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Abstract—We have developed a Monte Carlo engine for using
a hybrid stochastic-local volatility (SLV) model to price exotic
options. Through a case study where AUD/USD FX market data
is used, we demonstrate that the implemented SLV model can
reproduce market implied volatilities. A PDE pricing engine for
the SLV model has been used as the benchmark to examine the
performance of the Monte Carlo engine for which two different
control variates are implemented to reduce the pricing variance
in the raw Monte Carlo results. The numerical results shown
in this paper suggest that the best improvement in accuracy
is obtained when utilising market-traded exotic options as a
control variate to price another exotic option, whereas using the
conventional vanilla option as a control variate is not effective
for the SLV model.

Index Terms—stochastic local volatility, exotic options

I. INTRODUCTION

CURRENTLY, a class of volatility models that com-
bine the advantages of both the local volatility model

and stochastic volatility models have become very popular,
particularly in the finance industry [1]–[4]. This class of
models, termed stochastic-local volatility models, combine
the local volatility model of Dupire [5] with a stochastic
volatility model. Different stochastic volatility models such
as the Heston model [2], [4] or the SABR model [6] have
been used to construct such stochastic volatility models.

Our hybrid model presented in this paper consists of a
non-linear and non-parametric combination of a pure local
volatility model and a pure Heston stochastic volatility
model. The impacts of the two models are controlled by
a function termed the leverage function, in addition to a
parameter termed the mixing fraction.

A brief description of our hybrid SLV model is presented
in Section II, where we outline the calibration procedure
in addition to the two different pricing methods used. A
more detailed description of both the calibration and pricing
procedures can be found in [7]. We then present a case
study examining the performance of Monte Carlo pricing
techniques using market data for the AUD/USD currency
pair. In particular, we will focus on improving the pricing
accuracy of the Monte Carlo method by utilising a control
variate to reduce the sample variance, because in the context
of the stochastic-local volatility model, market prices for
certain exotic options are available in calibrating the model,
and therefore the available market prices can also be used
effectively for control-variate techniques.
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II. STOCHASTIC LOCAL VOLATILITY MODEL

Our implementation of the stochastic-local volatility model
is assumed to follow Heston-like dynamics. Under the risk
neutral measure, the SLV model for two FX rates with the
same domestic currency is

dSt = (rd − rf )Stdt+ L(St, t)
√
VtStdW

(1)
t , S0 = s,

dVt = κ(θ − Vt)dt+ λ
√
VtdW

(2)
t , V0 = v,

dW
(1)
t · dW (2)

t = ρdt,
(1)

where rd is the domestic interest rate and rf the foreign
interest rate in the context of FX market, both of which
are assumed to be locally deterministic with term structure.
We denote r = rd − rf in the following sections. We also
assume that the Heston parameters – the mean-reversion rate
κ, the mean-reversion level θ, the volatility of volatility λ and
correlation ρ – all have time-dependent term structures. The
function L(St, t), termed the leverage function, controls the
impact of local volatility.

According to the mimicking theorem presented in [8],
the marginal distribution of the SLV model described by
Equation (1) is identical to the distribution of a local volatility
model [5], [9] with the local volatility σLV (S, t) given by

σLV (x, t)2 = E[L(St, t)
2Vt|St = x]

= L(x, t)2E[Vt|St = x] (2)

If we calibrate the local volatility model to the market, the
mimicking theorem ensures that the hybrid SLV model can
match the price from the local volatility model and therefore
can reproduce the vanilla market prices. By introducing the
transition probability density of the LSV model, p(S, V, t),
we can write the leverage function as

L(x, t) =
σLV (x, t)√
E[Vt|St = x]

= σLV (x, t)

√√√√ ∫
R+
p(x, V, t)dV∫

R+
V p(x, V, t)dV

. (3)

A. Calibration

The calibration procedure of the hybrid SLV model con-
sists of three distinct phases. Firstly, the term-structure Hes-
ton stochastic parameters are calibrated for the input market
data. The second stage is then the calculation of the local
volatility surface. The third stage consists of the calibration
of the leverage function, which requires solving a Fokker-
Planck equation to obtain the transition probability density
so that Equation (3) may be used to calculate the leverage
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function. The Fokker-Planck equation for the transition prob-
ability density under the SLV model is given by

∂p

∂t
= − ∂

∂S
[rSp]− ∂

∂V
[κ(θ − V )p]+

+
1

2

∂2

∂S2
[L2S2V p] +

∂2

∂S∂V
[λρLSV p] +

1

2

∂2

∂V 2
[λ2V p].

