
 
 

 

 
Abstract—An explicit method based on the central difference 

method for nonlinear transient dynamic analysis of spatial 
beams with finite rotations using corotational total Lagrangian 
finite element formulation is presented.  The kinematics of the 
beam element is described in the current element coordinate 
system constructed at the current configuration of the beam 
element.  The beam element has two nodes with six degrees of 
freedom per node.  Three rotation parameters referred to the 
current element coordinates are defined to determine the 
orientation of element cross section.  A rotation vector is used to 
represent the finite rotation of a base coordinate system rigidly 
tied to each node of the discretized structure.  Note that the 
values of nodal rotation vectors are reset to zero at current 
configuration.  The element deformation nodal forces and 
inertia nodal forces are systematically derived by consistent 
linearization of the fully geometrically nonlinear beam theory, 
the d'Alembert principle and the virtual work principle in the 
current element coordinates.  The standard central difference 
method is applied to the incremental displacement and 
rotational vector, and their time derivatives. The orientation of 
the end cross section of the beam element is updated by the 
incremental nodal rotation vector.  A Numerical example is 
presented to demonstrate the accuracy and efficiency of the 
proposed method. 
 

Index Terms—Corotational total Lagrangian formulation, 
Dynamics, Explicit time integration, Geometrical nonlinearity.  
 

I. INTRODUCTION 

HE implicit methods based on the Newmark direct 
integration method have been extensively employed in 

nonlinear transient dynamic analyses of beam structures 
undergoing large displacements and finite rotations (e.g. [1- 
4]).  In [3], a corotational total Lagrangian finite element 
formulation for the nonlinear dynamic analysis of spatial 
elastic Euler beam using consistent linearization of the 
geometrically non-linear beam theory was presented. The 
standard Newmark method was applied to the incremental 
displacement and rotational vectors, and their time 
derivatives.  The formulation was proven to be very effective 
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by numerical examples studied in [3].  However, the 
application of the explicit method in the nonlinear dynamic 
analysis of three-dimensional beams with finite rotations has 
been rather limited (e.g. [5, 6]).  The object of this paper is to 
present an explicit method based on the central difference 
method for nonlinear transient dynamic analysis of spatial 
beams with finite rotations using corotational total 
Lagrangian finite element formulation. 

The element description is based on the corotational total 
Lagrangian formulation described previously in [3, 7, 8].  In 
this formulation, each dement is associated with a Cartesian 
coordinate system constructed at the current configuration of 
the beam element.  The element coordinate system is just a 
local coordinate system updated at current configuration of 
the beam element, not a moving coordinate system.  Thus, the 
velocity and acceleration defined in the element coordinate 
system are absolute velocity and acceleration.  For the 
purpose of treating arbitrarily large rotation of node in space, 
the orientation of the node is described by a base coordinate 
system rigidly tied to each node of the discretized structure.  
A nodal rotation vector [7] is used to represent the finite 
rotation of the base coordinate system.  In this study, the 
values of nodal rotation vectors are reset to zero at current 
configuration, thus, the values of the first and second time 
derivative of the nodal rotation vector are equal the values of 
the spatial nodal angular velocity and acceleration [3]. 

The element deformation and inertia nodal forces are 
systematically derived by using the d'Alembert principle and 
the virtual work principle.  A numerical procedure of explicit 
method based on the central difference method is proposed 
here for the solution of the nonlinear equations of motion. A 
numerical example is presented and compared with the 
results obtained using the Newmark method to demonstrate 
the accuracy and efficiency of the proposed method. 

II. FINITE ELEMENT FORMULATION 

The element developed here has two nodes with six 
degrees of freedom per node.  The kinematics of the beam 
element and the corotational total Lagrangian finite element 
formulation proposed in [3, 7, 8] are adapted and employed 
here.  In the following only a brief description of the beam 
element is given.  

A. Basic Assumptions 

The following assumptions are made in derivation of the 
beam element behavior: (1) The beam is prismatic and 
slender, and the Euler-Bernoulli hypothesis is valid. (2) The 
cross section of the beam is doubly symmetric. (3) The unit 
extension of the centroid axis of the beam element is uniform. 
(4) The cross section of the beam element does not deform in 
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its own plane and strains within this cross section can be 
neglected.  

B. Coordinate Systems 

In order to describe the system, we define three sets of 
right handed rectangular Cartesian coordinate systems: 

1. A fixed global set of coordinates, G
iX  (i = 1, 2, 3) (see 

Fig. 1); the nodal coordinates, displacements, rotations, 
velocities, and accelerations, and the equations of motions of 
the system are defined in this coordinates. 

