



Abstract—Some complex natural phenomena in physics,

economics and engineering can be represented by Integral

Equations (IE). But one may be short of general mathematical

tricks to solve them analytically, which could quickly turn into

a life time enterprise. In the contrary, the use of computers or

numerical methods introduced some decades ago has brought a

different approach that is innovative and effective.

In addition, the theory of measure, the study of polynomials

and normed spaces, namely Banach, Hilbert, Lebesgue,

Hölder, Lipschitz and Sobolev spaces led to advanced modern

numerical methods to solve these complex IEs. When using

computer, a generally continuous domain is divided into

smaller pieces, or elements, so the calculation on any point of

the continuous domain could be done using results from the

elements; it is similar to approximate a circle by a regular

polygon; as the number of side increases, the polygon become

more and more close to a circle.

This method of solving IEs using subdivisions of the domain,

along with discrete form of the equations, is referred to as the

Finite Element Method (FEM). In this paper, we implement

the advanced core theory of the finite element method into

adaptive meshes for generic complex problems represented by

IEs.

Index Terms—Finite Element, Integral Equation,

Interpolation Operator, Adaptive Mesh.

I. INTRODUCTION

HIS paper covers the implementation of the FEM that

we have developed from scratch, which helped us fully

extend our understanding of the topic and program the

actual computer codes in solving IEs and be able to compare

various approximation methods. This paper is organized into

three main parts.

The first part summarizes the theoretical foundation of the

FEM as well as an overview of the Finite Element

interpolation technique. It restates the results on normed

vector spaces ([1], p.463-492; [3], p.13-17; [4]), Lebesgue

integration, distributional derivatives and Sobolev spaces

([1], p.463-492; [3], p.13-17), essential to derive “error

estimate”, convergence and well posedness.

Next, we review Integral Equations ([2], p.222-337; [3],

p.31-42) and their approximation methods and results.

The last part, Implementation, covers practical

implementation considerations such as meshing techniques,

“a posterior error estimate” for mesh refinement or adaptive

mesh ([1], p.337-457; [3], p.68-112), examples illustrating

our simulator results.

Manuscript received September 29, 2014; revised Jan 02, 2015.
D.N.Ovono is an oil & gas engineer and researcher, he works for

Halliburton, phone: 1-832-706-4036

(e-mail:arthur_ovono@yahoo.com).

II. THEORETICAL FOUNDATIONS OF THE FINITE

ELEMENT METHOD

A. Theoretical Framework and Fundamental Analysis

Please refer to ([1], p.463-492; [3], p.13-17) for a complete

overview.

Lebesgue Spaces: 𝐿1() is the space of the scalar-valued

functions that are Lebesgue-integrable. The space of locally

integrable functions is denoted by 𝐿𝑙𝑜𝑐
1 () and is defined as

𝐿𝑙𝑜𝑐
1 () = {𝑓 ∈ 𝑀(); ∀ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝐾 ⊂ , 𝑓 ∈ 𝐿1(𝐾)}

For 1 ≤ 𝑝 ≤ +∞, let 𝐿𝑝() = {𝑓 ∈ 𝑀(); ‖𝑓‖0,𝑝, <

+∞} where

‖𝑓‖0,𝑝, = (∫ |𝑓(𝑥)|
𝑝



)

1
𝑝

𝑑𝑥, 𝑓𝑜𝑟 1 ≤ 𝑝 ≤ +∞

‖𝑓‖0,∞, = 𝑒𝑠𝑠 sup|𝑓(𝑥)| = inf {𝑀 ≥ 0; |𝑓(𝑥)| ≤ 𝑀, 𝑓 ∈ 

Sobolev Spaces: Let 𝑠 and 𝑝 be two integers with 𝑠 ≥ 0 and

1 ≤ 𝑝 ≤ +∞, the Sobolev space is defined as

𝑊𝑠,𝑝() = {𝑢 ∈ 𝐷′(); ∂𝛼 𝑢 ∈ 𝐿𝑝(), |𝛼| ≤ 𝑠}
with distributional derivatives ([1], p.463-492). There

follows that 𝑊𝑠,𝑝() is a Banach space when equipped with

the norm

‖𝑢‖𝑊𝑠,𝑝() = ∑‖∂𝛼 𝑢‖𝐿𝑝()
|𝛼|≤𝑠

For 𝑝 = 2, 𝑊𝑠,2() has an Hilbert structure and is denoted

by 𝐻𝑠().