(4)
In addition to available vanilla market data as input data,

some traded exotic option market prices are also available.
We therefore want our model to reproduce traded exotic
option market prices as well. To this end, we introduce a
parameter η ∈ [0, 1], termed the mixing fraction, that is used
to multiply both the volatility of volatility parameter λ in
addition to the correlation parameter ρ. The mixing fraction
controls the impact of the pure stochastic volatility; when the
mixing fraction is 0, the local stochastic model degenerates
into a pure local volatility model, while as the mixing fraction
increases towards 1, the impact of the stochastic volatility
increases. To complete the calibration process, we determine
the term-structure of the mixing fraction by using a non-
linear optimization routine to minimize the relative error
between the SLV model price and the input market prices
for vanilla and exotic options. If exotic options are present in
the calibration, we can choose to have different optimisation
weighting on the exotic options’ prices. However, for the nu-
merical results of this paper, we choose to only include errors
from pricing the input exotic options for the optimisation.

To summarize, the calibration procedure of the SLV model
is implemented as follows:

Calibration:
1) For given market data including implied volatilities,

calibrate the parameters in term-structure form for
Heston stochastic volatility model.

2) For the same market data, generate local volatility
surface data.

3) With calibrated Heston parameters and generated local
volatilities, calibrate the term-structure of the mix-
ing fraction and the leverage function by solving
the Fokker-Planck equation to match market implied
volatilities as well as traded prices of available exotic
options.

Note: the first two steps in the calibration phase are
independent and they both feed the third calibration step.
We refer to [7] and [10] for more details of the calibration.

B. Pricing Implementation

Once we have calibrated the SLV model, we can store
the Heston stochastic parameters and the mixing fraction
for pricing other exotic options later. For pricing exotic
options with different expiries to any maturity tenors, the
calibrated leverage function may be interpolated along the
spot direction using cubic spline interpolation, and along the
time direction using linear interpolation. After calibration,
when pricing any new exotic options, we will re-generate
the leverage function.

Currently, we have implemented two different numerical
methods for using the SLV model to price exotic options:
using the finite difference method for solving the pricing
PDEs of the SLV model, and using the Monte Carlo simula-
tion method for the stochastic equations of the SLV model.

In this paper, we will mainly present our numerical results
from the Monte Carlo method, and we will only use the
implemented finite difference method as the benchmark.

1) Finite Difference Approach: In order to maintain the
positivity of the variance process, we choose to transform
the original LSV model of (St, Vt) into a model of log-spot
and log-variance, such that our new stochastic variables are
expressed as (Xt = log(St/S0), Zt = log(Vt/V0)). We note
that we have also scaled our original variables by their initial
spot values (S0, V0) in making the log transformation.

From Ito’s lemma, the SLV model for log-spot Xt and
log-variance Zt becomes

dXt = [rd(t)− rf (t)− 1

2
L(Xt, t)

2Vt]dt

+L(Xt, t)
√
VtdW

(1)
t ,

dZt = [(κθ − 1

2
λ2)

1

Vt
− κ]dt+ λ

1√
Vt

dW
(2)
t ,

dW
(1)
t · dW (2)

t = ρdt.

(5)

Here St = S0 · eXt , L(Xt, t) := L(S0 · eXt , t) = L(St, t),
and Vt = V0 · eZt .

It would be more intuitive if we can introduce τ = T − t,
then the backward option pricing PDE for a payoff function
u(S, V, τ) under the log-transformed SLV model (5) can be
transformed to:

∂u

∂τ
= [r(τ)− 1

2
L2V ]

∂u

∂X
+

1

2
L2V

∂2u

∂X2
+ λρL

∂2u

∂X∂Z
+

+[(κθ − 1

2
λ2)

1

V
− κ]

∂u

∂Z
+

1

2
λ2 1

V

∂2u

∂Z2
− rd(τ)u.

