
 

 
Abstract—This paper investigates the possibility of 

presenting the solution of a discrete-time stochastic control 
problem in the form of optimal decision regions in the state-
time coordinates. We study a problem of optimal management 
of a mineral extraction project under commodity price 
uncertainty, with opportunity to switch between several 
operating modes at the specified decision dates. We use the 
least-squares Monte Carlo approach and the heuristic Genetic 
Algorithm to determine the optimal strategies and the time 
dependent decision boundaries. We investigate the possibility 
of using the decision boundaries as approximate decision rules 
for practical applications. 
 

Index Terms—least-squares Monte Carlo, stochastic 
dynamic programming, time dependent decision rules, real 
options 
 

I. INTRODUCTION 

hile the Discounted Cash Flow or Net Present Value 
remain the traditional methods of investment 

valuation in the minerals industry, it has been demonstrated 
in the literature that failure to address market uncertainty 
and managerial flexibility in these valuation methods may 
lead to wrong decisions.  Real Options Analysis (ROA) can 
deal efficiently with the flexibility to revise decisions in 
response to the evolution of uncertainty and can 
significantly increase the project value.  

The first application of Real Options Analysis to 
evaluation of a natural resource investment project was 
introduced by Brennan and Schwartz [1]. They studied the 
flexibility to delay, temporarily cease or completely 
abandon the copper mine depending on the stochastic 
behavior of copper price, and showed that flexible 
management of the mine can significantly increase the 
project value. Flexible project management remains an 
important problem in the valuation of the natural resources 
investments and has been studied in a number of 
applications (see, e.g., [2]-[6]). 
    The least-squares Monte Carlo (LSM) approach, first 
suggested for pricing of American options by Longstaff and 
Schwartz [7], is becoming increasingly popular in natural 
resource investment problems (see, e.g., [4]-[6], [8], [9]). 
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The valuation of a copper mine originally studied in [1] has 
been later studied using LSM in [3], [4] and [6]. It has been 
shown that the problem can be efficiently solved using LSM 
for multi-factor stochastic models of commodity prices and 
for extraction of several metals. 

 A complexity of the real options and stochastic dynamic 
programming algorithms is arguably among the reasons that 
such approaches are still rarely used by industry. One of the 
difficulties of the decision making under uncertainty is that 
the optimal decisions need to be made in response to 
evolution of uncertainty.   Determining the boundaries of the 
regions of optimal decisions has been a focus in a number of 
applications in both deterministic and stochastic continuous 
optimal control problems (see, e.g., [10]-[13]). Such 
boundaries are called critical (or threshold) curves, or 
‘dispersal curves’ in the aviation applications, and are 
characterized by non-uniqueness of the optimal strategies at 
the boundary points. The regions of optimal decisions, also 
known as decision rules (a mapping of the state space onto 
the optimal decision space), present the subject that has 
attracted considerable interest (see e.g, [14], [15]). The 
evolution of the decision boundaries with time (which can 
be seen as time dependent decision rules) is an important 
information that can help industry with understanding and 
utilizing the results of the analysis.  

 The focus of this paper is on constructing the decision 
boundaries for natural resource investment problems. 
Simulation-based methods for solution of stochastic optimal 
control problems offer an opportunity to extract the time 
dependent decision boundaries from the numerical solutions.  

  In this paper, we use the least-squares Monte Carlo 
approach to get an insight into the structure of the decision 
regions for a problem of natural resource investment with 
switching costs. We then use the evolutionary Genetic 
Algorithm to determine the decision boundaries. We study 
the behaviour of the decision boundaries with changes in the 
parameters of the stochastic model of commodity price. 
Finally, we explore the possibility of using the decision 
boundaries as approximate time dependent decision rules for 
practical applications. 