B. Overview of the Finite Element Interpolation

Please refer to ([1], p.3-58; [3], p.18-25) for a complete

literature.

Polynomials Used for One-Dimensional Interpolation:

The mesh: a mesh of  =]𝑎, 𝑏[is an indexed collection of

intervals with non-zero measure {𝐼𝑖 = [𝑥𝑖 , 𝑥𝑖+1]}0≤𝑖≤𝑁

forming a partition of , ie, ̅ = ⋃ 𝐼𝑖
𝑁
𝑖=0 and 𝐼𝑖 ∩ 𝐼𝑗 ≠ ∅ for

𝑖 ≠ 𝑗. It is constructed by taking 𝑁 + 2 points of ̅ such that

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 < 𝑥𝑁+1 = 𝑏. The mesh is denoted

by T h= {𝐼𝑖}0≤𝑖≤𝑁, where ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 may be a variable

step size and the subscript ℎ = max0≤𝑥≤𝑁 ℎ𝑖 refers to a

refinement. The points in the set {𝑥0, … , 𝑥𝑁+1} are called the

vertices of the mesh and the intervals 𝐼𝑖 are referred to as

elements or cells.

The ℙ𝑘 Lagrange finite element: Let 𝑘 ≥ 1 and let
{𝑠0, … , 𝑠𝑘} be 𝑘 + 1 distinct numbers. The Lagrange

polynomials {ℒ0
𝑘 , … , ℒ𝑘

𝑘} associated with the nodes

{𝑠0, … , 𝑠𝑘} are defined to be ℒ𝑚
𝑘 (𝑡) =

∏ (𝑡−𝑠𝑙)𝑙≠𝑚

∏ (𝑠𝑚−𝑠𝑙)𝑙≠𝑚
, 0 ≤ 𝑚 ≤

𝑘 and satisfy the important propriety ℒ𝑚
𝑘 (𝑠𝑙) = 𝛿𝑚𝑙,

0 ≤ 𝑚, 𝑙 ≤ 𝑘. For 𝑗 ∈ {0, … , 𝑘(𝑁 + 1)} with 𝑗 = 𝑘𝑖 + 𝑚

and 0 ≤ 𝑚 ≤ 𝑘 − 1, define the functions

𝜑𝑘𝑖+𝑚(𝑥) = {
ℒ𝑖,𝑚
𝑘 (𝑥) 𝑖𝑓 𝑥 ∈ 𝐼𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Finite Element Solution to Integral Equations

Dieudonne Ndong Ovono

T

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

and for 𝑚 = 0 𝜑𝑘𝑖(𝑥) = {

ℒ𝑖−1,𝑘
𝑘 (𝑥) 𝑖𝑓 𝑥 ∈ 𝐼𝑖−1

ℒ𝑖,0
𝑘 (𝑥) 𝑖𝑓 𝑥 ∈ 𝐼𝑖
0 𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

On 𝐼𝑖 = [𝑥𝑖 , 𝑥𝑖+1] ∈ T h let choose the local degrees of

freedom to be the (k+1) linear forms 𝑖 = {𝜎𝑖,0, … , 𝜎𝑖,𝑘}

defined by 𝜎𝑖,𝑚: ℙ𝑘 ∋ 𝑝 ⟼ 𝜎𝑖,𝑚(𝑝) = 𝑝(𝑖,𝑚), 0 ≤ 𝑚 ≤ 𝑘

for all 𝑝 ∈ ℙ𝑘. 𝑖 is a basis of ℒ(ℙ𝑘 , ℝ) and the triplet

{𝐼𝑖 , ℙ𝑘 ,𝑖} is called a one-dimensional ℙ𝑘 Lagrange finite

element. the nodes are {
𝑖,0
, … , 

𝑖,𝑘
}; the local shape

functions at nodes are the (k+1) Lagrange polynomials ℒ𝑖,𝑚
𝑘 ,

0 ≤ 𝑚 ≤ 𝑘.

