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Abstract—Some complex natural phenomena in physics, 

economics and engineering can be represented by Integral 

Equations (IE). But one may be short of general mathematical 

tricks to solve them analytically, which could quickly turn into 

a life time enterprise. In the contrary, the use of computers or 

numerical methods introduced some decades ago has brought a 

different approach that is innovative and effective. 

 

In addition, the theory of measure, the study of polynomials 

and normed spaces, namely Banach, Hilbert, Lebesgue, 

Hölder, Lipschitz and Sobolev spaces led to advanced modern 

numerical methods to solve these complex IEs. When using 

computer, a generally continuous domain is divided into 

smaller pieces, or elements, so the calculation on any point of 

the continuous domain could be done using results from the 

elements; it is similar to approximate a circle by a regular 

polygon; as the number of side increases, the polygon become 

more and more close to a circle. 

 

This method of solving IEs using subdivisions of the domain, 

along with discrete form of the equations, is referred to as the 

Finite Element Method (FEM). In this paper, we implement 

the advanced core theory of the finite element method into 

adaptive meshes for generic complex problems represented by 

IEs.  

 
Index Terms—Finite Element, Integral Equation, 

Interpolation Operator, Adaptive Mesh. 

I. INTRODUCTION 

HIS paper covers the implementation of the FEM that 

we have developed from scratch, which helped us fully 

extend our understanding of the topic and program the 

actual computer codes in solving IEs and be able to compare 

various approximation methods. This paper is organized into 

three main parts.  

The first part summarizes the theoretical foundation of the 

FEM as well as an overview of the Finite Element 

interpolation technique. It restates the results on normed 

vector spaces ([1], p.463-492; [3], p.13-17; [4]), Lebesgue 

integration, distributional derivatives and Sobolev spaces 

([1], p.463-492; [3], p.13-17), essential to derive “error 

estimate”, convergence and well posedness. 

Next, we review Integral Equations ([2], p.222-337; [3], 

p.31-42) and their approximation methods and results. 

The last part, Implementation, covers practical 

implementation considerations such as meshing techniques, 

“a posterior error estimate” for mesh refinement or adaptive 

mesh ([1], p.337-457; [3], p.68-112), examples illustrating 

our simulator results. 
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II. THEORETICAL FOUNDATIONS OF THE FINITE 

ELEMENT METHOD 

A. Theoretical Framework and Fundamental Analysis 

Please refer to ([1], p.463-492; [3], p.13-17) for a complete 

overview. 

Lebesgue Spaces: 𝐿1() is the space of the scalar-valued 

functions that are Lebesgue-integrable. The space of locally 

integrable functions is denoted by 𝐿𝑙𝑜𝑐
1 () and is defined as 

𝐿𝑙𝑜𝑐
1 () = {𝑓 ∈ 𝑀();  ∀ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝐾 ⊂ , 𝑓 ∈ 𝐿1(𝐾)} 

For 1 ≤ 𝑝 ≤ +∞, let 𝐿𝑝() = {𝑓 ∈ 𝑀();  ‖𝑓‖0,𝑝, <

+∞} where  

‖𝑓‖0,𝑝, = (∫ |𝑓(𝑥)|
𝑝



)

1
𝑝

𝑑𝑥, 𝑓𝑜𝑟 1 ≤ 𝑝 ≤ +∞ 

‖𝑓‖0,∞, = 𝑒𝑠𝑠 sup|𝑓(𝑥)| = inf {𝑀 ≥ 0; |𝑓(𝑥)| ≤ 𝑀, 𝑓 ∈  

 

Sobolev Spaces: Let 𝑠 and 𝑝 be two integers with 𝑠 ≥ 0 and 

1 ≤ 𝑝 ≤ +∞, the Sobolev space is defined as 

𝑊𝑠,𝑝() = {𝑢 ∈ 𝐷′();  ∂𝛼 𝑢 ∈ 𝐿𝑝(), |𝛼| ≤ 𝑠} 
with distributional derivatives ([1], p.463-492). There 

follows that 𝑊𝑠,𝑝() is a Banach space when equipped with 

the norm  

‖𝑢‖𝑊𝑠,𝑝() = ∑‖∂𝛼 𝑢‖𝐿𝑝()
|𝛼|≤𝑠

 

For 𝑝 = 2, 𝑊𝑠,2() has an Hilbert structure and is denoted 

by 𝐻𝑠(). 
 

B. Overview of the Finite Element Interpolation 

Please refer to ([1], p.3-58; [3], p.18-25) for a complete 

literature. 

Polynomials Used for One-Dimensional Interpolation: 

The mesh: a mesh of  = ]𝑎, 𝑏[ is an indexed collection of 

intervals with non-zero measure {𝐼𝑖 = [𝑥𝑖 , 𝑥𝑖+1]}0≤𝑖≤𝑁 

forming a partition of , ie, ̅ = ⋃ 𝐼𝑖
𝑁
𝑖=0  and 𝐼𝑖 ∩ 𝐼𝑗 ≠ ∅ for 

𝑖 ≠ 𝑗. It is constructed by taking 𝑁 + 2 points of ̅ such that 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 < 𝑥𝑁+1 = 𝑏. The mesh is denoted 

by T h= {𝐼𝑖}0≤𝑖≤𝑁, where ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖  may be a variable 

step size and the subscript ℎ = max0≤𝑥≤𝑁 ℎ𝑖 refers to a 

refinement. The points in the set {𝑥0, … , 𝑥𝑁+1} are called the 

vertices of the mesh and the intervals 𝐼𝑖  are referred to as 

elements or cells.  

The ℙ𝑘 Lagrange finite element: Let 𝑘 ≥ 1 and let 
{𝑠0, … , 𝑠𝑘} be 𝑘 + 1 distinct numbers. The Lagrange 

polynomials {ℒ0
𝑘 , … , ℒ𝑘

𝑘} associated with the nodes 

{𝑠0, … , 𝑠𝑘} are defined to be ℒ𝑚
𝑘 (𝑡) =

∏ (𝑡−𝑠𝑙)𝑙≠𝑚

∏ (𝑠𝑚−𝑠𝑙)𝑙≠𝑚
, 0 ≤ 𝑚 ≤

𝑘 and satisfy the important propriety ℒ𝑚
𝑘 (𝑠𝑙) = 𝛿𝑚𝑙, 

0 ≤ 𝑚, 𝑙 ≤ 𝑘. For 𝑗 ∈ {0, … , 𝑘(𝑁 + 1)} with 𝑗 = 𝑘𝑖 + 𝑚 

and 0 ≤ 𝑚 ≤ 𝑘 − 1, define the functions 

𝜑𝑘𝑖+𝑚(𝑥) = {
ℒ𝑖,𝑚
𝑘 (𝑥)   𝑖𝑓 𝑥 ∈ 𝐼𝑖

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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and for 𝑚 = 0   𝜑𝑘𝑖(𝑥) = {

