
 

  
Abstract- Optimization criteria ability to depict Pareto 

frontiers is evaluated using two examples from the literature. 
Results show that criteria built on different approaches 
perform differently. Performance of a desirability-based 
method is unsatisfactory whereas the consistent performance of 
a global criterion gives confidence to use it in real-life problems 
developed under the Response Surface Methodology. 
 

Index Terms- Bias, Compromise, Desirability, Dual, Pareto, 
Variance. 
 

I. INTRODUCTION 

ypically, multiple response optimization (MO) problems 
have many Pareto optimal solutions that impact 

differently on process or product. Some of them may lead to 
operation conditions more hazardous, more costly or more 
difficult to implement and control. Therefore, it is of 
decision-maker (DM) interests to use a method with the 
ability to capture a set of nondominated solutions evenly 
distributed along the Pareto frontier. Nondominated 
solutions are those where any improvement in one response 
cannot be done without degrading the value of, at least, 
another response. If the method fails to capture them, the 
DM may have denied the possibility of finding a more 
favorable compromise solution. 

Methods ability to depict Pareto Frontiers has been rarely 
evaluated in the Response Surface Methodology (RSM) 
framework, which difficult the practitioners task of choosing 
an effective criterion to solve MO problems. This article 
compares the working abilities of two easy-to-use 
optimization criteria and helps practitioners in making more 
informed decisions when they need to select an optimization 
criterion for solving real-life problems developed under the 
RSM, which is comprehensively exposed in [1]. The 
remainder of the article is organized as follows: Next section 
provides a literature overview; then selected optimization 
criteria are reviewed; Sections IV and V include the 
examples and results discussion, respectively; Conclusions 
are presented in Section VI.  
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II.  LITERATURE OVERVIEW 

Most real-life problems involve multiple and conflicting 
objectives so their analysis has been a widely research 
subject. As a result, a great quantity and variety of criteria to 
generate solutions for multiresponse problems are available 
in the literature. The two most popular criteria in the RSM 
framework are built on desirability and loss function 
approaches. 

An extensive review on desirability-based criteria is 
presented in [2]. From the popular desirability criterion 
proposed by Derringer and Suich [3], later modified by 
Derringer [4], to less known proposal of Das and Sengupta 
[5], twelve methods were reviewed. Reference [6] provides 
an extensive review on loss function-based criteria and 
summarizes the relative merits of twelve multivariate loss 
and desirability criteria. Reference [7] combines the 
strengths of two popular loss function-based criteria, namely 
the Pignatiello’s and Vining’s criteria [8]-[9].  

Other contributions introduced in the last decade are the 
mean squared error [10], weighted signal-to-noise ratio [11], 
PCA-based grey relational analysis [12], weighted principal 
component [13], capability index [14], patient rule induction 
[15], design envelopment analysis [16], compromise 
programming [17], goal programming [18], physical 
programming [19]-[20], bayesian probability [21], weighted 
Tchebycheff formulations [22], modified ε-constraint 
method [23]-[25]. This list is not exhaustive. Many other 
researchers have contributed to the growing wealth of 
knowledge in the field. However, little attention is paid to 
methods ability to depict Pareto frontiers. Exceptions are the 
works by Costa et al. [26] and Köksoy and Doganaksoy 
[27], though these studies only evaluated a very small 
number of criteria and case studies. 

 

III.  OPTIMIZATION CRITERIA 

In the next subsections two criteria built on different 
approaches are reviewed, namely a desirability-based 
criterion (DAM criterion) and a global criterion-based 
criterion (GC criterion). 

A. DAM criterion 

Ch’ng et al. [28] proposed to minimize an arithmetic 
mean of individual desirability functions defined as 
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where )( ii Td  is the value of the i-th individual desirability 

function for iŷ  at target value Ti, iω  represents the priority 

(weight or importance) assigned to iŷ , n is the number of 

responses, and ∑ = =n

i i1
1ω . The individual desirability 

functions are defined as 
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where 20 ≤≤ d  and U and L are upper and lower bounds of 
estimated responses that are usually available for product or 
process quality control. 

