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Abstract—Reaction-diffusion mathematical models for study-
ing, among others, highly diffusive brain tumors, that also
take into account the heterogeneity of the brain tissue, are
frequently used in recent years. Current work, considers a
generalized class of such reaction-diffusion models that also
allows both diffusion and reaction parameters to depend
continuously in time. A series of transforms are applied to
produce an integral representation of the problem’s solution.
Main approach used is Fokas unified transform which yields
novel integral representations of the solution in the complex
plane that, for appropriately chosen integration contours, decay
exponentially fast and converge uniformly at the boundaries.
Combining these method-inherent advantages with numerical
integration techniques on hyperbolic contours, we produce an
efficient method, with fast decaying error properties, for the
solution of the multi-domain reaction-diffusion model problem.

Index Terms—Reaction-Diffusion PDEs, Brain tumors, Uni-
fied transform, Fokas method.

I. INTRODUCTION

Reaction-diffusion linear PDEs have been the core
biomathematical model for studying highly invasive and
aggressive forms of brain tumors for many years now (e.g.
[10], [7] and the references therein). The driving differential
equation of the basic model has the form

∂c̄

∂t̄
= ∇ · (D̄∇c̄) + ρ̄ c̄, (1)

where c̄(x̄, t̄) denotes the tumor cell density at location x̄ and
time t̄, ρ̄ denotes the net proliferation rate (0.012 1/day, cf.
[2]), and D̄ is the diffusion coefficient representing the active
motility of malignant cells (0.0013 cm2/day, cf. [16]). The
model also considers zero flux boundary conditions, which
impose no migration of cells beyond the brain boundaries,
and an initial condition c̄(x̄, 0) = f̄(x̄), where f̄(x̄) is the
initial spatial distribution of malignant cells.

Predicting a linear growth of the mean tumor diameter
on MRI, Swanson (cf. [14], [15]) incorporated brain’s tissue
heterogeneity (white-gray matter) into the basic model by
considering D̄ be defined by

D̄ ≡ D̄(x̄) =

{
D̄w, x̄ in white matter (x̄ ∈ Ω̄w)

D̄g, x̄ in gray matter (x̄ ∈ Ω̄g)
, (2)
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where D̄w and D̄g are scalars with D̄w > D̄g .
The above important model problem may be considered

as part of a more general class of problems characterized by
the fact that both diffusion and reaction parameters depend
also in time. To be more specific, we’ll assume that

D̄(x̄, t̄) = χ̄(t̄)D̄(x̄) and ρ̄ ≡ ρ̄(t̄) , (3)

where χ̄(t̄) 6= 0 and ρ̄(t̄) 6= 0 are continuous functions of
t̄. In such a case, models that would, for example, allow
both motility and proliferation of malignant cells to change
in time are also included.

Assuming, for compatibility purposes, the same physical
units and using the dimensionless variables (see also [14],
[15] for an analogous treatment)

t = ρ̄0t̄ , x =

√
ρ̄0

χ̄0D̄w
x̄ , χ(t) =

χ̄(ρ̄0t̄)

χ̄0
, γ =

D̄g

D̄w
,

(4)
hence

D ≡ D(x) =

{
1, x ∈ Ωw

γ, x ∈ Ωg
, D(x, t) = χ(t)D(x), (5)

ρ ≡ ρ(t) =
1

ρ̄0
ρ̄(ρ̄0t̄) , f(x) = f̄

(√
ρ̄0

χ̄0D̄w
x̄

)
, (6)

and

c(x, t) =
χ̄0D̄w

ρ̄0N0
c̄

(√
ρ̄0

χ̄0D̄w
x̄, ρ̄0t̄

)
, (7)

with N0 =
∫
f̄(x̄)dx̄ to denote the initial number of tumor

cells in the brain at t̄0 = 0, ρ̄0 = ρ̄(t̄0) and χ̄0 = χ̄(t̄0), one
may easily arrive at the dimensionless equation

∂

∂t
c(x, t) = ∇ · (D(x, t)∇c(x, t)) + ρ(t)c(x, t) . (8)

Referring, now, to the above equation we proceed in the next
sections as follows:
• Initially, by using appropriate transformations and

change of variables, we reduce the above equation into
an equivalent one with constant diffusion coefficient.