ℒ𝑖−1,𝑘
𝑘 (𝑥)   𝑖𝑓 𝑥 ∈ 𝐼𝑖−1

ℒ𝑖,0
𝑘 (𝑥)            𝑖𝑓 𝑥 ∈ 𝐼𝑖
0                    𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

On 𝐼𝑖 = [𝑥𝑖 , 𝑥𝑖+1] ∈ T h let choose the local degrees of 

freedom to be the (k+1) linear forms 𝑖 = {𝜎𝑖,0, … , 𝜎𝑖,𝑘} 

defined by 𝜎𝑖,𝑚: ℙ𝑘 ∋ 𝑝 ⟼ 𝜎𝑖,𝑚(𝑝) = 𝑝(𝑖,𝑚), 0 ≤ 𝑚 ≤ 𝑘 

for all 𝑝 ∈ ℙ𝑘. 𝑖 is a basis of ℒ(ℙ𝑘 , ℝ) and the triplet 

{𝐼𝑖 , ℙ𝑘 ,𝑖} is called a one-dimensional ℙ𝑘 Lagrange finite 

element. the nodes are {
𝑖,0
, … , 

𝑖,𝑘
}; the local shape 

functions at nodes are the (k+1) Lagrange polynomials ℒ𝑖,𝑚
𝑘 , 

0 ≤ 𝑚 ≤ 𝑘. 

 

Types of Finite Elements: Definitions and Examples 

Main definition: following Ciarlet, a finite element is 

defined as a triplet {𝐾, 𝑃,} where: 

(i) 𝐾 is a compact, connected, Lipschitz subset of ℝ𝑑with 

non-empty interior. 

(ii) 𝑃 is a vector space of functions 𝑝: 𝐾 ⟼ ℝ𝑚 for some 

positive integer 𝑚, typically 𝑚 = 1 or d. 

(iii)  is a set of 𝑛𝑠ℎ linear forms = {𝜎1, … , 𝜎𝑛𝑠ℎ}, called 

local degrees of freedom, acting on the elements of 𝑃, 

and such that the linear mapping 

𝑃 ∋ 𝑝 ⟼ (𝜎1(𝑝), … , 𝜎𝑛𝑠ℎ(𝑝)) , 𝜎𝑖,𝑚(𝑝) ∈ ℝ
𝑛𝑠ℎis 

bijective, i.e.,  is a basis for ℒ(𝑃;ℝ). 
 

Then, there exists a basis {𝜃1, … , 𝜃𝑛𝑠ℎ} in 𝑃, called the local 

shape functions, such that  𝜎𝑖(𝜃𝑗) = 𝑝(𝜃𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑠ℎ;  

dim𝑃 = 𝑐𝑎𝑟𝑑  = 𝑛𝑠ℎ and ∀𝑝 ∈ 𝑃, (𝜎𝑖(𝑝) = 0, 1 ≤ 𝑖 ≤
𝑛𝑠ℎ) ⇒ (𝑝 = 0), this propriety is known as unisolvence. 

Lagrange finite element: For all 𝑝 ∈ 𝑃, 𝜎𝑖(𝑝) = 𝑝(𝑎𝑖), 1 ≤
𝑖 ≤ 𝑛𝑠ℎ, {𝐾, 𝑃,} is called a Lagrange finite element. The 

local shape functions {𝜃1, … , 𝜃𝑛𝑠ℎ}, with 𝜃𝑖(𝑎𝑗) = 𝛿𝑖𝑗, 1 ≤

𝑖, 𝑗 ≤ 𝑛𝑠ℎ, are called the nodal basis of 𝑃.  
Simplicial Lagrange finite element: Let {𝑎0, … , 𝑎𝑑} be a 

family of points in ℝ𝑑, 𝑑 ≥ 1. Assume that the vector 

{𝑎1 − 𝑎0, … , 𝑎𝑑 − 𝑎0} are linearly independent. Then, the 

convex hull of {𝑎0, … , 𝑎𝑑} is called a simplex, and the points 
{𝑎0, … , 𝑎𝑑} are called the vertices of the simplex. Let ℙ𝑘 be 

the space of polynomials in the variables 𝑥1, … , 𝑥𝑑 , with real 

coefficient and global degree at most 𝑘:  

ℙ𝑘 = {𝑝(𝑥) = ∑ 𝛼𝑖1…𝑖𝑑𝑥1
𝑖1 …𝑥𝑑

𝑖𝑑
0≤𝑖1,…,𝑖𝑑≤𝑘

𝑖1+⋯+𝑖𝑑≤𝑘

;  𝛼𝑖1…𝑖𝑑 ∈ ℝ}, 

ℙ𝑘 is a vector space of dimℙ𝑘 = (𝑑+𝑘
𝑘
) 

There is also “Tensor Product” and “Prismatic” finite 

elements where the shape of cell is a cuboid, respectively a 

prism. 

 

The Crouzeix-Raviart finite element: 

𝑃 = ℙ1 and take for the local degrees of freedom the mean-

value over the (𝑑 + 1) faces of 𝐾, i.e., for 0 ≤ 𝑖 ≤ 𝑑,  

𝜎𝑖(𝑝) =
1

𝑚𝑒𝑎𝑠(𝐹𝑖)
∫ 𝑝
𝐹𝑖

. Let ={𝜎𝑖}0≤𝑖≤𝑑, then {𝐾, ℙ1,} is a 

finite element. The local shape functions are 𝜃𝑖(𝑥) = 𝑑(
1

𝑑
−

𝜆𝑖(𝑥)), 0 ≤ 𝑖 ≤ 𝑑. The local Crouzeix-Raviart interpolation 

operator is then defined as follows 𝔗𝑘
𝐶𝑅: 𝑉(𝐾) ∋ 𝑣 ⟼

𝔗𝑘
𝐶𝑅𝑣 = ∑ (

1

𝑚𝑒𝑎𝑠(𝐹𝑖)
∫ 𝑣
𝐹𝑖

) 𝜃𝑖
𝑑
𝑖=0 ∈ ℙ1 

Other finite element type are Raviart-Thomas, Nedelec, 

Hermite, etc. 

