 0.4, 0.2, 0, 0)

... ...

used to represent the portfolio weight as (0, 1
m ,

2
m , ..., 1). The

discretized portfolio weight value vector x are then defined
as all possible combinations of the discrete portfolio weight
values for all individual assets. Of course, we also have the
condition that satisfy ΣNi=1wi = 1.

The investor thus has a set of possible portfolio weighting
positions in vector form, and each of the possible portfolio
weigh composition represents a so-called strategy. The full
set of strategies for possible adoption can be listed as Θ =
{x(1), x(2), x(3), ...}.

As an example, for a portfolio with 5 assets to invest,
each asset weight is discretized by a 5-step grid (i.e. 0%,
20%, 40%, 60%, 80% and 100%), there are in total 126
possible strategies for potential adoption. We list some of
the strategies in Table I for this example case.

C. Constraints

Strategies of the portfolio are subject to some constraints.
The first constraint is on the position limits, this is the

individual upper- and lower-bound of the position (portfolio)
weight of each asset:

wi ∈ [ai, bi], i = 1, 2, ..., N, ai < bi

where ai, bi ∈ R . The limits for individual asset portfolio
weight or position may be defined by legislations or from
investor’s risk management requirements.

Investors may be required to operate the portfolio under
some thresholds of risk exposures in form of risk measures
such as VaR. Other constraints may apply on the turnover
and restrictions caused by the trading ability of the investor.

Also, large orders in the market may adversely affect
market price movement itself. Liquidity constraints can apply
for all rebalancing dates. Depending on assumptions on
liquidity, a minimum absolute liquidity can be specified for
the portfolio. For instance, the first 20% of the local market
traded equity is highly liquid whereas any amount larger than
20% of the local market equity is assumed to take more time
and slippage to liquidate.

For simplicity, we make an assumption on liquidity con-
straint by setting a maximum total turnover so as to restrict
any possible large rebalancing trades within a short period.

D. Least Squares Monte Carlo Method

In this section we describe the approximation algorithm
we use to estimate the expected value function in Equation
(1).

The input of the LSM model takes:
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• n + s Monte Carlo simulated sample paths of the
M underlying risk factors at time t = 0, 1, 2, ..., T ,
{X(i,k)

t }, where i is the risk factor index, k is the sample
paths number and t is the time index. The first n sample
paths is the training set and we use the rest for out-of-
sample tests.

• The realization of ωt is a vector of simulated risk factor
{X(i,k)

t } up to time t and all the decision history of the
portfolio position x0, x1, ..., xt−1.

• The structure of basis function L(·) and the truncated
order parameter K;

• The investor’s utility function f(·);
• A transaction cost function TC(xt−1, xt, ωt);
• The N assets S1, S2, ..., SN and the step size 1

m for
the discrete weight values in the portfolio; and,

• Some constraint conditions, we can write it as an
indicator function 1t(ωt, x) which returns a value of
either 1 if the position x is within all the constraints
otherwise value 0 is returned at time t given all the
state variable information ωt.

The first step is to construct the Θt = {x(1)
t , x

(2)
t , x

(3)
t , ...}

. For any x′ = {w1, w2, ..., wN}, wi = 0, 1/m, 2/m, .., 1, if
1t(ωt, x

′) = 1 then add x′ into set Θt.
The next step is to approximate the conditional value

function:

V
(l)
t (ωt) = E

[
ft(x

(l)
t , ωt) + Vt+1(ωt+1|xt = x

(l)
t )|Ft

]
,(2)

ωt ∈ Ft.

The conditional value function is the expected value of the
total utility at time t given the strategy at time t is x(l)

t .
Here, we approximate Equation (2) by using a cross-

sectional least-square regression scheme.