II. THE MODEL  

We study the natural resource investment problem from the 
benchmark paper by Brennan and Schwartz [1]. This 
problems has also been recently studied using the least-
squares Monte Carlo approach in [3], [4], [6].  
     In this example, the management has the option to revise 
the mine status at pre-determined decision times. The 
available options are:  

 close (cease) the mine temporarily. In this case a 
closing cost will be incurred and an annual 
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maintenance cost will be paid. We denote such 
option by ‘c’; 

 reopen the temporarily closed mine, by paying the 
reopening cost. We denote this option by ‘o’; 

 abandon the mine at no cost (‘a’). 
     At each time step, the mine can be in one of the three 
modes:  operating (o), temporarily ceased (c) and abandoned 
(a). It is assumed that an abandoned mine cannot be re-
opened anymore.  
   We assume, as in [1], [6], [9], that copper price follows 
the continuous stochastic process 

( ) SdS r Sdt SdZ    ,                 (1) 

where  is the instantaneous standard deviation of the spot 
price, r is the risk-free interest rate,  is the convenience 
yield, 

S
dZ is the increment of a standard Brownian motion. 

     We consider the time horizon T and assume that a 
decision to switch between the available options can be 

made on fixed dates 
1 2

0 ...    
N

t t t T . A constant 

inventory level Q and a constant output rate q are assumed 
for simplicity, as in [1]. The change in the inventory when 
the project is in operating mode is given by 

dQ qdt  .                                      (2) 

The cashflow   at time step nt is given by 
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where 
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S is the copper price, 
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is the total income tax and royalties, 
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where  is the inflation rate, 1 2,  are the royalty rate and 

the income tax respectively. Switching cost, when changing 
between options ‘o’ and ‘c’, is given by 

0n

n t
tK K e .                            (5)                                            

The objective is to maximize the expected discounted cash 
flow over the planning horizon.  

III. STRUCTURE OF THE DECISION REGIONS WITH 

SWITCHING COSTS 

In this section, we use the least-squares Monte Carlo 
approach to solve the problem described in Section II, to 
determine optimal strategies that maximize the expected 
discounted cash flow over the planning horizon. The details 
of the implementation of LSM are given in the Appendix A. 
The data used in the study are from Brennan and Schwartz 
and given in the Appendix B.  
     The accuracy of LSM in application to this problem has 
been thoroughly tested previously in [3], [4], [6].  In this 
paper, we use the setting of LSM that was found to produce 
sufficiently accurate result. The focus of this study is on 
determining the critical copper prices that trigger changes in 
the optimal decisions, as functions of time. 

The simulation-based LSM method is suitable to get an 
insight into the optimal decision regions through a mapping 
of the Monte Carlo realisations for copper prices onto the 
optimal decision space, for different decision times. Note 
that for a discrete time stochastic control problem such 
mapping does not guarantee to produce regions that are 
clearly separated. 
    First, we study a simplified version of the problem (1)-(5) 
with the switching costs set to zero ( 0

nt
K  ).  In Fig. 1, 

each realisation of the copper price for each decision time 
from 100000 Monte Carlo scenarios and 15 time steps is 
mapped onto the set of 3 possible decisions (operate, 
temporarily cease or abandon the mine) which are shown by 
different colours. In the example shown in Fig. 1, we 
observe a clear separation of the three regions of optimal 
decisions. Such clear separation cannot always be obtained 
from LSM results. We found that in some cases the increase 
in the number of basis functions and the Monte Carlo 
sample size may help to improve the separation, but a clear 
boundary between the decision regions is not generally 
expected from the solution of a discrete time stochastic 
control problem. 
     One can see from Fig. 1 that the three regions of optimal 
decisions undergo transformation with time. The region 
where it is optimal to temporarily cease the mining 
operations shrinks as the time goes on and completely 
disappears before the end of the time horizon, while the 
region where it is optimal to abandon the mine expands as 
the end of planning horizon approaches. Such shapes of the 
decision regions for a finite time horizon problems are 
intuitively understandable, as one expects that paying 
maintenance cost to keep the mine temporarily ceased 
becomes less attractive at the end of the planning horizon.  
     Extensive numerical study shows that the curvature of 
the decision boundaries increases with increase in the 
inflation rate. 