 

Meshes: Basic Concepts 

Mesh: Let   be a domain in ℝ𝑑. A mesh is a union of a 

finite number 𝑁𝑒𝑙  of compact, connected, Lipschitz sets 𝐾𝑚, 

called mesh cells or elements, with non-empty interior such 

that {𝐾𝑚}1≤𝑚≤𝑁𝑒𝑙 form a partition of , i.e., 

̅ = ⋃ 𝐾𝑚
𝑁𝑒𝑙
𝑚=1  and 𝐾𝑚 ∩ 𝐾𝑛 ≠ ∅ for 𝑚 ≠ 𝑛. A mesh 

{𝐾𝑚}1≤𝑚≤𝑁𝑒𝑙 is denoted by 𝔗ℎ, ℎ referring to the refinement 

level so that 

∀𝐾 ∈ 𝔗ℎ, ℎk = 𝑑𝑖𝑎𝑚(𝐾) = max𝑥1,𝑥2∈𝐾‖𝑥1 − 𝑥2‖𝑑, where 

‖. ‖𝑑 is the Euclidian norm in ℝ𝑑 and ℎ = max𝐾∈𝔗ℎ ℎk 

A sequence of successive refinement meshes is denoted by 

{𝔗ℎ}ℎ>0. 

Mesh generation: In practice, the mesh is generated from a 

reference cell 𝐾, and a set of geometric transformations 

mapping 𝐾 to the actual mesh cells 𝐾 ∈ 𝔗ℎ, denote by 

𝑇ℎ: 𝐾 → 𝐾. We shall henceforth assume that the geometric 

transformations are C
1
-diffeomorphisms. Usually 𝑇ℎis 

specified using the Lagrange finite element {𝐾,̂ 𝑃̂𝑔𝑒𝑜 , ̂𝑔𝑒𝑜}, 

called the geometric reference finite element. Let 𝑛𝑔𝑒𝑜 =

𝑐𝑎𝑟𝑑(̂𝑔𝑒𝑜), {𝑔̂1, … , 𝑔̂𝑛𝑔𝑒𝑜} referred to as the geometric 

reference nodes of 𝐾 associated with ̂𝑔𝑒𝑜 and 

{̂
1
, … , ̂

𝑛𝑔𝑒𝑜
} are the geometric reference shape functions. 

When 𝐾 is a simplex, 𝔗ℎ is called a simplicial mesh. A 

mesh generator usually provides a list of 𝑛𝑔𝑒𝑜-uplets  

{𝑔̂1
𝑚, … , 𝑔̂𝑛𝑔𝑒𝑜

𝑚 }1≤𝑚≤𝑁𝑒𝑙, called geometric nodes of the m
th
 

element, where 𝑔𝑖
𝑚 ∈ ℝ𝑑 and 𝑁𝑒𝑙  is the number of mesh 

elements. The geometric transformations are 𝑇𝑚: 𝐾 ∋ 𝑥̂ ⟼

𝑇𝑚(𝑥̂) = ∑ 𝑔𝑖
𝑚𝑛𝑔𝑒𝑜

𝑖=1
̂
𝑖
(𝑥̂) ∈ ℝ𝑑 so that 𝑇𝑚(𝑔̂𝑖) = 𝑔𝑖

𝑚 for 

1 ≤ 𝑖 ≤ 𝑛𝑔𝑒𝑜 and 𝐾𝑚 = 𝑇𝑚(𝐾). The numbering of the 

nodes had to be compatible, henceforth the convention that 

the Jacobian of 𝑇𝑚 be positive so that 𝑇𝑚 is a C
1
-

diffeomorphisms. When the transformation is affine, the 

mesh is called an affine mesh and if 𝐾 is a simplex, the 

affine mesh is called a triangulation. For domain with a 

curved boundary, the mesh is generated using geometric 

transformation of degree 𝑘𝑔𝑒𝑜 > 1. 

 

Approximation Spaces and Interpolation Operators 

Global interpolation operator: A global interpolation 

operator can be constructed by first choosing its domain to 

be  

𝐷(𝔗ℎ) = {𝑣 ∈ [𝐿1(ℎ)]
𝑚; ∀𝐾 ∈ 𝔗ℎ, 𝑣|𝐾 ∈ 𝑉(𝐾)}, then 

the global interpolation operator 𝔗ℎ𝑣 is defined 

elementwise,  using the local interpolation operator, by 

𝔗ℎ: 𝐷(𝔗ℎ) ∋ 𝑣 ⟼ ∑ ∑ 𝜎𝐾,𝑖(𝑣|𝐾)
𝑛𝑠ℎ
𝑖=1 𝜃𝐾,𝑖𝐾∈𝔗ℎ

∈ 𝑊ℎ, where 

the so called approximation space 𝑊ℎ = {𝑣ℎ ∈
[𝐿1(ℎ)]

𝑚; ∀𝐾 ∈ 𝔗ℎ , 𝑣|𝐾 ∈ 𝑃𝐾} is the codomain of 𝔗ℎ. If 

𝑊ℎ ⊂ 𝑉, where 𝑉 is a Banach space, 𝑊ℎis said to be V-

conformal.  

 

III. APPROXIMATION OF INTEGRAL EQUATIONS 

Please, refer to ([2], p.222-337) for an in depth overview 

on integral equations or ([3], p.31-42) for summary. 

A. Introduction 

An integral equation is an equation in which a function to be 

determined appears under an integral sign. It is said to be 

linear when no nonlinear functions of the unknown function 
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are involved. The most frequent form is the Fredholm 

equation:  

𝛼(𝑥)𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎

 

If 𝑏 = 𝑥 is identified with the current variable, the equation is 

known as the Volterra equation. , 𝑎 𝑎𝑛𝑑 𝑏 are constants and 

𝛼, 𝐹 and 𝐾are given functions, continuous on (𝑎, 𝑏) as well 

as 𝑦(𝑥). 𝐾(𝑥, 𝜀) is known as the kernel. The integral equation 

is said to be of the first kind if 𝛼 ≡ 0, second kind if 𝛼 ≡ 1 

and of the third kind if 𝛼 is a function. If 𝛼 is positive, the 

Fredholm equation can take the form  

√𝛼(𝑥)𝑦(𝑥) =
𝐹(𝑥)

√𝛼(𝑥)
+ ∫

𝐾(𝑥, 𝜀)

