
 

  
Abstract—Autonomous navigation in a dynamic and 

complex environment is not only challenging but also uncovers 
some indoor environmental factors which affect the process of 
navigation. The presented work introduces a CBR 
methodology to avoid obstacles in an indoor scenario. A sonar 
ring is used to realize the identification of the objects and walls 
in the proposed test beds. Experiments on the Pioneer 3-AT 
robot are conducted to prove and evaluate the performance of 
the proposal, and some results are presented and described to 
emphasize the application of the CBR methodology in 
traditional mobile robot navigation. 
 

Index Terms—Autonomous navigation, Pioneer 3-DX robot, 
CBR methodology. 
 

I. INTRODUCTION 
OBILE robot is an integrated system consisted of 
environmental perception, dynamic decision and 

planning. A robot does not possess natural senses like 
human beings have. Indeed, human beings get information 
about their surrounding through vision and other natural 
sensing power. For thus, a mobile robot needs reliable 
information of the environment before to decide which 
movement it must do.  In this sense, a robot cannot explore 
an unknown environment unless it is provided with some 
sensing sources to get information about the environment.  

Different kinds of sensors such a sonar, odometers, laser 
range finders, inertial measurement units (IMU), global 
positioning system (GPS) and cameras are commonly used 
to make a robot capable of sensing a wide range of 
scenarios. To execute a free navigation in an indoor 
environment, a robot should perform some maneuvers to 
avoid crash with objects and walls. To perform such 
maneuvers the robot must be capable to handle data about 
the distance between him and the surrounding obstacles. 
Traditional global navigation mode is difficult to apply to 
this case, which consists of a perception of the environment. 
In reactive navigation mode, the adaptation of local path 
planning based on sonar data will realize the navigation task 
in unknown and complex scenario [1-2]. However, it is easy 
to fall into local traps due to the lack of global planning, 
causing the repeated paths and the failed navigation. Some 
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recent works in the literature are devoted to study and solve 
the indoor navigation problem from different points of view. 

In [3] is presented an obstacle avoidance behavior based 
Fuzzy logic control and follow walls to realize the 
navigation in an unknown and complex environment. Using 
FSM (finite state machine), the navigation status of mobile 
robot transfer when the information of environment 
changes, and a corresponding strategy is chosen to realize 
the navigation task. This algorithm can effectively solve the 
local trap problems in traditional mobile robot navigation 
strategy. Some experiments are presented on the Pioneer 
3DX mobile robot and good results are obtained. 

Reference [4] presents an approach for robot exploration 
in large-scale unknown environment by concurrent and 
incremental construction of a hybrid environment model, 
which is built on top of a RBPF-SLAM system. In this 
work, SLAM technique for robot exploration is based on 
laser scan- matching and Rao-Blackwellized Particle Filter. 
The model of the unknown environment is structured as a 
hybrid representation, both topological and grid-based, and 
it is incrementally built during the exploration process.  

For instance, the reference [5] proposes a spiking-neural-
network-based robot controller inspired by the control 
structures of biological systems. Information is routed 
through the network using facilitating dynamic synapses 
with short-term plasticity. The network self-organizes to 
provide memories of environments that the robot 
encounters. A Pioneer robot simulator with laser and sonar 
proximity sensors is used to verify the performance of the 
network with a wall-following task, and the results are 
presented. 

The work described in [6] shows how a ROS-based 
control system is used with a Pioneer 3-DX robot for indoor 
mapping, localization, and autonomous navigation. Mapping 
of different challenging environments is presented in this 
work. Moreover, some factors associated with indoor 
environments that can affect mapping, localization, and 
automatic navigation, are also presented.  