Data: {X(i,k)
t }, i = 1, 2,...,n

Result: ĉt,k
initialization;
Set ĉ(k)

T,j := 0;
for t = T − 1 to 1 do

for j = 1 to size(Θ) do

Qj =

n∑
i=1

(
f(x(j), ωt+1)

+ max
x(l)∈Θ

{
f(−TC(x

(j)
t , x

(l)
t+1, ωt+1))

+
K∑
k=1

ĉ
(k)
t+1,lL

(k)(X
(1,i)
t+1 , ..., X

(M,i)
t+1 )

}
−

K∑
k=1

ĉ
(k)
t,j L

(k)(X
(1,i)
t , ..., X

(M,i)
t )

)2

ĉ
(k)
t,j = arg{ĉ}minQj ;

end
end

Algorithm 1: Algorithm to estimate ĉ

Algorithm 1 describes the algorithm in pseudo code form.
The coefficient parameters c are estimated by minimizing the
sum of sample squared difference (function Q) between the
sample utility at time t with the expected conditional value

function at time t + 1 with strategy l, given the strategy l
provides maximum value of the total utility of transaction
cost and the conditional value function at t+ 1.

After all the coefficient parameters for the basis functions
are estimated, we then calculate the optimal strategy at time
t = 0, the algorithm is described in psuedo code form
in Algorithm 2. The algorithm computes the mean of the
conditional value function at t = 0 for all strategies; the one
that gives the highest value is chosen as the initial optimal
strategy.

Data: {X(i,k)
t }, i = 1, 2,...,n

Result: x0

initialization;
for j = 1 to size(Θ) do

for i = n+ 1 to n+ s do

EV
(j)
0 + = f(x

(j)
0 , ω1)

+ max
x
(l)
1 ∈Θ1

{
f(−TC(x

(j)
0 , x

(l)
1 , ω1))

+ΣKk=1ĉ
(k)
1,l L

(k)(X
(1,i)
1 , ..., X

(M,i)
1 )

}
end

end

l = arg
x
(l)
0

max
{
EV

(l)
0

}
Algorithm 2: Algorithm to estimate x0

III. A CASE STUDY OF GLOBAL EQUITY PORTFOLIO

We consider an investor who manages an equity portfolio
invested in five major equity markets globally – the Australia
(AU), the United States of America (US), the United King-
dom (UK), the Japan (JP) and the emerging equities markets
(EM).

The investor operates the portfolio from the viewpoint of
the home currency. In this paper we assume the Australian
Dollar (AUD) as the home currency; all valuations will need
to be converted to the home currency.

Except for the AU market, the returns from the four foreign
equity markets are subject to foreign exchange risks. In
this case we have to consider the dynamics of the foreign
exchange rates for the currency pairs of the local currencies
of the equity markets and the home currency:
• EUSDAUD US dollar to Australian dollar;
• EGBPAUD British sterling to Australian dollar;
• EJPYAUD Japanese Yen to Australian dollar; and
• A basket of Emerging market currencies to Australian

dollar.

A. Data

Our datasets will have an eight-dimensional structure: five
equity indices and three exchange rates. Table II sets out the
data used as proxies for the variables of the market indices
and their local currency.

We use the adjusted closing price of equity market indices
at the last trading day of the month. We don’t have access
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TABLE II

Asset Corresponding proxy Local currency
AU ASX200 AUD
US S&P 500 USD
UK FTSE 100 GBP
JP NIKKEI 225 JPY
EM iShares MSCI Emerging Markets ETF USD

to MCSI Emerging market data which is a common index
representing the investment performance of the EM markets.
So instead, we use the price of iShares MSCI Emerging
Markets ETF traded in NYSE Arca (Ticker: EMM).

In order to model the global equity portfolio in home
currency we need to include the dynamics of some foreign
currency exchange rates. The iShares MSCI Emerging Mar-
kets ETF is traded in NYSE Arca which is accounted in USD.
Therefore, the foreign exchange exposures from emerging
market currency to US dollar has been incorporated into the
ETF trading price.

For the currency risk, we therefore add 3 time series data
of exchange rates of respectively the EUSDAUD, EGBPAUD and
EJPNAUD. The data series are the middle-rate prices of bid and
ask for each exchange rate at the last trading day for each
month.

The full range of data runs from the last trading day
of April 2003 to the last trading day of March 2014,
representing 132 observations for each index. All the market
datasets described in this section are from Yahoo Finance.