 

B. GC criterion 

Costa and Pereira [29] proposed to minimize an 
arithmetic function defined as 
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where ip  are user-specified parameters (shape or power 

factors, 0>ip ). In this criterion, like for the previous one, 

for Smaller-The-Best (STB) response type (the estimated 
response value is expected to be smaller than the upper 
bound U; Uy <ˆ ) the target value T=L, and for Larger-The-

Best (LTB) response type (the estimated response value is 
expected to be larger than a lower bound L; )ˆ Ly > the 

target value T=U. 
 

IV.  EXAMPLES 

To better understand the working abilities of the criteria 
(1) and (3), namely its ability to depict Pareto frontiers, two 
examples were selected from the literature. Examples only 
deal with the optimization of two responses so as to display 
the Pareto frontier graphically. The first example has 
appeared repeatedly in the literature and its objective is to 
maximize the conversion of a polymer and minimize the 
thermal activity. The second one deals with the optimization 
of metal removal rate for a cutting machine. 

Example 1- A central composite design with four center 
points was run to determine the settings for reaction time 
(x1), reaction temperature (x2), and amount of catalyst (x3) to 
maximize the conversion (y1) of a polymer and achieve a 
target value for the thermal activity (y2). Estimated response 
models are  

 

1ŷ = 81,0943 + 1,0290 1x + 4,0426 2x  + 6,2060 3x − 

1,8377 2
1x + 2,9455 2

2x  − 5,2036 2
3x + 2,1250 21 xx + 

11,3750 31 xx − 3,8750 32xx  

 

2ŷ = 59,8505 + 3,58551x  + 0,2547 2x  + 2,2312 3x  + 

0,8360 2
1x  + 0,0742 2

2x  + 0,0565 2
3x − 0,3875 21 xx  − 

0,0375 31 xx + 0,3125 32xx  

 
The ranges for y1 and y2 are [80, 100] and [55, 60], 

respectively. Assuming that y1 is a LTB-type response, its 
target value is set equal to 100; y2 is a NTB-type response 
and its target value is 57.5. The constraints for the input 
variables are )321(  682.1682.1 , , iix =≤≤− . 

DAM criterion can’t yield a satisfactory representation of 
Pareto frontier. This criterion only generated three 
alternative solutions (see Table I for details) whereas GC 
criterion generated a larger set of alternative solutions. 
Figure 1 shows that GC criterion yielded a satisfactory 
representation of the Pareto frontier for this problem, 
generating solutions with low bias values for 2ŷ , including 

solutions with 2ŷ  on target value, and solutions with 1ŷ  

value close to the target ( 98ˆ1 =y ). This means that GC 

criterion can satisfy decision-makers with different 
sensitivities to conversion and thermal activity responses, 
which are in conflict.  

 
TABLE I 

DAM Solutions 

),( 21 ωω  ),,( 321 xxx  )ˆ,ˆ( 21 yy  D 

(0.22, 0.78) (−0.5434, 1.682, −0.5984) (95.21, 57.50) 0.053 
(0.89, 0.11) (0.0221, 1.682, −0.2019) (96.13, 60.00) 0.227 
(0.86, 0.14) (−1.682, 1.682, −1.058) (98.03, 55.00) 0.155 

 

 
Fig. 1 – GC Solutions 

 
Example 2- Metal removal rate for a cutting machine was 

evaluated using a central composite design with three 
replicates. Design variables are cutting speed (x1), cutting 
depth (x2), and cutting feed (x3). The models fitted to mean 
( µ̂ ) and standard deviation (σ̂ ) responses are as follows: 

 
µ̂ = 79.89 + 1.251x  - 0.15 2x  + 0.08 3x  - 1.47 21xx  + 

0.75 31xx  + 0.87 32xx - 2.07 2
1x  - 0.22 2

2x  - 0.49 2
3x  
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σ̂ = 1.79 + 0.111x  + 0.35 2x  - 0.15 3x  + 0.64 21xx  - 

0.18 31xx  + 0.97 32xx - 0.26 2
1x  - 0.09 2

2x + 0.04 2
3x  

 
The mean response is of NTB-type (69 <µ̂ < 83) with 

target value equal to 71 and σ̂  is of STB-type (σ̂ <1.95) 
with target value equal to zero. The constraints for the input 
variables are 3) 2, 1,(i  33 =≤≤− ix . 