√𝛼(𝑥)𝛼(𝜀)
√𝛼(𝜀)𝑦(𝜀)𝑑𝜀

𝑏

𝑎

 

and be considered of the second kind in the unknown 

function √𝛼(𝑥)𝑦(𝑥) with a modified kernel. For a two-

dimensional variable 𝑤(𝑥, 𝑦), the Fredholm equation is of the 

form 

𝛼(𝑥, 𝑦)𝑤(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + ∬ 𝐾(𝑥, 𝑦; 𝜀,)𝑤(𝜀,)𝑑𝜀𝑑


  

 

B. Numerical Solution of Integral Equations 

Approximation of Fredholm Equations by Sets of Algebraic 

Equations: 

A definite integral of the form 𝐽 = ∫ 𝑓(𝜀)𝑑𝜀
𝑏

𝑎
 can be defined 

as a limit of the form 𝐽 =
lim

𝑛 → ∞
∑ 𝑓(𝑥𝑘)
𝑛
𝑘=1 (𝑥)𝑘where the 

interval (𝑎, 𝑏) is divided in subintervals of length (𝑥)𝑘 and 

𝑥𝑘 is the point of the 𝑘𝑡ℎ interval. The integral "𝐽" can be 

obtained by not proceeding to the limit but using a weighting 

coefficient 𝐷𝑘 at 𝑥𝑘 so that 𝐽 = ∑ 𝐷𝑘𝑓(𝑥𝑘)
𝑛
𝑘=1 . 𝐷𝑘 can be 

(𝑥)𝑘 or in accordance with some rule such as the 

trapezoidal rule {𝐷1, 𝐷2, … , 𝐷𝑛−1, 𝐷𝑛} = ℎ{
1

2
, 1,1, … ,1,1,

1

2
} or 

the Simpson’s rule {𝐷1, 𝐷2, 𝐷3, 𝐷4… ,𝐷𝑛−3, 𝐷𝑛−2, 𝐷𝑛−1, 𝐷𝑛} =
ℎ

3
{1,4,2,4… ,4,2,4,1} where ℎ = (𝑏 − 𝑎)/(𝑛 − 1). There 

follows that the solution of 

 𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 is approximated by 

𝑦(𝑥𝑖) = 𝐹(𝑥𝑖) + ∑ 𝐷𝑘𝐾(𝑥𝑖 , 𝑥𝑘)𝑦(𝑥𝑘)
𝑛
𝑘=1  or 𝑦𝑖 = 𝑓𝑖 +

∑ 𝐾𝑖𝑘𝐷𝑘𝑦𝑘
𝑛
𝑘=1 . If 𝑦 = {𝑦𝑖}, 𝐾 = [𝐾𝑖𝑗], 𝐷 = [𝐷𝑖𝛿𝑖𝑗] and 

𝑓 = {𝑓𝑖}, thus (𝐼 − 𝐾𝐷)𝑦 = 𝑓 where 𝐼 is the unit matrix of 

order n. This method is particularly useful when the kernel 𝐾 

is available as a table of values of an empirical influence 

function. In the other hand, the characteristic numbers of 

𝑦(𝑥) = ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 are afforded by reciprocals of 

the characteristic numbers of the corresponding matrix 

formulation 𝑦 = ∑ 𝐾𝑖𝑘𝐷𝑘𝑦𝑘
𝑛
𝑘=1 = 𝐾𝐷𝑦. 

 

Approximation Methods of Undetermined Coefficients 

In this method the solution of 

𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 is approximated by 

𝑦(𝑥)∑ 𝑐𝑘𝑘(𝑥)
𝑛
𝑘=1  leading to the form 

∑ 𝑐𝑘[𝑘(𝑥)
𝑛
𝑘=1 − 𝑘(𝑥)]𝐹(𝑥) where  

𝑘(𝑥) = ∫ 𝐾(𝑥, 𝜀)
𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
  (𝑎 ≤ 𝑥 ≤ 𝑏) and the 

𝑘
are 

suitably chosen functions such as 𝑥𝑘 and the c’s are 

determined by a set of n algebraic equations. If end values are 

known in advance, it may be desirable to use  

𝑦(𝑥)
0
(𝑥) + ∑ 𝑐𝑘𝑘(𝑥)

𝑛
𝑘=1 , with 

0
(𝑥) verifying the 

known end conditions and the remaining ‘s vanishing at end 

points. 

 

The Method of Collocation 

Following the preceding section by setting 𝑠𝑘(𝑥) = 
𝑘
(𝑥) −

𝑘(𝑥) ≡ 
𝑘
(𝑥) − ∫ 𝐾(𝑥, 𝜀)

𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
   (𝑎 ≤ 𝑥 ≤ 𝑏) and 

by requiring that ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 𝐹(𝑥) be an equality at n 

distinct points in (𝑎, 𝑏), we obtain the n conditions 

∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖) or 𝑆𝑐 = 𝑓 where  

𝑐 = {𝑐𝑖}, 𝑆 = [𝑠𝑖𝑗] with 𝑠𝑖𝑗 = 𝑠𝑖(𝑥𝑗) and 𝑓 = {𝑓𝑖}   (i=1, 2, 

…,n), leading to the n algebraic equations in 𝑐𝑘, hence 𝑦(𝑥). 
 

The Method of Weighting Functions or Galerkin 

This method uses the n orthogonality conditions of the form 

∑ 𝑐𝑘 ∫ 
𝑖
𝑠𝑘𝑑𝑥 = ∫ 

𝑖
𝐹𝑑𝑥   (𝑖 = 1, 2, … , 𝑛)

𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1  or 𝑀𝑐 = 𝑏 

where 𝑀 = [𝑚𝑖𝑗] with  𝑚𝑖𝑗 = ∫ 
𝑖
𝑠𝑗𝑑𝑥

𝑏

𝑎
 and 𝑏𝑖 =

∫ 
𝑖
𝐹𝑑𝑥   (𝑖 = 1, 2, … , 𝑛)

𝑏

𝑎
; a convenient choice of 

𝑖
 is 

1, 𝑥, 𝑥2, … , 𝑥𝑛; it is desirable to choose the 
𝑖
  as a complete 

set of functions. The system 𝑀𝑐 = 𝑏 leads to n algebraic 

equations in 𝑐𝑘, hence 𝑦(𝑥). 
 