• In the sequel, for the one space dimension problem
and by using the Fokas unified transform method (cf.
[3], [4]), we produce an integral representation of the
solution in the complex plane that, for an appropriately
chosen integration contour, decay exponentially fast.

• Finally, we apply efficient numerical integration tech-
niques, with fast decaying error properties, for the
numerical evaluation of the solution’s integral represen-
tation.

We remark that our work here extends and completes the
works in [9] and [1].
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II. INTEGRAL REPRESENTATION OF THE SOLUTION

A. Equivalence Transformations

Let us first show that:

Lemma 1. If c(x, t) satisfies equation (8) and u(x, t) is
defined by

u(x, t) = e−R(t)c(x, t) with R(t) =

∫ t

0

ρ(s)ds , (9)

then u(x, t) satisfies the equation

∂

∂t
u(x, t) = ∇ · (D(x, t)∇u(x, t)) . (10)

Proof: Observing that Ṙ(t) = ρ(t) and differentiating (9)
with respect of t, it can be easily shown that

e−R(t) ∂

∂t
c(x, t) =

∂

∂t
u(x, t) + ρ(t)u(x, t) . (11)

Multiplication now of equation (8) by the factor e−R(t) yields

e−R(t) ∂

∂t
c(x, t) = ∇·(D(x, t)∇u(x, t))+ρ(t)u(x, t) , (12)

which combined with relation (11) completes the proof. �
Recalling, now, the form of D(x, t) form (5), we can easily

show that:

Lemma 2. If u(x, t) satisfies Lemma 1 and

τ ≡ τ(t) =

∫ t

0

χ(s)ds , (13)

then u(x, τ) satisfies the equation

∂

∂τ
u(x, τ) = ∇ · (D(x)∇u(x, τ)) . (14)

Proof: Upon writing D(x, t) = χ(t)D(x) equation (10) of
Lemma 1 becomes

∂

∂t
u(x, t) = χ(t)∇ · (D(x)∇u(x, t)) . (15)

Apparently, now, the fact that

∂

∂t
u(x, t) =

dτ

dt

∂

∂τ
u(x, τ) = χ(t)

∂

∂τ
u(x, τ) , (16)

completes the proof. �

B. The unified transform for the 1 + 1 problem

In view of Lemmas 1 and 2, the dimensionless IBVP
problem in 1+1 dimensions may be written as

uτ = (Dux)x, x ∈ [a, b], τ > 0

ux(a, τ) = 0 and ux(b, τ) = 0

u(x, 0) = f(x) :=
M∑
i=1

δ(x− ξi), ξi ∈ (a, b)

, (17)

where D and τ are as defined in (5) and (13), respectively,
and δ(x) denotes the Dirac delta function.

Due to brain tissue heterogeneity, the domain [a, b] is
considered partitioned into n+ 1 regions Rj := (wj−1, wj),
with a ≡ w0 < w1 < w2 < . . . < wn < wn+1 ≡ b, and if,
for some j, Rj is white matter region, then Rj−1 and Rj+1

are grey matter regions. Thus, for x ∈ Rj , j = 1, . . . , n+1,
we denote the dimensionless diffusion coefficient D(x) as

D(x) = γj =

{
1, when Rj ⊆ Ωw

γ, when Rj ⊆ Ωg
. (18)

Furthermore, notice that the parabolic nature of the problem
directly implies continuity of both u and Dux across each
interface point wj . Hence, for each j = 1, 2, . . . , n we have

u(wj , τ) := lim
x→w+

j

u(x, τ) = lim
x→w−j

u(x, τ) (19)

Dux(wj , τ) := lim
x→w+

j

D(x)ux(x, τ) = lim
x→w−j

D(x)ux(x, τ) .