 
Fig. 1. Regions of optimal decisions (a mapping of the Monte Carlo 
realizations of copper price onto the decision space at each time step): 
‘operating’ (top, dark grey), ‘ceased’ (intermediate, light grey) and 
‘abandoned’ (bottom, black). The model without switching costs; initial 
price is 0.7, initial decision is ‘operating’. 
 

     When switching costs are included in the model, the 
decisions at each decision time become dependent on the 
decisions at the previous decision time. Figs. 2 and 3 show 
the mapping of the realisations of the copper price onto the 
optimal decision space using different shades of grey for 
different optimal decisions. Figure 2 shows the decision 
regions for the case when the solution at the previous 
decision time is to operate the mine, while Fig. 3 shows the 
regions for the case when the operation was ceased at the 
previous decision time. We can see that, while the shapes of 

Operating 

Ceased 

Abandoned 

Proceedings of the World Congress on Engineering 2014 Vol II, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



 

the decision regions are similar, the boundaries are in fact 
different for the two cases. 
     Extensive numerical study shows that compact regions, 
as those in Figs. 1-3, often cannot be produced using the 
least-squares Monte Carlo approach. In the following 
section, we explore the possibility of determining the 
decision boundaries based on heuristic evolutionary Genetic 
Algorithm. 

 
Fig. 2. Regions of optimal decisions: ‘operating’ (top, dark grey), ‘ceased’ 
(intermediate, light grey) and ‘abandoned’ (bottom, black); initial copper 
price is 0.7, initial decision is ‘operating’; the model with switching costs, 
the decisions are conditional on u= ‘o’ at the previous decision time.  
 

 
Fig. 3. Regions of optimal decisions: ‘operating’ (top, dark grey), ‘ceased’ 
(intermediate, light grey) and ‘abandoned’ (bottom, black). The model with 
switching costs; initial price is 0.7, initial decision is ‘operating’; the model 
with switching costs, the decisions are conditional on u= ‘c’ at the previous 
decision time.  

IV. ALGORITHMS TO DETERMINE THE DECISION 

BOUNDARIES 

Figures 1-3 suggest the existence of three regions of 
optimal decisions and four boundaries, in copper price-time 
coordinate system, for a problem with switching costs. In 
what follows, we assume such structure of the solution. We 
allow for the possibility that the intermediate region (where 
it is optimal to temporarily cease the mine) may disappear at 
some time during the time horizon, as shown in Figs. 1-3, 
and that the lower boundary (between the ‘ceased’ and 
‘abandoned’ regions) may become zero. Thus we assume 
the existence of the four boundary values 

1 2 1 2( ), ( ), ( ), ( )o o c cB t B t B t B t at each decision time t: 
1 2 1 2

1 2 1 2

( ), ( ) : 0 ( ) ( ),

( ), ( ) : 0 ( ) ( ).

o o o o

c c c c

B t B t B t B t

B t B t B t B t

  

  
               (6) 

We found that in many cases it is possible to recover such 
boundaries from the least-squares Monte Carlo approach. To 
check such possibility, for each decision time we sort the 
sample of Monte Carlo realizations of copper price into the 
six sub-samples corresponding to the three operating modes 

(operating, ceased and abandoned) for the two modes 
(operating or ceased) at the previous decision time. We 

denote by max max( ), ( )ao ac
n nt ta a  the maximum values of the 

samples corresponding to a decision ‘abandon’ at time step 

nt  for optimal decision ‘operate’ and ‘close’ at time step 

1nt   respectively. We denote by min min( ), ( )co cc
n nt ta a  the 

minimum values and by max max( ), ( )co cc
n nt ta a the maximum 

values of the samples corresponding to a decision ‘cease’ at 
time step nt  for optimal decision ‘operate’ and ‘cease’ at 

time step 1nt   respectively. Finally, we denote by 

min min( ), ( )oo oc
n nt ta a  the minimum values of the samples 

corresponding to a decision ‘operate’ at time step nt  for 

optimal decision ‘operate’ and ‘cease’ at time step 1nt   

respectively. We use LSM solution to establish the decision 
boundaries if the following conditions are satisfied: 

max min max min

max min max min

min max min max

min max min max

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ),

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,
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   