Types of Finite Elements: Definitions and Examples

Main definition: following Ciarlet, a finite element is

defined as a triplet {𝐾, 𝑃,} where:

(i) 𝐾 is a compact, connected, Lipschitz subset of ℝ𝑑with

non-empty interior.

(ii) 𝑃 is a vector space of functions 𝑝: 𝐾 ⟼ ℝ𝑚 for some

positive integer 𝑚, typically 𝑚 = 1 or d.

(iii)  is a set of 𝑛𝑠ℎ linear forms = {𝜎1, … , 𝜎𝑛𝑠ℎ}, called

local degrees of freedom, acting on the elements of 𝑃,

and such that the linear mapping

𝑃 ∋ 𝑝 ⟼ (𝜎1(𝑝), … , 𝜎𝑛𝑠ℎ(𝑝)) , 𝜎𝑖,𝑚(𝑝) ∈ ℝ
𝑛𝑠ℎis

bijective, i.e.,  is a basis for ℒ(𝑃;ℝ).

Then, there exists a basis {𝜃1, … , 𝜃𝑛𝑠ℎ} in 𝑃, called the local

shape functions, such that 𝜎𝑖(𝜃𝑗) = 𝑝(𝜃𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑠ℎ;

dim𝑃 = 𝑐𝑎𝑟𝑑  = 𝑛𝑠ℎ and ∀𝑝 ∈ 𝑃, (𝜎𝑖(𝑝) = 0, 1 ≤ 𝑖 ≤
𝑛𝑠ℎ) ⇒ (𝑝 = 0), this propriety is known as unisolvence.

Lagrange finite element: For all 𝑝 ∈ 𝑃, 𝜎𝑖(𝑝) = 𝑝(𝑎𝑖), 1 ≤
𝑖 ≤ 𝑛𝑠ℎ, {𝐾, 𝑃,} is called a Lagrange finite element. The

local shape functions {𝜃1, … , 𝜃𝑛𝑠ℎ}, with 𝜃𝑖(𝑎𝑗) = 𝛿𝑖𝑗, 1 ≤

𝑖, 𝑗 ≤ 𝑛𝑠ℎ, are called the nodal basis of 𝑃.
Simplicial Lagrange finite element: Let {𝑎0, … , 𝑎𝑑} be a

family of points in ℝ𝑑, 𝑑 ≥ 1. Assume that the vector

{𝑎1 − 𝑎0, … , 𝑎𝑑 − 𝑎0} are linearly independent. Then, the

convex hull of {𝑎0, … , 𝑎𝑑} is called a simplex, and the points
{𝑎0, … , 𝑎𝑑} are called the vertices of the simplex. Let ℙ𝑘 be

the space of polynomials in the variables 𝑥1, … , 𝑥𝑑 , with real

coefficient and global degree at most 𝑘:

ℙ𝑘 = {𝑝(𝑥) = ∑ 𝛼𝑖1…𝑖𝑑𝑥1
𝑖1 …𝑥𝑑

𝑖𝑑
0≤𝑖1,…,𝑖𝑑≤𝑘

𝑖1+⋯+𝑖𝑑≤𝑘

; 𝛼𝑖1…𝑖𝑑 ∈ ℝ},

ℙ𝑘 is a vector space of dimℙ𝑘 = (𝑑+𝑘
𝑘
)

There is also “Tensor Product” and “Prismatic” finite

elements where the shape of cell is a cuboid, respectively a

prism.