(20)
Let, now, u(j)(x, τ) denote the solution of the multi-domain
problem defined over Rj := {wj−1} ∪ Rj ∪ {wj} =
[wj−1, wj ]. Namely, for j = 1, . . . , n+ 1,

u(j)(x, τ) :=


u(x, τ), x ∈ Rj
limx→w+

j−1
u(x, τ), x = wj−1

limx→w−j
u(x, τ), x = wj

, (21)

and, naturally, u
(j)
x (wj−1, τ) := limx→w+

j−1
ux(x, τ)

u
(j)
x (wj , τ) := limx→w−j

ux(x, τ)
. (22)

Apparently then,

u(j)
τ = (γju

(j)
x )x = γju

(j)
xx , (23)

while, recalling the constrains (19)-(20), there also holds:{
u(j)(wj , τ) = u(j+1)(wj , τ)

γju
(j)
x (wj , τ) = γj+1u

(j+1)
x (wj , τ)

. (24)

Observe, now, that the formal adjoint ũ(j) satisfies the
equation

−ũ(j)
τ = γj ũ

(j)
xx . (25)

Then, by multiplying equations (23) and (25) by ũ(j) and
u(j), respectively, and subtracting the resulting equations, we
obtain that

(u(j)ũ(j))τ − (γju
(j)
x ũ(j) − γju(j)ũ(j)

x )x = 0 . (26)

Taking, also, into consideration that a one-parameter family
of solutions of (25) is given by

ũ(j)(x, τ ; k) = e−ikx+γjk
2τ , k ∈ C (27)

equation (26) becomes

(e−ikx+γjk
2τu(j))τ − (e−ikx+γjk

2τγj(u
(j)
x + iku(j)))x = 0

(28)
which is the divergence form of equation (23). Integrating,
now, over the region Aj := {(x, τ) : x ∈ Rj , 0 ≤ τ ≤ T}
and using Green’s Theorem we obtain that:

wj∫
wj−1

e−ikxf (j)(x)dx−
wj∫

wj−1

e−ikx+γjk
2Tu(j)(x, T )dx

−
T∫

0

e−ikwj−1+γjk
2τγj [u

(j)
x (wj−1, τ) + iku(j)(wj−1, τ)]dτ

+

T∫
0

e−ikwj+γjk
2τγj [u

(j)
x (wj , τ) + iku(j)(wj , τ)]dτ = 0 ,

(29)
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where f (j)(x) is the initial condition restrained in region Rj ,
namely

f (j)(x) = f(x)|Rj .

Let f̂ (j)(x) and û(j)(k, τ) denote the (windowed) Fourier
transforms of functions f (j)(x) and u(j)(x, τ), respectively,
that is

f̂ (j)(k) =

∫ wj

wj−1

e−ikxf (j)(x)dx (30)

and

û(j)(k, τ) =

∫ wj

wj−1

e−ikxu(j)(x, τ)dx . (31)

Furthermore, let the functions ũ(j) and ũ(j)
x defined by

ũ(j)(x, γjk
2) :=

∫ T

0

eγjk
2τu(j)(x, τ)dτ (32)

and

q̃(j)
x (x, γjk

2) :=

∫ T

0

eγl(j)k
2τu(j)

x (x, τ)dτ. (33)

Then, equation (29) becomes

eγjk
2T û(j)(k, T ) = f̂ (j)(k) −

− γje
−ikwj−1 [ũ

(j)
x (wj−1, γjk

2) + ikũ(j)(wj−1, γjk
2)] +

+ γje
−ikwj [ũ

(j)
x (wj , γjk

2) + ikũ(j)(wj , γjk
2)] ,

(34)
for all k ∈ C. Moreover, by noticing that the above equation
is valid for all τ ∈ [0, T ], even when T → ∞, replacement
of T by τ in (34) leads to the global relation

eγjk
2τ û(j)(k, τ) = f̂ (j)(k) −

− γje
−ikwj−1

[
ũ

(j)
x (wj−1, γjk

2) + ikũ(j)(wj−1, γjk
2)
]