     (7) 

where   is the tolerance parameter.  
The decision boundaries that correspond to Figure 1 are 

shown in Fig. 4, while the decision boundaries that 
correspond to the solutions shown in Figs. 2 and 3 are 
shown in Fig. 5. 
     If the solution satisfying (7) cannot be produced with a 
reasonable number of Monte Carlo simulations and basis 
functions, we use Genetic Algorithm to produce the decision 
boundaries.  When Genetic Algorithm is used to produce the 
decision boundaries, the four values 

1 2 1 2( ), ( ), ( ), ( )o o c c

n n n nB t B t B t B t at each decision time nt , 

that satisfy the rules in (6), are treated as unknowns.  In this 
case, we use the partial boundaries produced by LSM to set 
up the range for GA search. The Genetic Algorithm starts 
with the random initial population of chromosomes, 
consisting of genes representing a decision. In this study, 
each gene represents a value to switch from one option to 
another. In absence of switching cost there are only two 
possible genes namely a value to switch between option c 
and a, and another value to switch between option ‘c’ and 
‘o’. However, in presence of switching cost, the current 
decision is dependent on previous option thus there are two 
pair of possible options which each of them correspond to 
the previous option, o or c. The total number of genes in 
each chromosome is determined by the multiplication of 
number of years in the planning horizon by number of 
possible genes in each year. Tournament selection, one-
point crossover and bit-wise mutation are used in this study 
based on the code published at the Kanpur Genetic 
Algorithms Laboratory website 
(http://www.iitk.ac.in/kangal/codes.shtml). Other associated 
parameters of GA are set as: number of bits =100, pc=0.99, 
pm=0.01, population size=500, number of generations= 
1000, number of runs=3, tournament size=30 and the  
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Fig. 4. Optimal decision boundaries based on the results presented in Fig 1; 
the model without switching costs; the initial price is 0.7, the initial 
decision is ‘operating’.  
 

 
Fig. 5. Optimal decision boundaries with switching costs, based on the 
results presented in Figs. 2 and 3. Decision boundaries are shown with solid 
curves when the optimal decision at the previous decision time is 
‘operating’, and with dashed curves when the previous decision is ‘ceased’. 

 

algorithm terminates if there is no improvement in the 
results after 100 iterations. 
     We found that the decision boundaries produced by GA 
are typically non-smooth (see Fig. 6). To rectify this, we 
smooth the boundaries produced by GA by interpolation, 
using the polynomial curve fitting.  The results are presented 
in the following section. 

V. VALIDATION OF THE DECISION RULES 

We found that in many cases the results of LSM analysis 
satisfy (7) and can be used to produce decision boundaries. 
If this is not the case, we use GA-based algorithm as 
described in the previous section. 
     Figure 6 shows the decision boundaries produced by GA 
for the initial copper price 0.9.  A non-smoothness of the 
boundaries is clearly observed.  Figure 7 shows the 
boundaries produced by interpolation of the results in Fig. 6, 
using polynomial functions.  
    Table I shows a comparison of the project values obtained 
from LSM and by using the GA-based decision boundaries 
as decision rules. One can see that using the boundaries 
produced by GA as decision rules gives an improved project 
value (expected discounted cash flow), that deteriorates 
slightly after smoothing. 
    Figure 8 illustrates how the decision rules can be used in 
practice to determine the optimal strategies over the time 
horizon. For the two cases presented in Fig. 8, the project 
value computed using the decision rules was identical with 
the project value computed via LSM. We found that the 
difference in the project values usually occurs when the 
copper price at some decision time is close to the decision 
boundaries. 