The Crouzeix-Raviart finite element:

𝑃 = ℙ1 and take for the local degrees of freedom the mean-

value over the (𝑑 + 1) faces of 𝐾, i.e., for 0 ≤ 𝑖 ≤ 𝑑,

𝜎𝑖(𝑝) =
1

𝑚𝑒𝑎𝑠(𝐹𝑖)
∫ 𝑝
𝐹𝑖

. Let ={𝜎𝑖}0≤𝑖≤𝑑, then {𝐾, ℙ1,} is a

finite element. The local shape functions are 𝜃𝑖(𝑥) = 𝑑(
1

𝑑
−

𝜆𝑖(𝑥)), 0 ≤ 𝑖 ≤ 𝑑. The local Crouzeix-Raviart interpolation

operator is then defined as follows 𝔗𝑘
𝐶𝑅: 𝑉(𝐾) ∋ 𝑣 ⟼

𝔗𝑘
𝐶𝑅𝑣 = ∑ (

1

𝑚𝑒𝑎𝑠(𝐹𝑖)
∫ 𝑣
𝐹𝑖

) 𝜃𝑖
𝑑
𝑖=0 ∈ ℙ1

Other finite element type are Raviart-Thomas, Nedelec,

Hermite, etc.

Meshes: Basic Concepts

Mesh: Let  be a domain in ℝ𝑑. A mesh is a union of a

finite number 𝑁𝑒𝑙 of compact, connected, Lipschitz sets 𝐾𝑚,

called mesh cells or elements, with non-empty interior such

that {𝐾𝑚}1≤𝑚≤𝑁𝑒𝑙 form a partition of , i.e.,

̅ = ⋃ 𝐾𝑚
𝑁𝑒𝑙
𝑚=1 and 𝐾𝑚 ∩ 𝐾𝑛 ≠ ∅ for 𝑚 ≠ 𝑛. A mesh

{𝐾𝑚}1≤𝑚≤𝑁𝑒𝑙 is denoted by 𝔗ℎ, ℎ referring to the refinement

level so that

∀𝐾 ∈ 𝔗ℎ, ℎk = 𝑑𝑖𝑎𝑚(𝐾) = max𝑥1,𝑥2∈𝐾‖𝑥1 − 𝑥2‖𝑑, where

‖. ‖𝑑 is the Euclidian norm in ℝ𝑑 and ℎ = max𝐾∈𝔗ℎ ℎk

A sequence of successive refinement meshes is denoted by

{𝔗ℎ}ℎ>0.

Mesh generation: In practice, the mesh is generated from a

reference cell 𝐾, and a set of geometric transformations

mapping 𝐾 to the actual mesh cells 𝐾 ∈ 𝔗ℎ, denote by

𝑇ℎ: 𝐾 → 𝐾. We shall henceforth assume that the geometric

transformations are C
1
-diffeomorphisms. Usually 𝑇ℎis

specified using the Lagrange finite element {𝐾,̂ 𝑃̂𝑔𝑒𝑜 , ̂𝑔𝑒𝑜},

called the geometric reference finite element. Let 𝑛𝑔𝑒𝑜 =

𝑐𝑎𝑟𝑑(̂𝑔𝑒𝑜), {𝑔̂1, … , 𝑔̂𝑛𝑔𝑒𝑜} referred to as the geometric

reference nodes of 𝐾 associated with ̂𝑔𝑒𝑜 and

{̂
1
, … , ̂

𝑛𝑔𝑒𝑜
} are the geometric reference shape functions.