2. Element cross section coordinates, S
ix  (i = 1, 2, 3) (see 

Fig. 1); a set of element cross section coordinates is 
associated with each cross section of the beam element. The 
origin of this coordinate system is rigidly tied to the centroid 

of the cross section. The Sx1  axis is chosen to coincide with 

the normal of the unwrapped cross section and the Sx2  and 
Sx3  axes are chosen to be the principal directions of the cross 

section. 
3. Element coordinates, ix  (i = 1, 2, 3) (see Fig. 1); a set of 

element coordinates is associated with each element, which is 
constructed at the current configuration of the beam element.  
The origin of this coordinate system is located at node 1, and 
the 1x  axis is chosen to pass through two end nodes of the 

element; the 2x  and 3x  axes are determined by the method 

proposed in [7].  Note that this coordinate system is just a 
local coordinate system not a moving coordinate system. The 
deformations, deformation nodal forces, inertia nodal forces, 
and mass matrix of the element are defined in terms of these 
coordinates. 

C. Kinematics of Beam Element 

In this study only the doubly symmetric cross section is 
considered. Let Q (Fig. 1) be an arbitrary point in the beam 
element, and P be the point corresponding to Q on the 
centroid axis. The position vector of point Q in the 
undeformed and deformed configurations referred to the 
element coordinates may be expressed as [8]: 
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where ),( txxx pp  , ),( txvv  and ),( txww   are the 1x , 

2x and 3x  coordinates of point P, respectively, in the 

deformed configuration, ),(11 tx   and ),(,1,1 txxx   are 

the twist angle and twist rate of the deformed centroid axis, 
respectively, ),( zy  is the Saint Venant warping function 

for a prismatic beam of the same cross section, s is the arc 
length of the centroid axis,  and c is the unit extension of the 

centroid axis. The orientation of element cross section is 
determined by i  (i = 1, 2, 3), thus, i  are called rotation 

parameters [7, 8].  Here, the lateral deflections of the centroid 
axis, v and w  are assumed to be the cubic Hermitian 
polynomials of x, and the rotation about the centroid axis, 1 , 

is assumed to be the linear polynomials of x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The relationship among px , v , and w , and x may be 

given as [8] 
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where 1u  is the displacement of node 1 in the 1x  direction. 

Note that due to the definition of the element coordinate 
system, the value of 1u  is equal to zero. However, the 

variation and time derivatives of 1u  are not zero.  The axial 

displacements of the centroid axis, xtxxtxu p  ),(),(  may 

be determined from the lateral deflections and the unit 
extension of the centroid axis using (6). 

Making use of the assumption of uniform unit extension, 

c  of the centroid axis may be calculated using (6) and the 

current chord length of the beam element. 

D. Element Nodal Force Vector, and Mass Matrix 

The element deformation nodal forces and inertia nodal 
forces are systematically derived by consistent linearization 
of the fully geometrically nonlinear beam theory, the 
d'Alembert principle and the virtual work principle in the 
current element coordinates. 

The virtual work principle requires that 
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where j = 1, 2, },,{ jjjj wvu  u  denote the virtual 

displacement vectors at nodes j, },,{ 321 jjjj    

denote vectors of virtual spatial rotation at nodes j, 
},,{ 321 jjjj    denote the corresponding virtual 

variation of rotation vectors },,{ 321 jjjj   at nodes j, 
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f (  ,, ), are generalized element internal nodal force 

vectors conjugate to q , },,{ 321

jjjj ffff  (  ,, ) 

are nodal force vectors corresponding to ju and 

},,{ 321


jjjj mmmm  (  ,, ) are generalized nodal 

moments corresponding to j , j  and *
jθ , 

respectively. D
f  and I

f  (  ,, ) are deformation nodal 

force vectors and inertia nodal force vectors corresponding to 

 
V

dV)22( 131312121111   and V
t dVrr  , 

respectively.  V is the volume of the undeformed beam 
element, j1  (j = 1, 2, 3) are the variation of the Green 

strain j1  in (14) corresponding to q .  j1  (j = 1, 2, 3) 

are the second Piola-Kirchhoff stress.  For linear elastic 
material, 1111  E , and  jj G 11 2    (j = 2, 3), where E is 

Young’s modulus and G is the shear modulus.   is the 

density, r  and r  are the variation and the second time 

derivative of r  in (2), respectively.  Note that the element 
coordinate system is just a local coordinate system not a 
moving coordinate system, thus r  is the absolute 
acceleration. The higher order terms of nodal parameters in 
the element nodal forces are neglected by consistent second 
order linearization in this study. Note that the values of 
rotation parameters i  (i = 1, 2, 3) will converge to zero, and 

their time derivatives i  and i  will converge to constants 

with the decrease of the element size.  Thus, the coupling 
between rotation parameters and their time derivatives are 
not considered in this study. 