 
Fig. 6. Decision boundaries produced by GA-based algorithm for the initial 
copper price 0.8; the initial decision is ‘operating’. Decision boundaries are 
shown with solid curves when the optimal decision at the previous decision 
time is ‘operating’, and with dashed curves when the previous decision is 
‘ceased’. 

 

 
Fig. 7. Decision boundaries produced by interpolation of the decision 
boundaries obtained via GA-based algorithm for the initial copper price 
0.8; the initial option is ‘operating’. Decision boundaries are shown with 
solid curves when the optimal decision at the previous decision time is 
‘operating’, and with dashed curves when the previous decision is ‘ceased’. 

           
The largest difference we observed occurs when the copper 
price is just below the boundary between the ‘ceased’ and 
‘abandoned’ decision regions. The reason is that this is the 
boundary of an irreversible decision (abandon). We 
recommend that the decisions near this boundary should be 
carefully validated using a more rigorous analysis.  
     For the problem at hand, one would expect the 
dependence of the decisions on the current state of the 
inventory. However, we did not observe such dependence, 
even when we extended the time horizon and reduced the 
total amount of inventory. An example of the decision 
boundaries for different states of inventories are shown in 
Fig. 9. We can see that they all fall on the same curve which 
coincides with the decision boundary produced without 
accounting for different states of inventory. 
 

TABLE I 
COMPARISON OF PROJECT VALUES, SCALED WITH RESPECT TO LSM 

VALUES 
Copper 
price 

DR(GA) DR (smoothed GA) 

0.8 1.000368 0.999393 

0.9 1.000106 1.000017 

1.0 1.000210 1.000107 

VI. PARAMETRIC STUDY  

In this section, we study the behavior of the decision 
boundaries with changes in the parameters of the stochastic 
copper price model (1). 
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Fig. 8. Illustration of the use of decision rules to establish the optimal 
strategy for two Monte Carlo scenarios of copper price for the initial copper 
price 0.7 and the initial option ‘operating’ (Scenarios are shown with dotted 
lines). Dashed curves show the decision boundaries for the case when the 
previous decision is ‘cease’, while solid curves show the decision 
boundaries for the case when the previous decision is ‘operating’. 

     

 
Fig. 9. The boundaries between the ‘abandoned’ and ‘ceased’ decision 
regions for different states of inventory, when the previous decision time 
option is ‘ceased’, the initial option is ‘operating’, and the initial copper 
price is 0.7. 
 

Figure 10 shows the changes in the decision boundaries 
with the change in the volatility (Eq. 1) for the cases when 
the decision at the previous decision time is ‘operating’ and 
‘ceased’.  We can see that the boundary between the 
‘ceased’ and ‘operating’ decision regions is practically not 
affected by changes in the volatility. However, the boundary 
between the ‘ceased’ and ‘abandoned’ decision regions 
changes with the change in thevolatility.  

Figure 11 shows the changes in the decision boundaries 
with the change in the risk-free interest rate for the cases 
when the decision at the previous decision time is 
‘operating’ and ‘ceased’ respectively.  As in Fig. 10, we can 
see that the boundary between the ‘ceased’ and ‘operating’ 
regions is practically not affected by changes in the risk-free 
interest rate, while the boundary between the ‘ceased’ and 
‘abandoned’ decision regions changes with the change in the 
risk-free interest rate. 

 

 
Fig. 10. Changes in the decision boundaries with changes in the volatility 
between 5% and 8% for the initial price 0.7 and the initial option is 
‘operating’. The previous decision time option is: ‘ceased’ (top), and 
‘operating’ (bottom). 
 