The Method of Least Square 

This method requires that the integral of the square of the 

difference ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥) be as small as possible or 

∫ [∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥)]2𝑑𝑥

𝑏

𝑎
=minimum and avoids the 

dependence on the choice of the collocation points or 

weighting functions. There then follows that 

∫ 𝑠𝑖(𝑥)[∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥)]𝑑𝑥 = 0

𝑏

𝑎
 or 

∑ 𝑐𝑘 ∫ 𝑠𝑖𝑠𝑘𝑑𝑥 = ∫ 𝑠𝑖𝐹𝑑𝑥   (𝑖 = 1, 2, … , 𝑛)
𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1  leading to 

∑ 𝑐𝑘[∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝑠𝑘(𝑥𝑟)
𝑁
𝑟=1 ] = ∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝐹(𝑥𝑟)

𝑁
𝑟=1

𝑛
𝑘=1  

(𝑖 = 1, 2, … , 𝑛) or ∑ 𝑐𝑘𝑝𝑖𝑘 =
𝑛
𝑘=1 𝑞𝑖, with change in indices, 

we obtain  

with 𝑃 = [𝑝𝑖𝑗]= ∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝑠𝑘(𝑥𝑟)
𝑁
𝑟=1 = ∑ 𝑠𝑘𝑖𝐷𝑘𝑠𝑘𝑗

𝑁
𝑘=1 =

𝑆𝑇𝐷𝑆 and 𝑞 = {𝑞𝑖}= ∑ 𝑠𝑘𝑖𝐷𝑘𝑓𝑖
𝑁
𝑘=1 = 𝑆𝑇𝐷𝑓 where 𝑆 =

[𝑠𝑖𝑗] ≡ [𝑠𝑖(𝑥𝑗)], 𝐷 = [𝐷𝑖𝛿𝑖𝑗], and 𝑓 = {𝑓𝑖}. 

Since 𝐷 is diagonal, 𝑆𝑇𝐷 = (𝐷𝑆)𝑇, 𝑃 = (𝐷𝑆)𝑇𝑆 and 

𝑞 = (𝐷𝑆)𝑇𝑓, this result leads to the following procedure for 

determining the n linear equations represented by  

∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖) 1) Choose 𝑁 points in (𝑎, 𝑏) and 

write down the 𝑁 equations. 2) Denote by 𝑆 the 𝑁 𝑥 𝑛 matrix 

of coefficients in the previous set of equations and form the 

“weighting matrix” 𝑆∗=DS 

by multiplying the i
th

 row of S by the weighting coefficient 𝐷𝑖  
associated with the point 𝑥𝑖 in an appropriate integration 

scheme involving the 𝑁 points. 3) Pre-multiply the 

augmented matrix of ∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖)  (𝑖 =

1, 2, … , 𝑁) by the transpose of the weighting matrix 𝑆∗. The 

resultant matrix is the augmented matrix of the required set of 

n linear equations which determines the constants 

𝑐1, 𝑐2, … , 𝑐𝑛. 

 

Approximation of the Kernel 

It is sometimes convenient to approximate a kernel by a 

polynomial in 𝑥 and 𝜀 or by a separable kernel and solve the 

resultant equation according to the method of separable 

kernel. For instance, a kernel can be approximated by 

𝐴1 + 𝐴2𝑥 + 𝐴3𝑥
2 or 𝑥(1 − 𝑥)(𝐵1 + 𝐵2𝑥 + 𝐵3𝑥

2) which 

should verify the end conditions and where the 𝐴’s and 𝐵′𝑠 

are determined as functions of 𝜀 by three-point collocation, 

the use of appropriate weighting functions or the use of least-

square techniques. 
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C. Application: Comparison of Collocation, Galerkin, 

Least Square and Kernel Approximation 

Compare the exact solution of the following integral 

equation, if it exists, with approximate solutions from the 

methods of collocation, Galerkin, least square and kernel 

approximation: 

𝑦(𝑥) = 𝑥 + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

0
 where 𝐾(𝑥, 𝜀) =

{
𝑥,    when  x < 𝜀 
𝜀,    when  x > 𝜀

 

 

a) Exact solution: 

By writing ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

0
= ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀

𝑥

0
+

∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

𝑥
=∫ 𝜀𝑦(𝜀)𝑑𝜀

𝑥

0
+ ∫ 𝑥𝑦(𝜀)𝑑𝜀

1

𝑥
 and by using 

the relation 

 
𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝜀)𝑑𝜀
𝐵(𝑥)

𝐴(𝑥)
= ∫

𝜕𝐺(𝑥,𝜀)

𝜕𝑥

𝐵(𝑥)

𝐴(𝑥)
𝑑𝜀 + 𝐺[𝑥, 𝐵(𝑥)]

𝑑𝐵(𝑥)

𝑑𝑥
−

𝐺[𝑥, 𝐴(𝑥)]
𝑑𝐴(𝑥)

𝑑𝑥
 we obtain 

  𝑦′(𝑥) = 1 + ∫
𝜕[𝜀.𝑦(𝜀)]

𝜕𝑥

𝑥

0
𝑑𝜀 + 𝑥. 𝑦(𝑥)

𝑑𝑥

𝑑𝑥
− 0. 𝑦(0)

𝑑0

𝑑𝑥
+

∫
𝜕[𝑥.𝑦(𝜀)]

𝜕𝑥

1

𝑥
𝑑𝜀 + 𝑥. 𝑦(1)

𝑑1

𝑑𝑥
− 𝑥. 𝑦(𝑥)

𝑑𝑥

𝑑𝑥
= 1 + 𝑥. 𝑦(𝑥) +

∫ 𝑦(𝜀)
1

𝑥
𝑑𝜀 − 𝑥. 𝑦(𝑥) 

𝑦′(𝑥) = 1 + ∫ 𝑦(𝜀)
0

𝑥
𝑑𝜀 + ∫ 𝑦(𝜀)

1

0
𝑑𝜀 = 1 − ∫ 𝑦(𝜀)

𝑥

0
𝑑𝜀 +

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑦′′(𝑥) = −𝑦(𝑥)𝑦′′(𝑥) + 𝑦(𝑥) = 0 which 

solution is of the form 𝑦(𝑥) = 𝐴𝑠𝑖𝑛(𝑥) + 𝐵𝑐𝑜𝑠(𝑥). By 

evaluating 𝑦(𝑥) and 𝑦′(𝑥) at 0 and 1 we get end conditions 

𝑦(0) = 𝐹(0) = 0 𝑎𝑛𝑑 𝑦′(1) = 𝐹′(1) = 1, we obtain 

𝑦(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑐𝑜𝑠 (1)
. 