+

+ γje
−ikwj

[
ũ

(j)
x (wj , γjk

2) + ikũ(j)(wj , γjk
2)
]
,

(35)
for all k ∈ C. Letting, now, λ2

j = γjk
2 and cj = γ

− 1
2

j , and
relabel, in the sequel, λ to k, the final form of the global
relation relation is given by

ek
2τ û(j)(cjk, τ) = f̂ (j)(cjk) −
− γje

−icjkwj−1 [ũ
(j)
x (wj−1, k

2) + icjkũ
(j)(wj−1, k

2)] +

+ γje
−icjkwj [ũ

(j)
x (wj , k

2) + icjkũ
(j)(wj , k

2)] ,

(36)
for all k ∈ C.

Finally, inverting the Fourier transform û(j)(cjk, τ) in
equation (36), we obtain the integral form of the solution
u(j)(x, τ) as

u(j)(x, τ) =
cj
2π

∫ +∞

−∞
eicjkx−k

2τ f̂ (j)(cjk)dk

− 1

2πcj

∫ +∞

−∞
eicjk(x−wj−1)−k2τ

· [ũ(j)
x (wj−1, k

2) + icjkũ
(j)(wj−1, k

2)]dk

+
1

2πcj

∫ +∞

−∞
eicjk(x−wj)−k2τ

· [ũ(j)
x (wj , k

2) + icjkũ
(j)(wj , k

2)]dk ,

(37)

for j = 1, 2, . . . , n+ 1, and by applying the constrains (24)
as well as the Neumann boundary conditions

u(1)(x, τ) =
c1
2π

∫ +∞

−∞
eic1kx−k

2τ f̂ (1)(c1k)dk

− 1

2π

∫ +∞

−∞
ikeic1k(x−a)−k2τ ũ(1)(a, k2)]dk

+
1

2πc1

∫ +∞

−∞
eic1k(x−w1)−k2τ

· [ũ(1)
x (w1, k

2) + ic1kũ
(1)(w1, k

2)]dk ,
(38)

u(j)(x, τ) =
cj
2π

∫ +∞

−∞
eicjkx−k

2τ f̂ (j)(cjk)dk

− 1

2πcj

∫ +∞

−∞
eicjk(x−wj−1)−k2τ

· [γj−1

γj
ũ(j−1)
x (wj−1, k

2) + icjkũ
(j−1)(wj−1, k

2)]dk

+
1

2πcj

∫ +∞

−∞
eicjk(x−wj)−k2τ

· [ũ(j)
x (wj , k

2) + icjkũ
(j)(wj , k

2)]dk ,
(39)

for j = 2, 3, . . . , n,

u(n+1)(x, τ) =
cn+1

2π

∫ +∞

−∞
eicn+1kx−k2τ f̂ (n+1)(cn+1k)dk

− 1

2πcn+1

∫ +∞

−∞
eicn+1k(x−wn)−k2τ

· [ γn
γn+1

ũ(n)
x (wn, k

2) + icn+1kũ
(n)(wn, k

2)]dk

+
1

2π

∫ +∞

−∞
ikeicn+1k(x−b)−k2τ ũ(n+1)(b, k2)]dk.