B. Stochastic Models

Xc
t denotes a risk factor c valued at time t.

c is a component of the current risk factor set:
Ψ = {AU, US, UK, JP, EM, EUSDAUD, E

GBP
AUD , E

JPN
AUD}, the

risk factors of equity indices are valued in local currency
unit of the global equity markets. Rt is the eight dimensional
log-return rate of risk factors Xc

t , c ∈ Ψ:

Rt =

[
ln

(
Xc
t

Xc
t−1

)]
,

We assume the investor uses an 8-dimensional mean-
reverting model as the canonical model for Rt.

Rt = Rt−1 + Ξ[Rt−1 − µ] + Σ′Wt (3)

where Ξ and Σ′ are 8x8 real value matrices, Wt is an eight-
dimensional Brownian motion with zero mean vector and a
8x8 unit covariance matrix.

In addition to the canonical model in Equation (3), the
investor could have his/her own forecast/view of the future
asset returns. These forecast/view can be readily incorporated
in calibrating the stochastic models. Additonally, more risk
factors can be readily added into the canonical model system.
For example, additional risk factors based on Arbirage Pric-
ing Theory (APT) style models [2] can be included. There
can be hundreds of risk factors that can be derived from
technical analysis, pattern recognition, statistical analysis, or
behaviour finance, as documented in the literature for being
significant in historical back-tests. The well known models
are the Fama-French three factor models introduced in [1].

TABLE III
PORTFOLIO POSITION LIMITS.( % OF THE BOOK SIZE OF THE

PORTFOLIO)

equity index upper-position limit lower-position limit

AU 80 20
US 60 0
UK 60 0
JP 60 0

EM 50 0

Some of these risk factors are insignificant in out-of-sample
statistical test, either due to speculative trading against these
factors (consequently removing market inefficiency) or due
to the so-called “error of the second kind” (data scooping)
in research.

In this study, the parameters µ, Ξ and Σ of the canonical
model in Equation (3) are estimated through a standard
maximum likelihood algorithm on historical market dataset.
However, in general, an investor can choose to use their
own future forecast for these risk factors to calibrate these
parameters. For discounting, bond yields in term-structure
form can also be readily used in the current implementation.
For the example of this paper, we assume a constant bond
yield, and use the Australia 10 Year bond yield which is
4.10% at the time of this study (Febuary 2014).

C. Transaction Cost and Constraints

We assume a 50 basis points proportional transaction cost
rate charged on absolute turnover of the portfolio at every
portfolio rebalancing time t , given by

TCt = 0.5% ΣNi=1|Φi(t+)− Φi(t)|,

where N is the number of assets in the portfolio, Φi(t) is the
position of the asset i at time t before rebalancing and Φi(t+)
is the position of the asset i at time t after rebalancing. We
ignore any slippage for the rebalancing and assume no short
selling and borrowing for all the asset classes.

For simplicity, in this example, we have pre-set position
limit constraints for all the rebalancing transactions. These
constraints are listed in Table III.

We also assume the total turnover must be less than 80
percent of the total book size for each rebalancing.

D. Investor’s utility

We consider three cases of different risk preference of an
investor by defining different utility functions as the value
function in Equation (1).

The first utility function we consider is a linear utility
function:

u(w) = kw + c, (4)

where k and c are constants. The linear utility represents an
investor with no risk preference and only aims for the highest
expected total return for the portfolio.

The second utility function is a Power utility function
which is given by:

u(w) =
w1−α

1− α
, α > 0. (5)
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The Power utility function is also known as the constant
relative risk aversion (CRRA) utility function. It’s a relative
measure of risk aversion, defined by −wu′′(w)/u′(w), and
α is a constant .