 

 
Fig. 11. Changes in the decision boundaries with changes in the risk-free 
interest rate between 6% and 10% for the initial price 0.7 and the initial 
option is ‘operating’. The previous decision time option is: ‘ceased’ (top) 
and ‘operating’ (bottom). 

VII. CONCLUSIONS 

Using the example of mineral extraction project, we 
showed that the solution of discrete time optimal control 
problem can be presented in the form of optimal decision 
regions in the state-time coordinates. An encouraging result 
is a relative insensitivity of the decision boundaries to 
changes in the parameters of the stochastic model of 
commodity price. We found that the boundary between the 
regions where it is optimal to abandon the mine and where it 
is optimal to temporarily cease the extraction is the most 
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sensitive boundary. This is understandable, as this boundary 
is associated with an irreversible decision.  We found that 
the project value can be significantly affected by inaccuracy 
in this boundary. We therefore suggest that the decision to 
abandon the mine needs to be carefully verified if the 
commodity price is in the vicinity of this decision boundary. 

We found that the decision boundaries computed using 
the Genetic Algorithm are usually non-smooth. To 
overcome this, we used a polynomial function interpolation 
to smooth the boundaries. Numerical results show that 
smoothing the boundaries affects the objective function only 
marginally, and the expected discounted cash flow may still 
outperform the one computed using LSM algorithm. A 
parametric representation of the boundaries for the purpose 
of GA analysis might be useful and will be the subject of 
further study.  Also, an improved computational efficiency 
of the Genetic Algorithm will be further investigated.  

Despite expectations, we found that the decision rules for 
this particular problem are independent of the state of 
inventory. We expect that this is an exception rather than a 
common rule, and may be a result of a simplified nature of 
the problem. Dependence on the state of inventory needs to 
be examined carefully for more complex natural resource 
investment problems. 

We expect that establishing the decision boundaries 
(decision rules) for high-dimensional stochastic optimal 
control problems may be too difficult and not practical. 
Nevertheless, understanding the structure of the decision 
regions and its sensitivity to changes in the parameters of 
the stochastic processes is important for practical purposes, 
as it gives practitioners an insight into the decision under 
uncertainty process and into the forthcoming optimal 
decisions, and alerts them to the conditions when the actions 
may be required.  

APPENDIX A: LEAST-SQUARES MONTE CARLO ALGORITHM. 

Discretised version of the diffusion process in (1) is given 
by 

 2
1 1 1 1exp ( / 2)( ) ,

n n nt t n n n n tS S r t t t t Z            

where 
1 (0,1) i.i.d.

nt
Z N  

    The Bellman value function for the optimal switching 
problem described in Section 3 is given by 


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where r is the risk-free interest rate and [.]kE  is the 

expectation conditional on the information available at time 

kt . We denote by  

1 1 1 1( , , , ) [ ( , , , ) , , ]
 
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the continuation value in Bellman equation and approximate 

it by a finite set of basis functions 0, ...,, l Ll  
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The coefficients i
 are found by the least squares fitting in 

the backward recursion, determining the optimal exercise 
policy and revising the remaining cashflow along the path.                    

APPENDIX B: DATA FOR NUMERICAL STUDY 

We used annual decisions and 15 year planning horizon.  
The number of Monte Carlo simulations in the base case is 
100000. In agreement with [6] we found that the Laguerre 
polynomials produce the best results. 
 

TABLE BI 
PARAMETERS FOR VALUATION OF THE INVESTMENT 

Output rate (q) 10 million lbs/year 
Inventory(Q) 150 million lbs 
Initial average production cost(A0) $0.50/lb 
Initial cost of opening $200,000 
Initial cost of closing $200,000 
Initial maintenance cost(M0) $500,000/year 
Convenience yield(δ) 1%/year 
Price volatility (σ) 8%/year 
Interest rate, nominal (r) 10%/year 
Inflation rate (π) 8%/year 
Property taxes, operating/closed 2%/year 
Income taxes (τ2) 50%/year 
Royalty taxes (τ1) 0%/year 
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