(40)

For the evaluation of the 2n+ 2 unknown quantities

• ũ(1)(a, k2) and ũ(n+1)(b, k2)

• ũ(j)(wj , k
2) and ũ(j)

x (wj , k
2) for j = 1, 2, . . . , n

in the above expressions (38) - (40), we use the transform
k → −k in equation (35) to obtain

ek
2τ û(j)(−cjk, τ) = f̂ (j)(−cjk)−
− γjeicjkwj−1 [ũ(j)

x (wj−1, k
2)− icjkũ(j)(wj−1, k

2)]+

+ γje
icjkwj [ũ(j)

x (wj , k
2)− icjkũ(j)(wj , k

2)],
(41)

for all k ∈ C. This equation is combined with the global
relation in (36), as well as the constrains (24) and the
boundary conditions, to produce the equations:

• for j = 1:

ic1γ1ke
−ic1kaũ(1)(a, k2)− ic1γ1ke

−ic1kw1 ũ(1)(w1, k
2)+

+ γ1e
−ic1kw1 ũ(1)

x (w1, k
2) = f̂(c1k),

(42)
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− ic1γ1ke
ic1kw0 ũ(1)(w0, k

2) + ic1γ1ke
ic1kw1 ũ(1)(w1, k

2)−
− γ1e

−ic1kw1 ũ(1)
x (w1, k

2) = f̂(−c1k),
(43)

• for j = 2, 3, . . . , n:

icjγjke
−icjkwj−1 ũ(j−1)(wj−1, k

2)+

+ γj−1e
−icjkwj−1 ũ(j−1)

x (wj−1, k
2)−

− icjγjke−icjkwj ũ(j)(wj , k
2)−

− γje−icjkwj ũ(j)
x (wj , k

2) = f̂(cjk),

(44)

− icjγjkeicjkwj−1 ũ(j−1)(wj−1, k
2)+

+ γj−1e
icjkwj−1 ũ(j−1)

x (wj−1, k
2)+

+ icjγjke
icjkwj ũ(j)(wj , k

2)−
− γjeicjkwj ũ(j)

x (wj , k
2) = f̂(−cjk),

(45)

• for j = n+ 1:

icn+1γn+1ke
−icn+1kwn ũ(n)(wn, k

2)+

+ γne
−icn+1kwn ũ(n)

x (wn, k
2)−

− icn+1γn+1ke
−icn+1kbũ(n+1)(b, k2) = f̂(cn+1k),

(46)

− icn+1γn+1ke
icn+1kwn ũ(n)(wn, k

2)+

+ γne
icn+1kwn ũ(n)

x (wn, k
2)+

+ icn+1γn+1ke
icn+1kbũ(n+1)(b, k2) = f̂(−cn+1k).

(47)

The above 2n+ 2 equations form the complex linear system

Gũ̃ũu = f̂̂f̂f , (48)

where the nonzero elements of the matrix G = {Gp,q} are
defined by:
• for j = 1:[

G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

]
=

[
A

(1)
1 A

(1)
3 A

(1)
4

A
(1)
5 A

(1)
7 A

(1)
8

]
(49)

• for j = 2, 3, . . . , n:[
G2j−1,2j−2 G2j−1,2j−1 G2j−1,2j G2j−1,2j+1

G2j,2j−2 G2j,2j−1 G2j,2j G2j,2j+1

]
=

=

[
A

(j)
1 A

(j)
2 A

(j)
3 A

(j)
4

A
(j)
5 A

(j)
6 A

(j)
7 A

(j)
8

]
(50)

• for j = n+ 1:[
G2n+1,2n G2n+1,2n+1 G2n+1,2n+2

G2n+2,2n G2n+2,2n+1 G2n+2,2n+2

]
=

=

[
A

(n+1)
1 A

(n+1)
2 A

(n+1)
3

A
(n+1)
5 A

(n+1)
6 A

(n+1)
7

] (51)

with

m A
(j)
m A

(j)
m+1

1 icjγjke
−icjkwj−1 γj−1e

−icjkwj−1

3 −icjγjke−icjkwj −γje−icjkwj
5 −icjγjkeicjkwj−1 γj−1e

icjkwj−1

7 icjγjke
icjkwj −γjeicjkwj

and

ũ̃ũu =



ũ(1)(a, k2)

ũ(1)(w1, k
2)

ũ
(1)
x (w1, k

2)

...