(6)
We can solve the above PDE (6) by an alternating-

direction-implicit (ADI) scheme from [11] as

A = un−1 + ∆τn[G0(un−1, τn−1) +G1(un−1, τn−1)+

+G2(un−1, τn−1)],

B − α∆τnG1(B, τn) = A− α∆τnG1(un−1, τn−1),

C − α∆τnG2(C, τn) = B − α∆τnG2(un−1, τn−1),

un = C, n = 1, . . . , N,
(7)

with

G0(u, τ) = λρL
∂2u

∂X∂Z
+ b0(τ),

G1(u, τ) = [(κθ − 1

2
λ2)

1

V
− κ]

∂u

∂Z
+

1

2
λ2 1

V

∂2u

∂Z2
−

−1

2
rd(τ)u+ b1(τ),

G2(u, τ) = [r(τ)− 1

2
L2V ]

∂u

∂X
+

1

2
L2V

∂2u

∂X2
−

−1

2
rd(τ)u+ b2(τ).

(8)

Here bi(τ) are boundary conditions imposed in the mixed
derivative, Z- and X-directions. The parameter α controls
the weight given to an implicit solution for the differential
equation. We use a value α = 1 which ensures stability of
the solution in addition to improving the accuracy of pricing
options with a discontinuity in the payoff or in the derivatives
of the payoff with respect to the spot.

We use a second-order central finite difference scheme to
approximate first-order and second-order derivatives inside
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the domains chosen for both the spot and variance. For
boundary mesh points, we use a first-order forward or
backward finite difference according to the location of the
boundary mesh points. We refer to [7], [11] and [12] for
more details.

The implementation of initial and boundary conditions
for the option payoff function is critical in using a finite
difference method to solve the option pricing PDE. The
initial and boundary conditions for some FX exotic op-
tion payoffs can be found in [10]. Additionally, boundary
conditions for Heston-like models are extensively discussed
in [11]–[17]. For pricing digital options where the initial
condition (the payoff function) is discontinuous at the strike,
we approximate the payoff using the averaging scheme in
[18] to ensure accurate finite difference calculations of the
first and second order derivatives along the spot direction.
The payoff at the strike is taken to be the mid-point (1/2 for
cash-payment or K/2 for asset-payment).

2) Monte Carlo Method: We evolve the spot and variance
stochastic differential equations defining the SLV model
using the Euler method for M time steps. We ensure that
the variance process remains positive by implementing the
full truncation scheme as described in [19]. If the variance
process becomes negative, we reset its value to be zero. The
evolution equations for the spot and variance thus take the
following form:

Sti+1
= Sti + [rd(ti)− rf (ti)]Sti∆t+

+L(Sti , ti)
√
VtiSti∆W

(1)
ti ,

Vti+1
= Vti + κ(θ − (Vti)

+)∆t+ λ
√

(Vti)
+[ρ∆W 1

ti+

+
√

1− ρ2∆W
(2)
ti ],

Vti+1 = (Vti+1)+,
(9)

with ∆t = ti+1 − ti, ∆W
(j)
ti = W

(j)
ti+1
− W

(j)
ti , i =

0, . . . ,M − 1, j = 1, 2.
The price P of an option with payoff function u(S, V, t)

is then found by calculating the discounted expected payoff,

P = e−rdtE[u(S, V, t)|St = S0], (10)

where the expectation is carried out over Monte Carlo sample
paths of the spot price (and variance under the SLV model).