IV. RESULT AND DISCUSSIONS

The algorithm presented here is implemented in software
package RiskLab, and is used to compute the numerical
results in this section1. Once the model parameters of these
risk factors are calibrated, we can proceed to calculate all the
expected value functions at any future asset prices for all the
portfolio strategies at time t. At time t, if previous strategy at
time t−1 is known, we can readily select the current optimal
target portfolio strategy. In other words, the algorithm can
be used as what-if forecasting tool for portfolio strategies.
For example, for any given scenario of the risk factors or
a mathematically generated random event ω, the current
methodology produces optimal target portfolio positions at
every rebalance date for given scenario events.

For this example, we first generate 5000 Monte Carlo
sample scenarios from the stochastic models of the 8 risk
factors as the training set, then we generate another set
of 5000 simulation scenarios as the out-of-sample data to
analyse the decision output for optimal portfolios. We also
set up four investment styles for managing the portfolio:
P0: A constant position strategy with equal weighted posi-

tion on each of the five assets: 20% of the total book
size of the portfolio is allocated to each of the five assets
at the every rebalancing time.

P1: The investor chooses to manage the portfolio through a
linear utility function of Equation (4).

P2: The investor selects the risk aversion utility function of
Equation (5) with parameter α = 5.

P3: The investor selects the risk aversion utility function of
Equation (5) with parameter α = 7.

Table IV shows the portfolio performance: in values of
CRRA utility functions, achieved expected excess returns and
volatilities over the 10 years investment horizon with 5-step
strategy set (portfolio weigh steps).

First we looked at the expected total returns and volatilities
over the entire investment horizon. The P0 investment style
gives 1.77% excess returns against the 10-year bond yield,
with a 43.20% volatility which is an average 13.66% for each
year. The P0 portfolio follows a passively management style
and does not require decision making or market forecasting
by the investor. We choose P0 style investment as the
benchmark portfolio.

The P1 investment style produces the highest expected re-
turn but also the highest volatility among the four investment
styles. Recall in this case study we use the same calibrated
stochastic asset models to generate the Monte Carlo sample
set for model training and the out-of-sample test. The overall
superior performance in return from this P1 investment style
indicates that the algorithm has successfully captured the
properties of the future asset dynamics through the training
data set, and the superior performance in portfolio returns for
the out-of-sample data indicates the implemented dynamic

1RiskLab is a software package developed by CSIRO for asset modelling,
simulation, decision supporting, real option pricing and portfolio optimiza-
tion.

TABLE IV
STATISTICS OF THE PORTFOLIO RETURNS AND CRRA UTILITY

FUNCTION VALUES FOR PORTFOLIO OPTIMIZER P0,P1,P2,P3 OF
OUT-THE-SAMPLE TESTS.

excess returns
optimizer CRRA-5 CRRA-7 mean volatility

P0 0.613388 0.998549 1.77% 43.20%

P1 0.556802 0.811427 25.66% 56.99%

P2 0.661708 0.987756 19.00% 49.60%

P3 0.638013 1.001234 10.80% 45.85%

portfolio optimization scheme achieved the objective as set
out in the P1 investment style.

For the P1 style investment, the high volatility of the port-
folio return brings down the calculated corresponding CRRA
utility value. An investor with risk preferences expressed in
the CRRA utility function will find the P1 investment style
as not achieving the objective maximizing the CRRA utility
function. For the investment style of maximizing the CRRA
utility function, we have chosen to evaluate two investment
styles: P2 and P3 respectively for α = 5 and α = 7.

The expected value of excess returns for the P2 style is
6.66% which is lower than the P1 style, whereas the return
volatility is reduced by 7.39%. This suggests the investor
following the decision rule given by P2 style would end
up with a lower risk in the form of reduced volatility and
smaller return than the P1 investment style. The difference in
expected excess returns can be seen as the risk premium paid
to reduce the volatility of the portfolio. A similar behaviour
is observed for the P3 investment style for which the CRRA
utility function is adopted with the parameter α = 7. The
P3 style investment obviously achieved the highest CRRA-7
value. Interestingly, we observe that the calculated CRRA-7
value of the P0 style investment is very close to the CRRA-
7 value of the P3 style investment. Correspondingly, the P2
investment style maximizes the value of the CRRA-5, or the
utility function value with parameter α = 5.