When dealing with dynamic changing environments, 
behaviour-based systems need to adapt. However, changes 
are difficult to model and predict. The main drawback of 
modeling is the use of parameters to characterize kinematics 
and dynamics [7]. These parameters need to be optimized 
for each specific problem, especially if different robots are 
used. Furthermore, if the robot is affected by physical 
problems, the same parameter optimization has to be used. 
Hence, it would be desirable to achieve a behaviour-based 
scheme able to adapt to changing circumstances without 
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human supervision, allowing the system to work in a 
different robot after minor changes. In this context, Case-
Based Reasoning (CBR) emerges as an alternative for 
adapting to environment changes. CBR is a learning and 
adaptation technique to solve current problems by retrieving 
and adapting past experiences [8]. As demonstrated, when 
using CBR there is no need to study the robot kinematics 
nor the environment [9].  

The remainder of this paper is organized as follows. 
Section II introduces the main aspects of the hardware robot 
and the software used in the experiments. In Section III the 
formalization of the CBR methodology followed for the 
experimental results given in Section IV. Conclusions are 
made at last in section V. 

II. ROBOT PLATFORM 
A mobile robot Pioneer 3-DX which is a two-wheel 

differential drive robot is used as experiment platform. The 
Pioneer robots are one of the most popular research robot 
test bed. Because of its models and balanced size combined 
with reasonable hardware, it is most suitable for in-door 
navigation. 

Multiple sensors are used to overcome the illusion 
interference of ultrasonic sensors due to blind spots exist in 
ultrasonic detection, especially when the ultrasonic sensors 
and obstacles form incorrect data for the robot. To make the 
robot fully capable of identification of the objects, two sonar 
rings with a set of 16 sensors are used. Linux (Debian) on-
board computer system is used to implement the proposals 
of the work.  

 
 
Fig. 1. The Pioneer 3-AT robot. 
 

 
Fig. 2. 
sensor. 

III. THE CBR MODEL 
In this paper, cases-based reasoning methodology is used 

CBR reuses the knowledge 

achieved by solving the same problem previously to reason 
the new one, and then makes adaptation based on the 
differences to give the solution. Furthermore, the intelligent 
character is helpful for improving the response ability and 
making decision more scientific. CBR stores any possibly 
interesting situation in a casesbase in the form of cases. A 
CBR case is a N- dimensional input vector to characterize a 
given situation and the solution to that situation. The 
advantage of CBR compared to another techniques, such as 
neural networks, is that cases in the casesbase are explicitly 
stored. Thus, cases can be easily analyzed to have a clear 
idea of what the robot has learnt and why it performs a 
given action. Furthermore, learning through CBR is 
preferable than neural networks since it is possible to seed 
the casesbase with a-priori knowledge 

A. Case representation 
Source case is stored in case database and may be reused 

to settle the target problem. The navigation source case is 
constructed by inputs obtained by the sensors from the 
environment and the current navigation strategy, such that:  

source_casen={NAV, d_sensor0, d_sensor1 15} 
 The output of the case consists of the selection of a 
navigation strategy to the robot  (see Section IV) leading by 
the retrieved cases. 

 
Fig. 3. Scheme of a case. 

B. Retrieval Process 
Minor difference among sensor reading may lead to 

different case. However, these differences usually 
correspond to same situations. Since it has been proven that 
it is better to combine discrete and continuous data in CBR 
systems [10], the problem instance can be improved by 
discretizing the sensor readings by the direction of the 

er. Thus, the retrieval process consists of 

matching all cases R  in the casesbase against the current 

problem C . Obviously, the most similar is selected by 
evaluating the similarity between cases through an 
adaptation of the Manhattan distance proposed in [7] such as 
follow: 

 

D C,R =
ws* Cs*Rs

16
s=1

ws
16
s=1

            1  

 
where W =[w0, w2, w3 15], is the vector of weights for 

sensors defined by each navigation system. For the 
experimental proposal, the weight plays a relevant role to 
influence the motion of the robot. Such fact, it is the 
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principal difference with [7].  

C. Reuse Process 
In order to use the solution that covers all issues of the 

local trap problems in an indoor navigation task 
successfully, the robot adopts the navigation strategy 
recommended by the retrieval process. Such strategies try to 
generate a general idea of the environment avoiding that 
robot constructs a mental state of its position and the 
configuration of the scenario. 

D. Review Process 
For experimental reasons, this phase has not been used in 

the proposed approach. 