To achieve a more accurate Monte Carlo estimate of the
option price, one can increase the number of sample paths
that are used to compute the average payoff, thus in effect
sampling more of the underlying probability distribution.
However, the gain in accuracy (measured by the standard
error in the mean) only scales with the square root of the
number of sample paths. Therefore, achieving a convergent,
highly accurate result requires a large number of Monte Carlo
sample paths, and consequently a longer computational time.
Several methods exist to reduce the variance of the standard
Monte Carlo pricing method and improve accuracy with
less computational effort. For example, antithetic sampling
can be introduced, where the number of sample paths is
doubled by using the generated sample paths along with their
mirror image negative paths. These two sets (normal and
mirror image) of simulation paths are therefore negatively
correlated, and the variance of the total set of sample paths
will be less than the equivalent number of uncorrelated

TABLE I
AUD/USD PARAMETER SETTINGS

Domestic currency USD

Foreign currency AUD

Date 6 December, 2013

Spot 0.9101 USD per AUD

Initial variance 0.00807

TABLE II
AUD/USD MARKET YIELDS (IN %)

Maturity rd rf

1m 0.24 2.63
3m 0.24 2.62
6m 0.25 2.61
9m 0.25 2.61
1y 0.26 2.65

TABLE III
AUD/USD MARKET DATA (IN %)

Maturity 10-∆ put 25-∆ put ATM 25-∆ call 10-∆ call

1m 11.52 10.46 9.42 8.99 8.65
3m 13.27 11.71 10.08 9.41 8.92
6m 14.54 12.48 10.32 9.53 8.86
9m 15.10 12.97 10.44 9.68 8.73
1y 15.57 13.36 10.55 9.70 8.57

sample paths. Furthermore, the probability distribution being
sampled may be changed to one that exhibits a particular
symmetry when pricing an option, so that the average is
easier to compute in the sense that fewer samples are required
for convergent results. This technique is termed importance
sampling.

This paper focuses on utilising a control variate scheme to
enable variance reduction. In the context of option pricing,
this variance reduction technique relies on pricing an option
with a known price using the Monte Carlo simulation ap-
proach, calculating the pricing error of the known option, and
then adjusting the price of the target option correspondingly
to account for the known error.

More formally, let the (unknown) target price be PT , the
(known) control price be PC , and define random variables T
and C representing the discounted payoffs of the target and
control options respectively. As the control price is known,
we can write PC = E[C]. We note that the same sample paths
are used to generate the discounted payoffs represented by
T and C.

A simple estimator for the target price is the random
variable T , so that the raw Monte Carlo estimate of the target
price PMC

T is given by

PMC
T = E[T ], (11)

which has a variance Var[T ].
We now introduce a second estimator, given by T+a(C−

E[C]) ≡ T + a(C − PC) where a is a constant. We can see
that the expected value of the second estimator is equivalent
to that of the first. However, the variance of the second
estimator is given by

Var[T ] + a2Var[C] + 2aCov[T,C]. (12)
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TABLE IV
EXOTIC OPTIONS FOR AUD/USD CALIBRATION

Maturity Low Barrier High Barrier Market Price(%)

1m 0.883 0.935 40.36
3m 0.869 0.951 36.39
6m 0.858 0.963 29.21
9m 0.855 0.965 18.53
1y 0.835 0.989 30.96

TABLE V
TERM-STRUCTURE PARAMETERS IN THE SLV MODEL FOR AUD/USD

Period κ θ λ ρ η

0-1m 0.649 0.073 0.482 -0.454 0.381
1m-3m 0.973 0.021 0.562 -0.691 0.625
3m-6m 0.959 0.027 0.427 -0.700 0.384
6m-9m 0.865 0.028 0.524 -0.713 0.494
9m-1y 0.964 0.021 0.519 -0.562 0.356

To minimize this variance, we choose

a = −Cov[T,C]

Var[C]
, (13)

so that the total variance of the second estimator is

Var[T ]− Cov[T,C]2

Var[C]
< Var[T ]. (14)

We therefore reduce the variance of the target price, which
may result in requiring fewer Monte Carlo paths for a
constant level of accuracy. This is the essence of the control
variate implemented in this paper.

III. CASE STUDY

To test the performance of the control variate scheme
we have implemented in the Monte Carlo method for the
SLV model, we choose to use AUD/USD market data for
demonstration. The basic parameters are presented in Table
I, the market yields in Table II, and the market implied
volatilities are shown in Table III.

In addition to the vanilla market data, we also use five
double no-touch options to calibrate the SLV model – one
for each maturity tenor, as shown in Table IV.