ũ(n)(wn, k
2)

ũ
(n)
x (wn, k

2)

ũ(n+1)(b, k2)


, f̂̂f̂f =



f̂ (1)(c1k)

f̂ (1)(−c1k)

...

f̂ (n+1)(cn+1k)

f̂ (n+1)(−cn+1k)


.

Observe that terms involving the Fourier transforms
û(j)(±cjk, τ) have been omitted from relations (42)-(47) and
the system (48) as the quantities û(j)(±cjk,τ)

det(G) are negligible
(cf. [13]).

Solving, now, the above linear system we can determine
the unknown quantities required in evaluating (38)-(40).

C. Integration Contours and Integral Properties

The analyticity of the functions involved in the integral
representation of u(j)(x, τ) in (37), allows the replacement
of the real axis (−∞,∞) by other contours of integration in
the complex plane. For this, let

Γ = {k ∈ C : Re(γjk
2) < 0}

= {k ∈ C : arg(k) ∈ (
π

4
,

3π

4
) ∪ (

5π

4
,

7π

4
)}

and

Γ+ = Γ ∩ C+, C+ = {k ∈ C : Im(k) > 0},

Γ− = Γ ∩ C−, C− = {k ∈ C : Im(k) < 0}.

Then, it can be easily verified, that:
• eicjk(x−wj−1) (x−wj−1 > 0) is bounded and analytic

for Im(k) > 0
• eicjk(x−wj) (x− wj < 0) is bounded and analytic for

Im(k) < 0
• e−k

2τ (t ≥ 0) is bounded and analytic for Re(k2) ≥ 0 .
Therefore, by using Cauchy’s Theorem and Jordan’s Lemma,
the representation of u(j)(x, τ) in (37) can be equivalently
expressed as

u(j)(x, τ) =
cj
2π

∫ +∞

−∞
eicjkx−k

2τ f̂ (j)(cjk)dk

− 1

2πcj

∫
∂Γ+

eicjk(x−wj−1)−k2τ

· [ũ(j)
x (wj−1, k

2) + icjkũ
(j)(wj−1, k

2)]dk

− 1

2πcj

∫
∂Γ−

eicjk(x−wj)−k2τ

· [ũ(j)
x (wj , k

2) + icjkũ
(j)(wj , k

2)]dk .

(52)

It is known (cf. [17], [18]) that one approach to the
numerical quadrature of the above integrals is to apply the
trapezoid rule on suitable hyperbolic contours (see also [5],
[12]). For this, we map the points θ on the real line to the
points ±k(θ) of the complex plane by using the analytic
function:

kθ ≡ k(θ) := i sin(β − iθ) . (53)
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Evidently the k(θ) and −k(θ) curves, as shown in Figure 1
replace the integration paths ∂Γ+ and ∂Γ− respectively.

Real(k)

Im
a
g
(k
)

Γ+

Γ−

k(θ)

-k(θ)

Fig. 1: The contours ±k(θ) for numerical integration

Using the above parametrization, the solution (52) is
written as

u(j)(x, τ) =
cj
2π

∫ +∞

−∞
eicjkx−k

2τ f̂ (j)(cjk)dk

− 1

2πcj

∫ +∞

−∞
eicjkθ(x−wj−1)−k2θτ

· [ũ(j)
x (wj−1, k

2
θ) + icjkθũ

(j)(wj−1, k
2
θ)]k′θdkθ

− 1

2πcj

∫ +∞

−∞
e−icjkθ(x−wj)−k2θτ

· [ũ(j)
x (wj , k

2
θ)− icjkθũ(j)(wj , k

2
θ)]k′θdkθ ,

(54)

for all j = 1, 2, . . . , n + 1, with k′θ to denote the derivative
of k(θ), namely

k′θ = cos(β − iθ). (55)

We point out that the corresponding to (38)-(40) integral
representations of the solution can be easily derived by ap-
plying the constrains (24) as well as the Neumann boundary
conditions.