 

b) Method of Collocation: 

Assuming the approximation 𝑦(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2, we 

have 
1
= 1, 

2
= 𝑥 𝑎𝑛𝑑 

2
= 𝑥2; for 𝑘(𝑥) ≡

∫ 𝐾(𝑥, 𝜀)
𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
 we obtain 

1 = ∫ 𝜀𝑑𝜀
𝑥

0
+ ∫ 𝑥𝑑𝜀

1

𝑥
= 𝑥 −

𝑥2

2
; 2=∫ 𝜀2𝑑𝜀

𝑥

0
+ ∫ 𝑥𝜀𝑑𝜀

1

𝑥
=

𝑥

2
−

𝑥3

6
; 3 = ∫ 𝜀3𝑑𝜀

𝑥

0
+ ∫ 𝑥𝜀2𝑑𝜀

1

𝑥
=
𝑥

3
−

𝑥4

12
 

𝑠1(𝑥) = 
1
(𝑥) − 1(𝑥)=1−𝑥 +

𝑥2

2
; 𝑠2(𝑥) = 

2
(𝑥) −

2(𝑥)= 
𝑥

2
+

𝑥3

6
; 𝑠3(𝑥) = 

3
(𝑥) − 3(𝑥)=−

𝑥

3
+ 𝑥2 +

𝑥4

12
 

Hence, the approximate equality ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1  𝐹(𝑥) 

produces 𝑐1 (1 − 𝑥 +
𝑥2

2
) + 𝑐2 (

𝑥

2
+

𝑥3

6
) + 𝑐3 (−

𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑥 which evaluation at collocation points 0, 0.5 and 1 

leads to the three equations in three unknown c’s: 
𝑐1 = 0

5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1

}

𝑐1 = 0
𝑐2 = 1.98795
𝑐3 = −0.43373

}  𝑜𝑟 𝑦(𝑥) 

1.98795𝑥 − 0.43373𝑥2 

 

c) Method of Weighted Coefficient or Galerkin: 

Assuming 𝑦(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2  and by choosing the 

weighting functions to be 
1
= 

1
= 1,

2
= 

2
= 𝑥 and 


3
= 

3
= 𝑥2, the Galerkin system of equations 

∑ 𝑐𝑘 ∫ 
𝑖
𝑠𝑘𝑑𝑥 = ∫ 

𝑖
𝐹𝑑𝑥   (𝑖 = 1, 2, 3;  𝑘 = 1, 2, 3)

𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1  

becomes: 

𝑐1∫ (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0

+ 𝑐2∫ (
𝑥

2
+
𝑥3

6
)𝑑𝑥

1

0

 

+𝑐3∫ (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑑𝑥

1

0

= ∫ 𝑥𝑑𝑥
1

0

 

𝑐1 ∫ 𝑥 (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0
+ 𝑐2 ∫ 𝑥 (

𝑥

2
+

𝑥3

6
)𝑑𝑥

1

0

+𝑐3 ∫ 𝑥 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
)𝑑𝑥

1

0
= ∫ 𝑥2𝑑𝑥

1

0

𝑐1 ∫ 𝑥2 (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0
+ 𝑐2 ∫ 𝑥2 (

𝑥

2
+

𝑥3

6
)𝑑𝑥

1

0

+𝑐3 ∫ 𝑥2 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑑𝑥

1

0
= ∫ 𝑥3𝑑𝑥

1

0 }
  
 

  
 



𝑐1 [𝑥 −
𝑥2

2
+

𝑥3

6
]
0

1

+ 𝑐2 [
𝑥2

4
+

𝑥4

24
]
0

1

+ 𝑐3 [−
𝑥2

6
+

𝑥3

3
+

𝑥5

60
]
0

1

= [
𝑥2

2
]
0

1

𝑐1 [
𝑥2

2
−

𝑥3

3
+

𝑥4

8
]
0

1

+ 𝑐2 [
𝑥3

6
+

𝑥5

30
]
0

1

+ 𝑐3 [−
𝑥3

9
+

𝑥4

4
+

𝑥6

72
]
0

1

= [
𝑥3

3
]
0

1

𝑐1 [
𝑥3

3
−

𝑥4

4
+

𝑥5

10
]
0

1

+ 𝑐2 [
𝑥4

8
+

𝑥6

36
]
0

1

+ 𝑐3 [−
𝑥4

12
+

𝑥5

5
+

𝑥7

84
]
0

1

= [
𝑥4

4
]
0

1

}
 
 

 
 

 

(1 −
1

2
+

1

6
) 𝑐1 + (

1

4
+

1

24
) 𝑐2 + (−

1

6
+

1

3
+

1

60
)𝑐3 =

1

2

(
1

2
−

1

3
+

1

8
)𝑐1 + (

1

6
+

1

30
)𝑐2 + (−

1

9
+

1

4
+

1

72
)𝑐3 =

1

3

(
1

3
−

1

4
+

1

10
)𝑐1 + (

1

8
+

1

36
)𝑐2 + (−

1

12
+

1

5
+

1

84
)𝑐3 =

1

4}
 
 

 
 

 

2

3
𝑐1 +

7

24
𝑐2 +

11

60
𝑐3 =

1

2
7

24
𝑐1 +

1

5
𝑐2 +

11

72
𝑐3 =

1

3
11

60
𝑐1 +

11

72
𝑐2 +

9

70
𝑐3 =

1

4}
 
 

 
 



𝑐1 = −0.0137
𝑐2 = +2.0196
𝑐3 = −0.4358

} 𝑦(𝑥)− 0.0137 +

2.0196𝑥 − 0.4358𝑥2 

 

d) Method of Least Square:   

We evaluate 𝑐1 (1 − 𝑥 +
𝑥2

2
) + 𝑐2 (

𝑥

2
+

𝑥3

6
) +

𝑐3 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑥 at 0, 0.25, 0.5, 0.75 and 1 (refer to 

the above point b) for the evaluation at 0, 0.5 and 1) and 

calculate the weighting matrix S* by: 
𝑐1 = 0

𝑐1 (1 −
1

4
+

1

32
) + 𝑐2 (

1

8
+

1

384
) + 𝑐3 (−

1

12
+

1

16
+

1

3072
) =

1

4
5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2

𝑐1 (1 −
3

4
+

9

32
) + 𝑐2 (

3

8
+

27

384
) + 𝑐3 (−

1

4
+

9

16
+

81

3072
) =

3

4
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1 }

 
 
 

 
 
 



𝑐1 = 0
25

32
𝑐1 +

49

384
𝑐2 −

63

3072
𝑐3 =

1

4
5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2
17

32
𝑐1 +

171

384
𝑐2 +

1041

3072
𝑐3 =

3

4
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1 }

 
 
 

 
 
 

 

S*=DS =

[
 
 
 
 
 
 
 
1

12
0 0 0 0

0
1

3
0 0 0

0 0
1

6
0 0

0 0 0
1

3
0

0 0 0 0
1

12]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
1     0    0
25

32

49

384
−

63

3072
5

8
  
13

48
    

17

192
17

32

171

384

1041

3072
1

2
   

2

3
       

3

4 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1

12
   0         0

25

96

49

1152
−

21

3072
5

48
  

13

288

17

1152
17

96
  

57

384

347

3072
1

24
    

1

18
   

1

16 ]
 
 
 
 
 
 
 

 

where D is the matrix of weighting coefficients according 

to Simpson’s rule at 5 odd points: 𝐷 =
ℎ

3
{1,4,2,4,1} =

(1−0/(5−1)

3
{1,4,2,4,1} =

1

12
{1,4,2,4,1} = {

1

12
,
1

3
,
1

6
,
1

3
,
1

12
}. 