A. Calibration Results

The calibrated values of the stochastic parameters are
presented in Table V, whereas Table VI displays the cal-
ibrated implied volatilities (implied vanilla prices that are
computed by the SLV model). The SLV calibration results
for vanilla options have a maximum absolute error of 17
bps, a mean absolute error of 6 bps and a root-mean-square
absolute error of 8 bps. As a direct comparison, the Heston
calibration results for the same market implied volatilities
have a maximum absolute error of 35 bps, a mean absolute
error of 14 bps and a root-mean-square absolute error of 18
bps.

The calibrated prices for the exotic options are displayed
in Table VII. The maximum relative error exhibited by the
SLV model is 0.05%.

TABLE VI
CALIBRATED IMPLIED VOLATILITY SURFACE FROM THE SLV FOR

AUD/USD (IN %)

Maturity 10-∆ put 25-∆ put ATM 25-∆ call 10-∆ call
1m 11.55 10.46 9.40 8.91 8.68
3m 13.71 11.61 9.92 9.24 8.84
6m 15.05 12.36 10.23 9.50 8.83
9m 16.32 12.90 10.41 9.66 8.72
1y 16.32 13.27 10.48 9.63 8.53

TABLE VII
CALIBRATION RESULTS FOR EXOTIC OPTIONS IN AUD/USD

Maturity Market Price SLV price Rel Error(%)

1m 40.36 40.37 0.02
3m 36.39 36.40 0.05
6m 29.21 29.20 -0.03
9m 18.53 18.53 0.01
1y 30.96 30.95 -0.02

Fig. 1. The price of a one-touch option with a maturity of one year and
a low barrier placed at 0.8 as a function of Monte Carlo paths. The price
obtained from solving the pricing PDE is denoted by a dark blue dashed
line while the market price is denoted by the light blue solid line. The red
square markers indicate the raw Monte Carlo price, the green triangular
markers indicate the price when a vanilla price is used as a control variate,
and the purple crosses indicate where another one-touch option was used
as the control variate. The connecting lines are guides to the eye. The error
bars display the standard error on the price as calculated from the Monte
Carlo samples.

Fig. 2. The absolute value of the relative error of the price of a one-touch
option with a maturity of one year and a low barrier placed at 0.8 as a
function of Monte Carlo paths compared to the market price. The dark blue
solid line denotes the relative error resulting from using the pricing PDE
to calculate the option price. The red square markers indicate the relative
error of the raw Monte Carlo price, the green triangular markers indicate
the relative error observed when a vanilla price is used as a control variate,
and the purple crosses indicate where another one-touch option was used
as the control variate. The connecting lines are guides to the eye.
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B. Monte Carlo Results
Once the stochastic parameters and the leverage function

are known, we can price other exotic options with our Monte
Carlo engine using the calibrated SLV model. We choose to
price two one-touch options with a one year maturity; one
with a low barrier placed at 0.8, which has a market price of
25.14% of the domestic currency (USD), the other with a low
barrier placed at 0.85, with a market price of 45.92%. We
will compare the performance of the simple (or raw) Monte
Carlo pricing method with that of the control variate scheme
for the two exotic options. We implement the control variate
scheme using two different types of options as the control: a).
a vanilla option and b). a one-touch option with a low barrier
placed at 0.01 larger than the target exotic option. Each of
the control options are of the same one-year maturity as that
of the target exotic option. The control one-touch options
have market prices of 28.26% for the barrier placed at 0.81,
and 51.94% for the barrier placed at 0.86.

Our pricing results for the one-touch option with a low
barrier placed at 0.8 are presented in Figure 1. The light blue
solid line indicates the market price of the exotic option. As
a benchmark, we also priced the one-touch option using our
PDE finite difference pricing engine, resulting in a price of
25.71%, as shown in Figure 1 by the dark blue dashed line.
We then use the Monte Carlo pricing engine to price the one-
touch option with a varying number of Monte Carlo paths,
ranging from 100 to 100000.

Without using a control variate approach, we see that the
Monte Carlo price indicated by the red square symbols in
Figure 1 is inaccurate and exhibits a significant standard error
until 10000 sample paths. The price obtained from the raw
Monte Carlo method then converges to the finite difference
benchmark for sample path numbers of above 10000. This
behaviour is more evident when examining the absolute value
of the relative error between the SLV price and the market
price of the one-touch option, as presented in Figure 2.