In this example both criteria performed satisfactorily, 
generating a large set of alternative solutions evenly 
distributed along the Pareto frontier, such as Figures 2-3 
show. 

 

 
Fig. 2 – DAM Solutions 

 

 
Fig. 3 – GC Solutions 

 

V. DISCUSSION 

The lack of a generally agreed upon examples that must 
be used to evaluate optimization criteria performance does 
not contribute to a clear understanding of their working 
abilities. Results of some examples can make a criterion 
look effective when, in fact, it has serious limitations. In 
addition, criteria ability to depict Pareto frontiers has been 
rarely illustrated in the literature.  

Effective optimization criteria can explore all Pareto 

frontier and yield, at least, a discrete representation of that 
frontier. However, presented examples show that 
desirability-based (DAM) criterion do not perform always as 
desired. Example 2 shows the DAM criterion ability to 
depict Pareto frontiers, and that it can perform similarly to 
the GC criterion, whereas Example 1 shows DAM criterion 
limitations. In fact, results yielded by DAM criterion do not 
give confidence to use it in real-life problems. DAM 

criterion is similar to weighted sum criteria ( )∑ (x)F ω , 

which limitations to depict Pareto frontiers in highly convex 
and nonconvex surfaces are well illustrated in the literature 
[30]-[31], so its poor performance was expected.  

GC criterion is a weighted exponential sum function and 
presented examples show that it can yield discrete 
representations of Pareto frontiers. Costa et al. [26] argued 
that shape factors 325.0 ≤≤ ip  are, in general, appropriate 

to GC criterion depict a representative set of optimal 
solutions for problems developed in the RSM framework. 
This is a relevant advantage over the other criteria available 
in the literature and gives confidence to use GC criterion in 
real-life problems. Nevertheless, higher pi values may be 
necessary to obtain complete representations of some Pareto 
frontiers, namely for those where exist highly convex and 
nonconvex regions [32]-[33]. In these cases, such as Marler 
and Arora [34] noted, to use higher pi values enables to 
better capture all Pareto optimal points, but non-Pareto 
optimal points may be also captured. 

 

VI.  CONCLUSIONS 

Determining the optimal factor settings that optimize 
multiple objectives or responses is critical for producing 
high quality products and high capability processes, and can 
have tremendous impact on reducing waste and costs. 
However, conflicting responses are usual in real-life 
problems and optimal factor settings for one or more 
responses may lead to degradation of, at least, another one. 
This is illustrated in Example 1, where the two mean 
responses are in conflict, and in Example 2, where the 
conflicting responses are the mean and standard deviation of 
the metal removal rate for a cutting machine.  

A large variety of alternative solutions can be found for 
multiple response problems, and different impacts on 
process or product can also be expected. Some optimal 
solutions lead to operation conditions more hazardous, more 
costly or more difficult to implement and control. Therefore, 
to satisfy decision-makers with different sensitivity to 
optimization objectives, a criterion that can capture solutions 
evenly distributed along the Pareto frontier have to be used. 

This article successfully demonstrates the working ability 
of a global criterion-based criterion to generate solutions 
along the Pareto frontier in problems with conflicting 
objectives, and results show the superiority of GC criterion 
over a desirability-based criterion. GC criterion is relatively 
easy to understand and apply, which are appealing 
advantages over other existing criteria, and a stimulus to 
apply it in real-life problems.  

Results presented here are novel because optimization 
criteria ability to generate evenly distributed solutions along 
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Pareto frontier has been rarely evaluated in the literature. 
Nevertheless, further research is needed to better understand 
GC criterion working ability and define the range values for 
shape or power factors when the number of responses is 
large (four or more) and responses surfaces are nonconvex. 
The comparison with other effective approaches must also 
be considered, namely with the most popular desirability-
based criterion introduced by Derringer and Suich [3] or any 
variant of it. 
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