The required three linear equations of the system are found 

by calculating S*
T
SA, where SA is the augmented matrix of 

the above system. With the use of MS Excel, we obtain: 

 
TABLE 1 -  LEAST SQUARE APPROXIMATION 

 
Hence the approximation  

𝑦(𝑥)− 0.0123 + 2.0147𝑥 − 0.4333𝑥2. 

 

e) Method of the Approximation of the Kernel: 

Now, if we assume the kernel is such that 𝐾(𝑥, 𝜀)𝑐1 +

𝑐2𝑥 + 𝑐3𝑥
2. The evaluation of ∫ 𝐾(𝑥, 𝜀)𝑑𝑥

1

0
 gives ∫ (𝑐1 +

1

0

𝑐2𝑥 + 𝑐3𝑥
2)𝑑𝑥 𝑐1 +

𝑐2

2
+

𝑐3

3
 and ∫ 𝐾(𝑥, 𝜀)𝑑𝜀

1

0
= ∫ 𝜀𝑑𝜀

𝑥

0
+

0.46680 0.16808 0.09514 0.29167 c1= -0.0123

S*TSA = 0.16808 0.12079 0.09509 0.20009 c2= 2.0147

0.09514 0.09509 0.08660 0.15289 c3= -0.4333
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∫ 𝑥𝑑𝜀
1

𝑥
=𝑥 −

𝑥2

2
. (a) The integral of the kernel must equal its 

approximation over (0,1), hence 𝑐1 +
𝑐2

2
+

𝑐3

3
= 𝑥 −

𝑥2

2
. 

Additionally, the kernel approximation is exact at ends 

points 0 and 1; (b) 𝐾(0, 𝜀) = 𝑥|𝑥=0 = 0 = 𝑐1 and (c) 

𝐾(1, 𝜀) = 𝜀|𝑥=1 = 𝜀 = 𝑐1 + 𝑐2 + 𝑐3. Conditions (a), (b) 

and (c) lead to the system  

𝑐1 +
𝑐2

2
+

𝑐3

3
= 𝜀 −

𝜀2

2

𝑐1 = 0
𝑐1 + 𝑐2 + 𝑐3 = 𝜀

}

𝑐1 = 0
3𝑐2 + 2𝑐3 = 3𝜀(2 − 𝜀)

𝑐3 = 𝜀 − 𝑐2

}

𝑐1 = 0
𝑐2 = 𝜀(4 − 3𝜀)

𝑐3 = 3𝜀(𝜀 − 1)
} 𝐾(𝑥, , 𝜀) 𝜀(4 − 3𝜀)𝑥+3𝜀(𝜀 − 1)𝑥2 

Using the method of separable kernel, the following steps 

lead to the approximation:  

𝑦(𝑥) = 𝑥 + ∫ 𝐾(𝑥, , 𝜀)𝑦(𝜀)𝑑𝜀
1

0
 becomes 𝑦(𝑥) = 𝑥 +

𝑥 ∫ [𝜀(4 − 3𝜀)]𝑦(𝜀)𝑑𝜀
1

0
+ 𝑥2 ∫ [3𝜀(𝜀 − 1)]𝑦(𝜀)𝑑𝜀

1

0
 

Let 𝑎1 = ∫ [𝜀(4 − 3𝜀)]𝑦(𝜀)𝑑𝜀
1

0
 and 𝑎2 = ∫ [3𝜀(𝜀 −

1

0

1)]𝑦(𝜀)𝑑𝜀; we have 𝑦(𝑥) = 𝑥 + 𝑎1𝑥 + 𝑎2𝑥
2  (I)  

Multiplying (I) successively by 𝑔1(𝑥) = 𝑥(4 − 3𝑥) and 

𝑔2(𝑥) = 3𝑥(𝑥 − 1) and integrating over (0,1), we obtain 

the system: 
∫ 𝑥(4 − 3𝑥)𝑦(𝑥)𝑑𝑥
1

0
= 𝑎1 = ∫ 𝑥2(4 − 3𝑥)𝑑𝑥

1

0
+ 𝑎1 ∫ 𝑥2(4 − 3𝑥)𝑑𝑥

1

0
+ 𝑎2 ∫ 𝑥3(4 − 3𝑥)𝑑𝑥

1

0

∫ 3𝑥(𝑥 − 1)𝑦(𝑥)𝑑𝑥
1

0
= 𝑎2 = ∫ 3𝑥2(𝑥 − 1)𝑑𝑥

1

0
+ 𝑎1 ∫ 3𝑥2(𝑥 − 1)𝑑𝑥

1

0
+ 𝑎2 ∫ 3𝑥3(𝑥 − 1)𝑑𝑥

1

0

}

𝑎1 =
7

12
+

7

12
𝑎1 +

2

5
𝑎2

𝑎2 = −
1

4
−

1

4
𝑎1 −

3

20
𝑎2
}

5

12
𝑎1 −

2

5
𝑎2 =

7

12
1

4
𝑎1 +

23

20
𝑎2 = −

1

4

}

𝑎1 =
137

139
0.9856

𝑎2 = −
60

139
 − 0.4317

} 

𝑦(𝑥)𝑥 + 0.9856𝑥 − 0.4317𝑥21.9856𝑥 − 0.4317𝑥2. 

 

f) Comparison table and graph: 

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑐𝑜𝑠 (1)
 

𝑦𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 1.98795𝑥 − 0.43373𝑥
2 

𝑦𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛(𝑥) − 0.0137 + 2.0196𝑥 − 0.4358𝑥
2 

𝑦𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒(𝑥)− 0.0123 + 2.0147𝑥 − 0.4333𝑥
2 

𝑦𝑘𝑒𝑟𝑛𝑒𝑙 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑥)1.9856𝑥 − 0.4317𝑥
2 

IV. IMPLEMENTATION 

This section is based on ([3], p.68-112), inspired by ([1], 

p.337-457). 