Introducing as a control variate the corresponding vanilla
option, we observe an upwards shift of the option price with
reduced standard error, as shown by the green triangular
markers in Figure 1 and corresponding green error bars.
Furthermore, we observe an improved pricing performance
for sample numbers between 200 and 2000 with a reduction
in the relative error as shown in Figure 2. The vanilla-
controlled price then converges to the raw MC result as the
sample path number increases. The control variate scheme
therefore results in faster convergence to the SLV solution
which we assume here to be the PDE solution as the
benchmark for the SLV model.

The pricing results for the second control variate scheme
are indicated by the purple crosses in both Figure 1 and Fig-
ure 2. As we are using an option with the same payout and a
very similar trigger level as a control, the correlation between
the control and the target will be significantly larger than the
correlation between the target and its corresponding vanilla
option. Therefore, from Equation (14), we would expect the
standard error to be less than the vanilla-controlled result.
Indeed, that is what we observe – the prices obtained from
using a one-touch option as a control exhibits significantly
smaller standard error than either the raw Monte Carlo or
the vanilla-controlled results.

However, we observe that the one-touch controlled price

Fig. 3. The price of a one-touch option with a maturity of one year and
a low barrier placed at 0.85 as a function of Monte Carlo paths. The error
bars display the standard error on the price as calculated from the Monte
Carlo samples. The different pricing techniques are represented by the same
coloured symbols as in Figure 1.

Fig. 4. The absolute value of the relative error of the price of a one-
touch option with a maturity of one year and a low barrier placed at 0.85
as a function of Monte Carlo paths compared to the market price. The
different pricing techniques are represented by the same coloured symbols
as in Figure 2.

converges to a value closer to the market price than the SLV
PDE benchmark and the other Monte Carlo prices even when
the sampling paths increase to the maximum of 100000. We
interpret this behaviour as indicating that using the control
variate allows extra market information to be included in the
pricing approach, allowing further improvement in pricing
accuracy over the calibrated model as comparison is made
on market traded prices. As the vanilla market information
has been captured in the calibration procedure described in
Section II-A, using a vanilla option as a control variate does
not provide additional information, and therefore the pricing
accuracy from the SLV model is limited to the accuracy
of the calibrated SLV model. However, the exotic options
used as control for the target options were not included as
part of the calibration process. Therefore, when the Monte
Carlo estimate of the control variate price is compared to the
known market price, we are comparing two different sources
of error – the Monte Carlo sample variance in addition
to model error in accurately pricing known market-traded
exotics. Correcting the pricing results as per the control
variate scheme thus amounts to a correction to both the
model error and the Monte Carlo numerical error. Therefore,
we see such a Monte Carlo method can calculate exotic
option prices closer to market traded prices than the PDE
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benchmark.
The pricing behaviour of the second exotic option with a

barrier placed at 0.85 is displayed in Figures 3 and 4. Once
again, using another one-touch option as a control variate
enables the Monte Carlo-obtained price to converge faster
than either the raw (naive) Monte-Carlo result or when using
a vanilla option as the control. However, our calibrated model
gives a more accurate price for this option, as can be seen
in the much smaller relative error of the PDE benchmark
price. Therefore, little extra market information is gained
when using an additional exotic option as a control, and all
prices converge to a uniform value for very large numbers
of sample paths.

IV. CONCLUSION

We have implemented a Monte Carlo pricing engine for
our hybrid stochastic-local volatility (SLV) model which can
reproduce market implied volatilities and be used to price
various types of exotic options. We have also evaluated
the improvements in accuracy generated by using a control
variate scheme to reduce Monte-Carlo sample variance. In
particular, numerical results suggest that using available
market-traded exotic options as control variates is preferable
to using a vanilla option when pricing exotic options. The
reason for such improvement in accuracy is probably due
to some extra market information contained by the exotic
option prices used as the control. The potential for the
inclusion of additional market information gives such Monte-
Carlo methods the advantage over standard PDE benchmark
solutions in pricing exotic options more aligned with market
prices.
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