E. Retain Process 
According with the basic function of the CBR method, 

this process is devoted to index new cases to the casesbase 
when the source_case has not an exact match in the 
casesbase. 

IV. NAVIGATION STRATEGIES 
A navigation strategy refers to a set of strategies, which 

allows the mobile robot to obtain the power that must be 
applied to the encoders of each wheel at any time. The 
following sections introduce an overview of the four 
proposed strategies.   

1) φ Frontal Navigation strategy 
It is the main strategy. This strategy is predefined as the 

initial state of the robot when it starts its navigation tasks. 
The operation of this system is very simple, it applies the 
same power (pwm=+80) for both encoders.  

B. θ  Reverse Navigation strategy 
In some situations, the robot must correct its trajectory 

due to several aspects (i.e., a corridor, a wall, a loop, etc). In 
this sense, one functional strategy is to make a backward 
movement. This maneuver will allow robot to leave such 
circumstances to return to the right path. To escape from 
such situation, the reverse navigation system applies 
negative values to the encoders of the wheels (i.e., pwm=-
50) for 10 seconds and then, it calls to the Left_turn 
Navigation or Left_right Navigation strategies. 

C. ϕ  Left_turn Navigation strategy 
This complementary but functional strategy is the perfect 

complement for the navigation system of an autonomous 
mobile robot. The Left_turn strategy proposes a semi-
circular turning towards the left sizes of the robot. To do 
this, the strategy employs different powers for the robot’s 
encoders (pwmleft_encoder=20 and pwmright_encoder=40) for 10 
seconds and then, it calls to the frontal navigation strategy. 

D. ω  Right_turn Navigation strategy 
To complete the set of strategies, the right-turn strategy 

proposes a semi-circular turning towards the right size of the 
robot. To do this, the strategy employs different powers for 
the robot’s encoders (pwmright_encoder=20 and 
pwmleft_encoder=40) for 10 seconds and then, it calls to the 
frontal navigation strategy.  

V. EXPERIMENTS AND RESULTS 
A. Experiments Features 

The proposed system has been tested on a Pioneer 3-DX 
equipped with 8 frontal and 8 rear sonar sensors in an indoor 
unknown and changing environment. In order to evaluate 
the performance of the robots, the test measures the time 
that a robot can be navigating in the environment without 
presenting any collision with the objects located in the 
scenario. Fig. 4 illustrates the 4 proved scenarios. The 
dimensions of the room are 7.2m x 15.8m x 2.5m. For 
experimental reasons, each test is fixed in 5 minutes and the 
number of events in that robot hits against something is 
controlled in a manual way by the authors. The number of 
trials for each scenario is stated in 10. Finally, to evaluate 
the quantity of cases that were generated during each test 
and to be able to compare it against other casesbase, at the 
end of each experiment the casesbase was restarted. 

 

  
 

  
 

Fig. 4. The set of scenarios used as a test bed. a) scenario 1; b) scenario 2; 
c) scenario 3 and; d) scenario 4. 
 

B. Experimental Results 
The experiments depicted in previous sections reach some 

interesting results related to the capability of a mobile robot 
to perform autonomous navigation in an indoor unknown 
environment.  

For example, in the scenario 1, the robot reaches at least 
76% of good decisions from out (148,428). It means that 
when a robot must implement a particular navigation 
strategy proposed by the CBR model, such decision was 
successful for the navigation task. Besides, for this test the 
casesbase reports an average of 322 cases.  

 
Fig. 5. Progressive evolution of the robot’s decisions. 
 

a) b) 

c) d) 
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In Table 1 is presented more relevant information of the 
test. In addition, the Fig. 5 shows how the robot’s 
performance increases in almost 37% through the tests when 
the casesbase has not been restarted. 

Otherwise, in the scenario 2, the robot is capable to reach 
around 78% of good decisions out (149,603). In this test, the 
casesbase reports an average of 320 cases. The robot’s 
performance in the 10 experiments is compared to 
emphasize the advantages of CBR model. In Table 2 is 
presented more relevant information of the test. In short, the 
Fig. 6 shows how the robot’s performance increases in 
almost 38% through the tests when the casesbase has not 
been restarted. Specifically, the first and the last 
experiments results were compared. 
 