When 𝐾 is a simplex, 𝔗ℎ is called a simplicial mesh. A

mesh generator usually provides a list of 𝑛𝑔𝑒𝑜-uplets

{𝑔̂1
𝑚, … , 𝑔̂𝑛𝑔𝑒𝑜

𝑚 }1≤𝑚≤𝑁𝑒𝑙, called geometric nodes of the m
th

element, where 𝑔𝑖
𝑚 ∈ ℝ𝑑 and 𝑁𝑒𝑙 is the number of mesh

elements. The geometric transformations are 𝑇𝑚: 𝐾 ∋ 𝑥̂ ⟼

𝑇𝑚(𝑥̂) = ∑ 𝑔𝑖
𝑚𝑛𝑔𝑒𝑜

𝑖=1
̂
𝑖
(𝑥̂) ∈ ℝ𝑑 so that 𝑇𝑚(𝑔̂𝑖) = 𝑔𝑖

𝑚 for

1 ≤ 𝑖 ≤ 𝑛𝑔𝑒𝑜 and 𝐾𝑚 = 𝑇𝑚(𝐾). The numbering of the

nodes had to be compatible, henceforth the convention that

the Jacobian of 𝑇𝑚 be positive so that 𝑇𝑚 is a C
1
-

diffeomorphisms. When the transformation is affine, the

mesh is called an affine mesh and if 𝐾 is a simplex, the

affine mesh is called a triangulation. For domain with a

curved boundary, the mesh is generated using geometric

transformation of degree 𝑘𝑔𝑒𝑜 > 1.

Approximation Spaces and Interpolation Operators

Global interpolation operator: A global interpolation

operator can be constructed by first choosing its domain to

be

𝐷(𝔗ℎ) = {𝑣 ∈ [𝐿1(ℎ)]
𝑚; ∀𝐾 ∈ 𝔗ℎ, 𝑣|𝐾 ∈ 𝑉(𝐾)}, then

the global interpolation operator 𝔗ℎ𝑣 is defined

elementwise, using the local interpolation operator, by

𝔗ℎ: 𝐷(𝔗ℎ) ∋ 𝑣 ⟼ ∑ ∑ 𝜎𝐾,𝑖(𝑣|𝐾)
𝑛𝑠ℎ
𝑖=1 𝜃𝐾,𝑖𝐾∈𝔗ℎ

∈ 𝑊ℎ, where

the so called approximation space 𝑊ℎ = {𝑣ℎ ∈
[𝐿1(ℎ)]

𝑚; ∀𝐾 ∈ 𝔗ℎ , 𝑣|𝐾 ∈ 𝑃𝐾} is the codomain of 𝔗ℎ. If

𝑊ℎ ⊂ 𝑉, where 𝑉 is a Banach space, 𝑊ℎis said to be V-

conformal.

III. APPROXIMATION OF INTEGRAL EQUATIONS

Please, refer to ([2], p.222-337) for an in depth overview

on integral equations or ([3], p.31-42) for summary.

A. Introduction

An integral equation is an equation in which a function to be

determined appears under an integral sign. It is said to be

linear when no nonlinear functions of the unknown function

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

are involved. The most frequent form is the Fredholm

equation:

𝛼(𝑥)𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎

If 𝑏 = 𝑥 is identified with the current variable, the equation is

known as the Volterra equation. , 𝑎 𝑎𝑛𝑑 𝑏 are constants and

𝛼, 𝐹 and 𝐾are given functions, continuous on (𝑎, 𝑏) as well

as 𝑦(𝑥). 𝐾(𝑥, 𝜀) is known as the kernel. The integral equation

is said to be of the first kind if 𝛼 ≡ 0, second kind if 𝛼 ≡ 1

and of the third kind if 𝛼 is a function. If 𝛼 is positive, the

Fredholm equation can take the form

√𝛼(𝑥)𝑦(𝑥) =
𝐹(𝑥)

√𝛼(𝑥)
+ ∫

𝐾(𝑥, 𝜀)

√𝛼(𝑥)𝛼(𝜀)
√𝛼(𝜀)𝑦(𝜀)𝑑𝜀

𝑏

𝑎

and be considered of the second kind in the unknown

function √𝛼(𝑥)𝑦(𝑥) with a modified kernel. For a two-

dimensional variable 𝑤(𝑥, 𝑦), the Fredholm equation is of the

form

𝛼(𝑥, 𝑦)𝑤(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + ∬ 𝐾(𝑥, 𝑦; 𝜀,)𝑤(𝜀,)𝑑𝜀𝑑