D. Evaluation of the Integrals
The first integral in equation (54) can be evaluated analyt-

ically (see also [9]) since the f (j) is a sum of Dirac’s delta
functions. To be more specific, observe that

f (j)(x) =
M∑
i=1

δ(x− ξi), for all ξi ∈ (wj−1, wj) (56)

hence

f̂ (j)(cjk) =
M∑
i=1

e−icjkξi , for all ξi ∈ (wj−1, wj) (57)

and therefore the first integral term in (54)

cj
2π

∞∫
−∞

eicjkxe−k
2τ f̂ (j) (cjk) dk =

cj

2
√
tπ

M∑
i=1

e−
c2j (ξi−x)

2

4t .

(58)

The last two integrals in equation (54) have to be evaluated
numerically. For the efficient implementation of numerical
quadrature rules, one has to take into consideration the
following basic algebraic properties:
• The real parts of all integrands are even functions of θ.
• The imaginary parts of all integrands are odd functions

of θ.
• The integrands are decaying functions of θ.
The proof of the first two properties follows after a

few algebraic manipulations (cf. [11]) while the third one
is a direct consequence of the selected integration paths.
Application of the above properties directly implies that

∞∫
−∞

U(θ)dθ = 2

∞∫
0

Re (U(θ)) dθ ≈ 2

Θ∫
0

Re (U(θ)) dθ ,

where U(θ) denotes any one of the last two integrands
involved in (54) and Θ is a relatively small real number.
For a good estimate of Θ one may require the dominant
exponential term e−k

2
θτ , common in all integrals, to satisfy∣∣∣e−k2θτ ∣∣∣ ≤ 10−M for all θ ≥ Θ ≡ Θ(τ ;M)

for sufficiently large M , hence (cf. [9])

Θ =
1

2
ln

4τ + 8M ln 10

τ
. (59)

NUMERICAL SOLUTION

Following ( [5], [12]) and our work in [9], to numeri-
cally evaluate the integrals in relation (54) above, we apply
the trapezoid rule using the parametrization (53). For the
asymptotes of the hyperbola with β = π/6, as in [9].

For the numerical experiments we have used [a, b] =
[−5, 5] for the interval endpoints and

[w1, w2 , w3 , w4 , w5] = [−3, − 2, − 1, 0, 3]

for the interior interfaces. Cell motility and proliferation, in
this artificial example, are using χ(t) = 0.2t, γj = γ =
Dg/Dw = 0.2 for all j = 1, 3, 5 and ρ = 1.

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

c(
x
;t

)

-5

0

5

10

15

20

25

Fig. 2: Time evolution of cell density c(x, t) for the case of
two initial sources.

In Figure 2, the time evolution of cell density c(x, t) for the
case of two initial sources of cells, centered at ξ1 = −4 and
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ξ2 = 1, is depicted for various time levels t = tm (m =
0, 1, . . .). Hence, each curve on the figure represents the cell
density at a specific time level, namely c(x, tm). In complete
analogy, in Figures 3 we depict the case of one initial source
of cells centered, obsiously, at ξ1 = 1.

x
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c(
x
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)
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16

Fig. 3: Time evolution of cell density c(x, t) for the case of
one initial source.

Observe that, in both cases, the solution is continuous on the
whole interval and smooth everywhere except at the interface
points, as expected. We point out that, for the evaluation of
each c(x, tm) curve no information at different time levels
is used.

The relative error is given by

EN := ‖uNi+1
− uNi‖∞/‖uNi+1

‖∞,

where N denotes the number of quadrature points, and uN
is the corresponding numerical solution. From Figure 4 we
observe the rapidly decaying convergence rate of EN .

Qudrature Points N
0 20 40 60 80 100 120 140

E
rr

or
E

N

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Fig. 4: The relative error EN

CONCLUSION

The Fokas transform method, combined with numerical
integration on hyperbolic contours, is applied to the solution

of a multi-domain brain tumor invasion problem, modeled
by a reaction-diffusion linear equation with time dependent
coefficients and a discontinuous diffusion to characterize
brain’s tissue heterogeneity. The exact solution is produced
in integral form at any space-time point and evaluated by a
fast convergent quadrature.