Table 1. Additional information of scenario1. 

Test #hits Cases φ  θ  ϕ  ω  
1 21 320 10,488 1,233 1,327 975 
2 25 317 10,445 1,257 1,419 1,128 
3 18 311 10,987 1,245 1,423 1,104 
4 17 314 11,112 1,222 1,388 1,136 
5 16 328 11,293 1,203 1,232 1,042 
6 18 319 11,445 1,214 1,301 983 
7 19 323 11,821 1,033 1,287 992 
8 17 329 11,834 1,078 1,293 971 
9 19 326 12,028 993 1,276 982 

10 16 332 12,032 989 1,254 963 
AVE 19 322 113,485 11,467 13,200 10,276 
 

 
 

Fig. 6. Progressive evolution of the robot’s decisions. 
 

Table 2. Additional information of scenario2. 
Test #hits Cases φ  θ  ϕ  ω  

1 26 307 10,674 1,335 964 1,092 
2 20 319 11,815 1,570 988 1,120 
3 21 319 11,784 1,354 1,043 1,114 
4 23 316 11,132 1,312 1,118 1,102 
5 21 314 11,933 1,322 1,123 1,023 
6 19 331 10,874 1,309 1,208 1,003 
7 19 327 11,793 1,279 1,198 992 
8 27 311 10,455 1,257 1,234 1,114 
9 19 329 11,966 1,199 1,223 973 

10 18 332 12,003 1,201 1,231 1,173 
AVE 21 320 114,429 13,138 11,330 10,706 
 
Meanwhile, the scenario 3 reports that robot’s decision 

performance achieves a 75% of good decisions from out 
(147,248). The Fig. 7 illustrates the progressive evolution of 
the robot’s decision throughout the experiments. The 
complete analyzing results are summarized in Table 3. 
Moreover, the Fig. 7 shows how the robot’s performance 
increases in almost 40% through the tests when the 
casesbase has not been restarted.  

Finally, in the scenario 4, the robot reaches at least 76% 
of effective decisions from out (153,440 decisions). The Fig. 
8 illustrates the progressive evolution of the robot’s decision 
throughout the experiments. The complete analyzing results 
are summarized in Table 4. And then, the Fig. 8 shows how 
the robot’s performance increases in almost 36% through 
the tests when the casesbase has not been restarted. In 
particular the robot’s performance does not increases after 7 
experiments. This fact concludes that the casesbase has 
reached a successful experience to solve any particular 
situation to avoid collisions in any particular indoor 
environment. 

 
 
Fig. 7. Progressive evolution of the robot’s decisions. 

 
Table 3. Additional information of scenario3. 

Test #hits Cases φ  θ  ϕ  ω  
1 17 326 11,764 1,086 1,143 928 
2 16 329 11,893 989 1,117 988 
3 22 318 10,955 976 1,123 1,103 
4 19 324 11,142 1,242 965 1,201 
5 21 319 11,557 1,213 1,132 976 
6 19 322 11,398 1,291 1,087 1,001 
7 16 332 10,332 979 981 999 
8 17 328 11,342 1,235 1,113 1,034 
9 19 326 11,936 1,576 1,046 1,102 

10 18 324 11,984 982 1,229 1,108 
AVE 18 324 114,303 11,569 10,936 10,440 

 

 
Fig. 8. Progressive evolution of the robot’s decisions. 
 
Table 4. Additional information of scenario4. 