Note that ij  are infinitesimal rotations about the ix  

axes, thus 
ijm  are moments about the ix  axes at element 

local nodes j, respectively, and 
jm  is a vector quantity.  ij  

are not infinitesimal rotations about the ix  axes, thus, 
ijm  

are not moments about the ix  axes at nodes j and 
jm  is not 

a vector quantity.  However, the values of the rotation vectors 

at nodes j, j  are reset to zero at the current configuration 

of the structure in this study.  Thus, the values of j  are 

equal to the values of the corresponding j , and the values 

of j and j  are equal to the values of the corresponding  

angular velocity vectors jω  and angular acceleration 

vectors jω  at nodes j, respectively [3].  The values of 
jm , 

j , and j  are therefore equal to the values of the 

corresponding 
jm , jω , and jω , respectively, so the rules 

of vector addition also apply to the addition of 
jm , j , and 

j  in this study.  *
ij  are not infinitesimal spatial rotations 

about the ix  axes, thus 
ijm  are not conventional moments.  

The values of 
ijm  are not equal to the values of 

corresponding 
ijm , because the values of *

ij  are not equal 

to the values of corresponding ij  at deformed state [3, 7], 

so the rules of vector addition can not apply to the addition of 

jm  *

jθ , and *
jθ . 

Here, the global nodal parameters of the system are chosen 
to be the components of nodal displacement vector and nodal 
rotation vector referred to the global coordinates.  To 
assemble the element equations into the global equations, the 
element nodal parameters and element nodal forces should be 
consistent with the global nodal parameters and global nodal 

forces.  Therefore q  and f are chosen to be the element 

nodal displacement vector and the element nodal force vector.  

q  and f  can be transformed from element coordinate 

system to the global coordinate system using the standard 
procedure of vector transformation. 

The relation between q  and q  may be expressed as 

[3, 8] 
 

  qTq   (15) 

 

q  is related to q  through the same relationships that 

exists between q and q  [3], i.e.: 

 

 qTq    (16) 

 
The time derivative of (16) may be expressed by 
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In view of (7) and (15), the relation between f and f  may 

be expressed as 
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where f may be calculated using (2-7) and (14). For 

convenience, f  are divided into four vectors 
if  (i = a, b, c, 
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in which the range of integration for the integral  dx)(  is 

from 0 to L, A is the cross section area, kN  (k = a, d) are 

shape functions of elementary bar element, kN  (k = b, c) are 

shape functions of elementary beam element and 
/dxd )() (  .  im  (i = a, b, c, d) are consistent mass 

matrices, and Iv
if  (i = a, b, c, d) are vectors of velocity 

coupling terms of element inertia nodal forces.   

In view of (21), element inertia nodal force vector I
f  may 

be expressed by 
 

IvI
 fqmf    (23) 

 
where m is the element mass matrix assembled by the 
submatrices given in (21). 

If the coupling between rotation parameters i  (i = 1, 2, 3) 

and their time derivatives are not considered, from (16), (17) 
and (23), one may obtain 

 
IvI
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E. Equations of Motion  

The nonlinear equations of motion may be expressed by 
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where M is the mass matrix, Q  is the second time derivative 

of the vector of global nodal parameters Q , P(t) is the 

external nodal force vector, DF is the deformation nodal 

force vector, and vIF  is the inertia nodal force vector 

corresponding to the velocity coupling terms of the element 
inertia nodal force. 

M, vIF  and DF  are assembled from the element mass 

matrix, element nodal force vectors, which are calculated 
using (17)- (25) first in the current element coordinates and 
then transformed from element coordinate system to global 
coordinate system before assemblage using standard 
procedure. 

III. NUMERICAL PROCEDURE  

An incremental method based on the central difference 
method (CDM) is proposed here for the solution of the 
nonlinear equations of motion. The basic steps involved in 
the numerical solution of (26) are outlined as follows. Let t  
denote the time step size, and time ttt nn  1  ( 1n ).  Let 

1nQ , 1nQ , and 1nQ  denote the vector of global nodal 

parameters, velocity, and acceleration of the structure at time 

1nt ( 1n ), respectively, and 
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Let SG
ijne  (i = 1, 2, 3, j = 1, 2) denote the unit vectors 

associated with the S
ix  axes of element cross section 

coordinates referred to the global coordinates at element local 
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nodes j and time nt ( 1n ). 

Let 1nQ , nQ , 1nQ , 1nQ , 1nQ , SG
ijn e1  denote the 

known values at time nt ( 1n ).  The values of 1nQ , nQ , 

nQ  and nQ , SG
ijne  may be obtained by the following 

incremental procedure. 