Mesh Generator: 

We have developed our Delaunay Triangulations (interior 

of the circumscribed sphere does not contain any vertex of 

the triangulations) and non-Delaunay options with insertion 

of triangle centers. 

 

Alternative Mesh Generator 

There are many types of triangle centers. We use them to 

generate the mesh; this is a non-Bowyer-Watson mesh 

generation. However, it can be shown that a Delaunay mesh 

is easily reached from a square diagonally split, then by 

simple successive insertion of the circumcenter. This is our 

fundamental results for building a mesh. 

 

Modified Bowyer-Watson Algorithm: 

The algorithm inserts successive points inside a triangle and 

split is in finer pieces, refining the mesh to a better 

representation of the domain. The more points are inserted, 

the more represented is the domain and the more accurate is 

the solution. This is similar to approaching a cercle with a 

polygon to which the number of sides is gradually increased. 

 

Modified Delaunay Algorithm 

To generate a mesh, first we construct a background mesh 

that will be attached to the domain at its interception points 

with that domain. The elements that overlap the boundary 

will be replaced by their parts that are interior to the domain 

when the parts that are exterior will be deleted from the 

mesh. And, if the part that is interior is not a triangle, it will 

be triangulated. The mesh can be initially variable in each 

direction (for instance, for 2D mesh, Ni intervals in x 

direction and Nj intervals in y direction). 

 

Illustrative Example of Mesh of Complex 2D Polygon Shape 

 

 

 

 

 

 

 

 

 

 

Fig. 1 - Meshing a U Shape Reservoir before Refinement 

Quadratures, Assembling and Storage 

Assembling 

This refers to the phase in the finite element program where 

the entries of the stiffness matrix and the right-hand side 

vector are computed. 

 

Storage and Sparse Matrices 

Let 𝒜 ∈ ℝ𝑁,𝑁′. Denote by nnz the number of non-zero 

entries in 𝒜. The matrix 𝒜 is said to be sparse if 𝑛𝑛𝑧 ≪
𝑁 × 𝑁′. CSR or CSC format or Ellpack-Itpack format 

methods are used to condition the matrix.  

 

Linear Algebra 

We used conditioning and reordering techniques to save 

memory and accelerate the convergence to the solution of 

the system. We used LU factorization, LDL
T
 factorization 

and Choleski factorization. 

 

Posteriori Error Estimates and Adaptive Meshes 

The goal is to assess the error between the exact solution 

and its finite element approximation in term of known 

quantities only, i.e., the size of the mesh cells, the problem 

data and the approximate solution. The a posteriori estimate 

assesses the quality of the approximation solution and 

provides information to construct a new mesh, a process that 

can be repeated several times, thereby generating a sequence 

of so-called adaptive meshes. 

 

Adaptive Mesh Generation 

We use the local errors indicators to generate a new mesh:  

|ℇ| ≤ (∑ η𝐾(𝑢𝐾 , 𝑓)
2

𝐾∈𝔗ℎ
)
1

2  

The quantities η𝐾(𝑢𝐾 , 𝑓) are error indicators and can be 

readily evaluated when using residual–based or hierarchical 
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error estimates. For duality techniques, η𝐾(𝑢𝐾 , 𝑓) requires 

solving a dual problem. 

 

Implementation of Iterative Techniques: 

We used “Direct Methods” (Gaussian Pivot and Gauss-

Jordan Pivot [2], p.1; Crout Method [2], p.339) and 

“Indirect Methods” (Jacobi, Gauss-Seidel [5]; Krylov 

Spaces: CG and Bi-CG Stabilized [1], p.401-413 and [6], 

p.11-64). 

 

Example of Time-Marching Algorithms (Case of PDEs): 

The Implicit Euler is given by the formulation 
1

∆𝑡
(𝑢ℎ

𝑛+1 − 𝑢ℎ
𝑛, 𝑣ℎ)𝐿 + (𝐴𝑢ℎ

𝑛+1, 𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ)𝐿 , ∀ 𝑣ℎ

∈ 𝑉ℎ 
Other time-marching algorithms programmed are Explicit 

Euler, Leap-Frog and Backward-Differential. More details 

could be found in [1], p.279-334. 

 

The Finite Element Calculator (FEC©) 

A software was specifically developed to illustrate the 

application of the method of finite element ([3], p.68-112). 

It is named the “Finite Element Calculator©” which is self-

explanatory. Our objective is to build a library of solutions 

of real life problems such as heat transfer, reservoir 

simulation, earthquake, economical predictions, quantum 

mechanics, etc.  

 

Example 1: Simulated Atm. Pressure along a cockpit:   

Using a 15x15 on a [0,1]x[0,1] background mesh, we obtain 

the following: 

 
Fig. 2 – Profile of Atm. Depression along the Cockpit 

Example 2: Water Saturation Profile in U shape Reservoir:

 
Fig. 3 – U Shape Reservoir Layer – Water Saturation 

Profile, perspective view 

 

V. CONCLUSION 

 

Complex natural phenomena and engineering applications 

can often be represented by Integral Equations (IE).  

 

Because it could be challenging to solve some of these 

equations using conventional and/or analytical methods, we 

use numerical techniques by mean of computers. The most 

powerful method of the latter is the so called the Finite 

Element Method (FEM). The FEM refers not only to the 

partitioning of a domain in smaller pieces called cells or 

elements, constituting the mesh, but also the use of 

mathematical polynomials as shape functions, the 

discretization of the equations, leading to a system of linear 

equations in matrix format, more suitable for computer 

iterative solving techniques. 

 

This paper presented our implementation of the FEM using 

enhanced adaptive meshes to solve and simulate a broad 

range of real life complex problems that can be formulated 

in the forms of Integral Equations. 

 
TABLE 2 - SYMBOLS 

Symbol Description 

𝐿𝑝() Functions whose p-th power is Lebesgue integrable 

‖𝑓‖𝑋 = Norm of  𝑓  in the normed space X 

𝑊𝑠,𝑝() Function whose derivatives up to order s are in  𝐿𝑝() 

∂𝛼 𝑢 ∂𝑥1
𝛼1… ∂𝑥𝑑

𝛼𝑑𝑢  is a multi-index 

ℒ𝑚
𝑘 (𝑠𝑙) Lagrange Polynomial 

𝑔𝑖 geometric reference nodes 

̂
1
 geometric reference shape functions 

𝛿𝑚𝑙 Kronecker symbol 
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