Test #hits Cases φ  θ  ϕ  ω  
1 20 321 11,518 988 1,064 1,092 
2 27 317 10,463 993 1,188 1,120 
3 29 314 11,512 1,034 983 1,114 
4 19 319 11,472 1,221 1,028 1,102 
5 19 318 11,632 1,198 1,311 1,023 
6 26 317 10,959 977 1,008 1,003 
7 23 320 11,476 1,103 1,182 992 
8 27 316 11,325 1,202 945 1,114 
9 28 312 10,953 1,153 1,122 973 

10 27 316 11,732 9,033 959 1,173 
AVE 25 317 113,042 18,902 10,790 10,706 
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VI. CONCLUSION 
Experimental results indicate that the methodology 

proposed for mobile robot on two sonar rings to perform the 
navigation in an unknown, complex and changing indoor 
environment works in a proper way and can effectively 
solve the local trap problems in traditional mobile robot 
navigation strategy. Using CBR (case-based reasoning) 
algorithm, the navigation status of mobile robot transfer 
when the information of environment changes, and a 
corresponding strategy is chose to realize the navigation 
task. In future, combination of a laser, vision sensors and 
other equipment will be used to reach a more complex 
mobile robot to autonomous navigation. The experiments 
report an average of 321 cases in the 4 testbeds. With the 
obtained results, it can be evaluated that the robot’s 
performance is better when its experience is greater (i.e., 
when the casesbase contains the largest quantity of possible 
cases). For future work, the mapping task will be taken into 
account in order to endow mobile robot with a more suitable 
algorithm capable to avoid the robot to pass back through 
the same place. 

 

REFERENCES 
[1] W Wang, J N K Liu. Fuzzy logic-based real-time robot navigation in 

unknown environment with dead ends[J]. Robotics and Systems, 
2008,56(7):625-643. 

[2] Thongchai,S.Suksakulchai, D.M,Wilkes, N.Sarkar. Sonar Behvior— 
Based Fuzzy Control for a Mobile Robot[C]. Proceedings of the IEEE 
International Conference On Systems Man and Cybernetics, 2000. 

[3] Kui Qian and Aiguo Song, Autonomous navigation for mobile robot 
based on a sonar ring and its implementation, Instrumentation and 
Control Technology (ISICT), 2012 8th IEEE International 
Symposium on, ISBN: 978-1-4673-2615-5, pp. 47 – 50, July, 2012. 

[4] Songmin Jia, Hongmin Shen ; Xiuzhi Li ; Wei Cui ; Ke Wang, 
Autonomous robot exploration based on hybrid environment model, 
Information and Automation (ICIA), 2012 International Conference 
on, ISBN: 978-1-4673-2238-6, pp. 19 – 24, June, 2012. 

[5] Nichols, E.,  McDaid, L.J., Siddique, N., Biologically Inspired SNN 
for Robot Control, Cybernetics, IEEE Transactions on , Vol. 
43,  Issue 1, ISSN: 2168-2267, pp. 115-128, 2013. 

[6] Zaman, S. ; Slany, W. ; Steinbauer, G., ROS-based mapping, 
localization and autonomous navigation using a Pioneer 3-DX robot 
and their relevant issues, Electronics, Communications and Photonics 
Conference (SIECPC), 2011 Saudi International, ISBN: 978-1-4577-
0068-2, pp. 1-5, April, 2011. 

[7] Alberto Poncela, Cristina Urdiales and Francisco Sandoval, A CBR 
approach to Behaviour-Based Navigation for an Autonomous Mobile 
Robot, 2007 IEEE International Conference on Robotics and 
Automation, pp. 10-14, Roma, Italy,  April, 2007. 

[8] A. Aamodt and E. Plaza, “Case-Based Reasoning: Foundational Issues 
Methodological Variations, and System Approaches”, AI 
Communications, vol. 7, no. 1, pp. 39-59, March, 1994.  

[9] C. Urdiales, E.J. Pérez, J. Vázquez-Salceda, M. Sánchez-Marré and F. 
Sandoval, “A Purely Reactive Navigation Scheme for Dynamic 
Environments using Case-Based Reasoning”, Autonomous Robots, 
vol. 21, pp. 65-78, 2006. 

[10] M. Sánchez-Marré, U. Cortés, J. Béjar, I.R. Roda and M. Poch, 
“Reflective Reasoning in a Case-Based Reasoning Agent”, Lecture 
Notes in Artificial Intelligence, vol. 1624, pp. 143-158, Springer- 
Verlag, 1999. 

 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014