B. Numerical Solution of Integral Equations

Approximation of Fredholm Equations by Sets of Algebraic

Equations:

A definite integral of the form 𝐽 = ∫ 𝑓(𝜀)𝑑𝜀
𝑏

𝑎
 can be defined

as a limit of the form 𝐽 =
lim

𝑛 → ∞
∑ 𝑓(𝑥𝑘)
𝑛
𝑘=1 (𝑥)𝑘where the

interval (𝑎, 𝑏) is divided in subintervals of length (𝑥)𝑘 and

𝑥𝑘 is the point of the 𝑘𝑡ℎ interval. The integral "𝐽" can be

obtained by not proceeding to the limit but using a weighting

coefficient 𝐷𝑘 at 𝑥𝑘 so that 𝐽 = ∑ 𝐷𝑘𝑓(𝑥𝑘)
𝑛
𝑘=1 . 𝐷𝑘 can be

(𝑥)𝑘 or in accordance with some rule such as the

trapezoidal rule {𝐷1, 𝐷2, … , 𝐷𝑛−1, 𝐷𝑛} = ℎ{
1

2
, 1,1, … ,1,1,

1

2
} or

the Simpson’s rule {𝐷1, 𝐷2, 𝐷3, 𝐷4… ,𝐷𝑛−3, 𝐷𝑛−2, 𝐷𝑛−1, 𝐷𝑛} =
ℎ

3
{1,4,2,4… ,4,2,4,1} where ℎ = (𝑏 − 𝑎)/(𝑛 − 1). There

follows that the solution of

 𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 is approximated by

𝑦(𝑥𝑖) = 𝐹(𝑥𝑖) + ∑ 𝐷𝑘𝐾(𝑥𝑖 , 𝑥𝑘)𝑦(𝑥𝑘)
𝑛
𝑘=1 or 𝑦𝑖 = 𝑓𝑖 +

∑ 𝐾𝑖𝑘𝐷𝑘𝑦𝑘
𝑛
𝑘=1 . If 𝑦 = {𝑦𝑖}, 𝐾 = [𝐾𝑖𝑗], 𝐷 = [𝐷𝑖𝛿𝑖𝑗] and

𝑓 = {𝑓𝑖}, thus (𝐼 − 𝐾𝐷)𝑦 = 𝑓 where 𝐼 is the unit matrix of

order n. This method is particularly useful when the kernel 𝐾

is available as a table of values of an empirical influence

function. In the other hand, the characteristic numbers of

𝑦(𝑥) = ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 are afforded by reciprocals of

the characteristic numbers of the corresponding matrix

formulation 𝑦 = ∑ 𝐾𝑖𝑘𝐷𝑘𝑦𝑘
𝑛
𝑘=1 = 𝐾𝐷𝑦.

Approximation Methods of Undetermined Coefficients

In this method the solution of

𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 is approximated by

𝑦(𝑥)∑ 𝑐𝑘𝑘(𝑥)
𝑛
𝑘=1 leading to the form

∑ 𝑐𝑘[𝑘(𝑥)
𝑛
𝑘=1 − 𝑘(𝑥)]𝐹(𝑥) where

𝑘(𝑥) = ∫ 𝐾(𝑥, 𝜀)
𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
 (𝑎 ≤ 𝑥 ≤ 𝑏) and the 

𝑘
are

suitably chosen functions such as 𝑥𝑘 and the c’s are

determined by a set of n algebraic equations. If end values are

known in advance, it may be desirable to use

𝑦(𝑥)
0
(𝑥) + ∑ 𝑐𝑘𝑘(𝑥)

𝑛
𝑘=1 , with 

0
(𝑥) verifying the

known end conditions and the remaining ‘s vanishing at end

points.