ACKNOWLEDGEMENT

The present research work has been co-financed by the
European Union (European Social Fund ESF) and Greek
national funds through the Operational Program Education
and Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALES
(Grant number: MIS-379416). Investing in knowledge soci-
ety through the European Social Fund.

REFERENCES

[1] Asvestas M, Sifalakis AG, Papadopoulou EP and Saridakis YS (2014)
Fokas method for a multi-domain linear reaction-diffusion equation with
discontinuous diffusivity, IOP Science Journal of Physics: Conference
Series, 490, 012143.

[2] Cook J, Woodward DE, Tracqui P and Murray JD (1995) Resection of
gliomas and life expectancy, J Neurooncol., 24, 131.

[3] Fokas AS (1997) A unified transform method for solving linear and
certain nonlinear PDEs, Proc.R.Soc. A, 453, 1411-1443.

[4] Fokas AS (2002) A new transform method for evolution PDEs, IMA J.
Appl. Math.,67(6), 559-590.

[5] Flyer N and Fokas AS (2008) A hybrid analytical-numerical method for
solving evolution partial differential equations I: The half-line, Proc. R.
Soc. A, 464, 1823-1849.

[6] Harpold HLP , Alvord Jr EC and Swanson KR (2007) The Evolution
of Mathematical Modeling of Glioma Proliferation and Invasion, J
Neuropathol Exp Neurol, 66(1), 1-9.

[7] Ledzewicz U, Schttler H, Friedman A and Kashdan E (2012) Math-
ematical Methods and Models in Biomedicine, Springer Science and
Business Media.

[8] Mandonnet E, Delattre J-Y, Tanguy M-L, Swanson KR, Carpentier AF,
Duffau H, Cornu P, Van Effenterre R, Alvord EC, Capelle L (2003)
Continuous Growth of Mean Tumor Diameter in a Subset of Grade II
Gliomas, Ann Neurol, 53, 524528.

[9] Mantzavinos D, Papadomanolaki MG, Saridakis YG and Sifalakis AG
(2014) A novel transform approach for a brain tumor invasion model
with heterogeneous diffusion in 1+1 dimensions, Applied Numerical
Mathematics (http://dx.doi.org/10.1016/j.apnum.2014.09.006).

[10] Murray JD (2002) Mathematical Biology, Springer-Verlag.
[11] Papadomanolaki MG (2012)The collocation method for parabolic

differential equations with discontinuous diffusion coefficient: in the
direction of brain tumour, PhD Thesis, Technical University of Crete.

[12] Papatheodorou TS and Kandili AN (2009) Novel numerical techniques
based on Fokas transforms, for the solution of initial boundary value
problems, Journal of Computational and Applied Mathematics 227:75-
82.

[13] D.A. Smith (2012) Well-posed two-point initial-boundary value prob-
lems with arbitrary boundary conditions, Math. Proc. Camb. Philos.
Soc. 152:473496.

[14] Swanson KR (1999) Mathematical modeling of the growth and control
of tumors, PHD Thesis, University of Washington.

[15] Swanson KR, Alvord EC Jr and Murray JD (2000) A quantitive
model for differential motility of gliomas in grey and white matter,
Cell Proliferation, 33, 317-329.

[16] Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD,
Alvord Jr EC (1995) A mathematical model of glioma growth: the effect
of chemotherapy on spatio-temporal growth, Cell Prolif, 28 1731.

[17] Trefethen LN , Weideman JAC, Schmelzer T (2006) Tablot quadra-
tures and rational approximations, BIT Numerical Mathematics,
46:653-670.

[18] Weideman JAC and Trefethen LN (2007) Parabolic and hyperbolic
contours for computing the bromwich integral, Math. Comp., 76(259),
13411356.

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015