A. Visualization of dynamic decisions

One intuitive way to show the real time dynamics of
portfolio position changing with respect to different scenarios
is by using a motion plot. Figure 1 shows a snapshot of
the motion plot created by the visualization tool built in the
RiskLab software package. We have also generated motion
plots for the investment styles P1, P2 and P3, which can be
accessed through the web link: https://dl.dropboxusercontent.
com/u/788580/Presentation/IAENG/googleEmbedded.html.

B. Basis functions

One important issue when applying the LSM algorithm is
the choice of basis functions. The selection of basis functions
depends on the application in hand. The work of [3] suggests
Laguerre (weight) should be selected as the basis orthogonal
function for single asset American put options. The robust-
ness and convergence of LSM algorithms have also been
an issue when selecting basis functions. For example, [4]
shows that the LSM method is more efficient than either a
finite difference or a binomial method when valuing options
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Fig. 1. A motion plot of 30 selected sample paths optimal weight calculated
by P2

TABLE V
PERFORMANCE OF RISKLAB PORTFOLIO OPTIMIZER ON SELECTED TEST

CASES

number of scenarios calculation time in minutes
calibration optimization calibration optimization

P1 5000 5000 267.242’ 7”
P2 5000 5000 268.249’ 8”
P3 5000 5000 267.242’ 8”

on multiple assets, and Monomials are suggested as possible
basis functions.

For the case study of this paper, we have tested LSM
with a set of different basis polynomial functions including
Laguerre, Nominal, Hermite, Hyperbolic, Legendre. We use
the total standard deviation of the least square residuals as
a measure of goodness-of-fit. We observe that essentially
all the the tested orthogonal functions provide comparable
results. For this particular example, Laguerre polynomials
with order greater than 3 provide the lowest error among the
5 basis polynomial functions.

As a standard approach for selecting a numerical basis
approximation function, we suggest testing multiple possible
orthogonal functions for each new application before choos-
ing the appropriate basis functions.

C. Computational time

Table V shows the calibration and optimization time
running on a PC with Intel Core i5-2540 2.6 GHz, 4 GB
ram, compiled using Visual C++ 2010 32 bit version.

One can see from the figures of Table V, the calibration
phase for 5000 simulated sample paths took more than four
hours to finish. The computation time also depends on the
size of the strategy set and the number of the risk factors.
We have also tested for using smaller number of sample
paths, different number of strategies in the strategy set and
basis functions. (Results not listed.) The computational time
for calibration is asymptotically linear with respect to the
number of strategies and the number of simulation sample
paths. Once the LSM model is calibrated, it normally takes
less than a few seconds for the LSM algorithm to calculate
the optimal portfolio positions for the 5000 out-of-sample
scenarios.

It is worth noting that the calibrating process for the LSM
model, as described in Algorithm 1, can be performed in

parallel. The calibration for each strategy in the strategy
set at date t only relies on the results calculated from the
previous time step and can be done simultaneously in a
parallel fashion. Thus the LSM algorithm has the potential
for speeding up the calibration process significantly by
adopting multi-threads programming such as on the GPU
rather than the raw sequential calculation we currently use.

V. CONCLUSION

We have presented a simulation-based numerical method
for solving dynamic portfolio optimization problems. There
is no restriction on the choice of asset models, investor pref-
erences, transaction cost, and liquidity position constraints.

We have applied the method to managing an equity port-
folio invested across five global equity markets. For the case
study shown in this paper, the views of an investor on future
market returns is modelled and calibrated by a multi-factor
mean-reverting process with eight risk factors, and auto- and
cross asset correlation structures are also considered. Four
investment styles are chosen in the test case, and a Least
Square Monte Carlo approximation method has been devel-
oped to calibrate the dynamic portfolio model. Through the
test case, we have shown that the three dynamic investment
styles outperform the benchmark portfolio for out-of-sample
tests. Viewed on a mean-variance plane, the performance of
the dynamic portfolios are located on a new efficient frontier
whereas the benchmark static portfolio is less efficient with
a higher risk premium. Some computational issues with the
LSM model have also been discussed.
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