The Method of Collocation

Following the preceding section by setting 𝑠𝑘(𝑥) = 
𝑘
(𝑥) −

𝑘(𝑥) ≡ 
𝑘
(𝑥) − ∫ 𝐾(𝑥, 𝜀)

𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
 (𝑎 ≤ 𝑥 ≤ 𝑏) and

by requiring that ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 𝐹(𝑥) be an equality at n

distinct points in (𝑎, 𝑏), we obtain the n conditions

∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖) or 𝑆𝑐 = 𝑓 where

𝑐 = {𝑐𝑖}, 𝑆 = [𝑠𝑖𝑗] with 𝑠𝑖𝑗 = 𝑠𝑖(𝑥𝑗) and 𝑓 = {𝑓𝑖} (i=1, 2,

…,n), leading to the n algebraic equations in 𝑐𝑘, hence 𝑦(𝑥).

The Method of Weighting Functions or Galerkin

This method uses the n orthogonality conditions of the form

∑ 𝑐𝑘 ∫ 
𝑖
𝑠𝑘𝑑𝑥 = ∫ 

𝑖
𝐹𝑑𝑥 (𝑖 = 1, 2, … , 𝑛)

𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1 or 𝑀𝑐 = 𝑏

where 𝑀 = [𝑚𝑖𝑗] with 𝑚𝑖𝑗 = ∫ 
𝑖
𝑠𝑗𝑑𝑥

𝑏

𝑎
 and 𝑏𝑖 =

∫ 
𝑖
𝐹𝑑𝑥 (𝑖 = 1, 2, … , 𝑛)

𝑏

𝑎
; a convenient choice of 

𝑖
 is

1, 𝑥, 𝑥2, … , 𝑥𝑛; it is desirable to choose the 
𝑖
 as a complete

set of functions. The system 𝑀𝑐 = 𝑏 leads to n algebraic

equations in 𝑐𝑘, hence 𝑦(𝑥).

The Method of Least Square

This method requires that the integral of the square of the

difference ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥) be as small as possible or

∫ [∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥)]2𝑑𝑥

𝑏

𝑎
=minimum and avoids the

dependence on the choice of the collocation points or

weighting functions. There then follows that

∫ 𝑠𝑖(𝑥)[∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1 − 𝐹(𝑥)]𝑑𝑥 = 0

𝑏

𝑎
 or

∑ 𝑐𝑘 ∫ 𝑠𝑖𝑠𝑘𝑑𝑥 = ∫ 𝑠𝑖𝐹𝑑𝑥 (𝑖 = 1, 2, … , 𝑛)
𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1 leading to

∑ 𝑐𝑘[∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝑠𝑘(𝑥𝑟)
𝑁
𝑟=1] = ∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝐹(𝑥𝑟)

𝑁
𝑟=1

𝑛
𝑘=1

(𝑖 = 1, 2, … , 𝑛) or ∑ 𝑐𝑘𝑝𝑖𝑘 =
𝑛
𝑘=1 𝑞𝑖, with change in indices,

we obtain

with 𝑃 = [𝑝𝑖𝑗]= ∑ 𝐷𝑟𝑠𝑖(𝑥𝑟)𝑠𝑘(𝑥𝑟)
𝑁
𝑟=1 = ∑ 𝑠𝑘𝑖𝐷𝑘𝑠𝑘𝑗

𝑁
𝑘=1 =

𝑆𝑇𝐷𝑆 and 𝑞 = {𝑞𝑖}= ∑ 𝑠𝑘𝑖𝐷𝑘𝑓𝑖
𝑁
𝑘=1 = 𝑆𝑇𝐷𝑓 where 𝑆 =

[𝑠𝑖𝑗] ≡ [𝑠𝑖(𝑥𝑗)], 𝐷 = [𝐷𝑖𝛿𝑖𝑗], and 𝑓 = {𝑓𝑖}.