(a) Extract G
j , the global incremental nodal rotation 

vector corresponding to each element local nodes j (j = 1, 2) 

from 1nQ  for each element.  Extract G
ju , the global nodal 

displacement vector corresponding to each element local 
nodes j (j = 1, 2) from nQ  for each element.  Determine 

SG
ijne  by application G

j  to SG
ijn e1 .  Then determine the 

current element coordinates, element deformation nodal 
parameters ij  and unit extension c  for each element using 

SG
ijne , G

ju , and the method described in [3, 7, 8].  Then, 

calculate the element deformation nodal force vectors using 
(18), (20), and assemble structural deformation nodal force 

vector D
nF . 

(b) Reset the values of the elements in nQ corresponding 

to nodal rotation vectors to zero.  
(c) Extract the global nodal velocity vector 

corresponding to each element from 1nQ  (or backward 

difference tn
b
n  /1 QQ ), and then transform them to the 

current element coordinates using standard procedure.  Then 
calculate time derivative of element nodal rotation 
parameters using (16) and (17).  Then calculate element 

inertia nodal force vector Iv
f  using (21) and (25).  Then, 

transform Iv
f  from the current element coordinates to the 

global coordinates using standard procedure to assemble 
vI
nF . 

(d) Transform the element mass matrices from the 
current element coordinates to the global coordinates using a 
standard procedure.  Then assemble the structural mass 
matrix M using the element mass matrices. 

(e) Calculate nQ using vI
n

D
nnn FFPQM   ((26)). 

(f)  Let nnn t QQQ 2
1    , nnn QQQ 1 , and 

tnnn  2/)( 1 QQQ . 

When 1n , 01 QQ n  and 01 QQ  n  can be obtained 

from the initial conditions, and 01 QQ  n  can be calculated 

using (26); 1Q is calculated by 

0

2

001 2
QQQQ  t

t


  . 

IV. NUMERICAL STUDIES  

The example studied is a clamped beam subjected to a 
central eccentric concentrated load as shown in Fig. 2.  The 
load history is also shown in Fig. 2.  The geometry of the 
beam and the material properties are mL 508.0 , 

mb 0254.0 , mh 310175.3  , Young's modulus 

GPaE 207 , Poisson’s ratio 3.0 , and density 
3/2713 mkg .  The eccentricity of the concentrated load 

is 3106 e  m.  Because of symmetry, only one-half of the 
beam is modeled by 15 elements.  Figures 3 - 5 show a 
comparison between the time histories of the mid-span 
deflections and axial rotation obtained by the present method 
(CDM) and by the Newmark method [3].  The time steps 

s105.0 6t  is used for the present method, and 

s101 5t  and s102 6  are used for the Newmark 

method.  Very good agreement between these two results can 
be observed. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Clamped beam subjected to concentrated load. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Time history of the mid-span deflection ( CV ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Time history of the mid-span deflection ( CW ). 
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Fig. 5.  Time history of the mid-span rotation ( C ). 

 

V. CONCLUSIONS 

An explicit method based on the central difference method 
for nonlinear transient dynamic analysis of spatial beams 
with finite rotations using corotational total Lagrangian finite 
element formulation is presented.  The global nodal 
parameters of the system are chosen to be the components of 
nodal displacement vector and nodal rotation vector.  The 
values of the nodal rotation vectors are reset to zero at the 
current configuration of the structure in this study.  The 
standard central difference method is applied to the 
incremental displacement and rotational vector, and their 
time derivatives.  The orientations of the nodes are updated 
by the incremental nodal rotational vectors.  The element 
coordinate system constructed at the current configuration of 
the beam element is just a local inertial coordinate system not 
a moving coordinate system, thus the first and second time 
derivatives of the position vector of the beam element 
defined in the element coordinates are the absolute velocity 
and acceleration.  The beam element developed has two 
nodes with six degrees of freedom per node.  Three rotation 
parameters referred to the current element coordinates are 
defined to determine the orientation of element cross section.  
Both the element inertia and deformation nodal forces are 
systematically derived by using consistent second order 
linearization of the fully geometrically nonlinear beam theory, 
the d'Alembert principle and the virtual work principle.  The 
values of rotation parameters will converge to zero, and their 
time derivatives will converge to constants with the decrease 
of the element size, thus, the coupling between rotation 
parameters and their time derivatives are not considered in 
this study.  The formulation is intended for explicit 
integration procedures, so stiffness matrices are not 
developed.  The element equations are constructed first in the 
element coordinate system and then transformed to the global 
coordinate system by using standard procedure.  The 
standard central difference method is applied to the 
incremental displacement and rotational vector, and their 
time derivatives. 

From the numerical example studied, the accuracy and 
efficiency of the proposed method are well demonstrated. 

It is believed that the corotational total Lagrangian 

formulation of the beam element and the numerical 
procedure of the explicit method presented here may 
represent a valuable engineering tool for the dynamic 
analysis of spatial beam structures. 
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