Since 𝐷 is diagonal, 𝑆𝑇𝐷 = (𝐷𝑆)𝑇, 𝑃 = (𝐷𝑆)𝑇𝑆 and

𝑞 = (𝐷𝑆)𝑇𝑓, this result leads to the following procedure for

determining the n linear equations represented by

∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖) 1) Choose 𝑁 points in (𝑎, 𝑏) and

write down the 𝑁 equations. 2) Denote by 𝑆 the 𝑁 𝑥 𝑛 matrix

of coefficients in the previous set of equations and form the

“weighting matrix” 𝑆∗=DS

by multiplying the i
th

 row of S by the weighting coefficient 𝐷𝑖
associated with the point 𝑥𝑖 in an appropriate integration

scheme involving the 𝑁 points. 3) Pre-multiply the

augmented matrix of ∑ 𝑐𝑘𝑠𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝐹(𝑥𝑖) (𝑖 =

1, 2, … , 𝑁) by the transpose of the weighting matrix 𝑆∗. The

resultant matrix is the augmented matrix of the required set of

n linear equations which determines the constants

𝑐1, 𝑐2, … , 𝑐𝑛.

Approximation of the Kernel

It is sometimes convenient to approximate a kernel by a

polynomial in 𝑥 and 𝜀 or by a separable kernel and solve the

resultant equation according to the method of separable

kernel. For instance, a kernel can be approximated by

𝐴1 + 𝐴2𝑥 + 𝐴3𝑥
2 or 𝑥(1 − 𝑥)(𝐵1 + 𝐵2𝑥 + 𝐵3𝑥

2) which

should verify the end conditions and where the 𝐴’s and 𝐵′𝑠

are determined as functions of 𝜀 by three-point collocation,

the use of appropriate weighting functions or the use of least-

square techniques.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

C. Application: Comparison of Collocation, Galerkin,

Least Square and Kernel Approximation

Compare the exact solution of the following integral

equation, if it exists, with approximate solutions from the

methods of collocation, Galerkin, least square and kernel

approximation:

𝑦(𝑥) = 𝑥 + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

0
 where 𝐾(𝑥, 𝜀) =

{
𝑥, when x < 𝜀
𝜀, when x > 𝜀

a) Exact solution:

By writing ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

0
= ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀

𝑥

0
+

∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
1

𝑥
=∫ 𝜀𝑦(𝜀)𝑑𝜀

𝑥

0
+ ∫ 𝑥𝑦(𝜀)𝑑𝜀

1

𝑥
 and by using

the relation

𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝜀)𝑑𝜀
𝐵(𝑥)

𝐴(𝑥)
= ∫

𝜕𝐺(𝑥,𝜀)

𝜕𝑥

𝐵(𝑥)

𝐴(𝑥)
𝑑𝜀 + 𝐺[𝑥, 𝐵(𝑥)]

𝑑𝐵(𝑥)

𝑑𝑥
−

𝐺[𝑥, 𝐴(𝑥)]
𝑑𝐴(𝑥)

𝑑𝑥
 we obtain

 𝑦′(𝑥) = 1 + ∫
𝜕[𝜀.𝑦(𝜀)]

𝜕𝑥

𝑥

0
𝑑𝜀 + 𝑥. 𝑦(𝑥)

𝑑𝑥

𝑑𝑥
− 0. 𝑦(0)

𝑑0

𝑑𝑥
+

∫
𝜕[𝑥.𝑦(𝜀)]

𝜕𝑥

1

𝑥
𝑑𝜀 + 𝑥. 𝑦(1)

𝑑1

𝑑𝑥
− 𝑥. 𝑦(𝑥)

𝑑𝑥

𝑑𝑥
= 1 + 𝑥. 𝑦(𝑥) +

∫ 𝑦(𝜀)
1

𝑥
𝑑𝜀 − 𝑥. 𝑦(𝑥)

𝑦′(𝑥) = 1 + ∫ 𝑦(𝜀)
0

𝑥
𝑑𝜀 + ∫ 𝑦(𝜀)

1

0
𝑑𝜀 = 1 − ∫ 𝑦(𝜀)

𝑥

0
𝑑𝜀 +

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑦′′(𝑥) = −𝑦(𝑥)𝑦′′(𝑥) + 𝑦(𝑥) = 0 which

solution is of the form 𝑦(𝑥) = 𝐴𝑠𝑖𝑛(𝑥) + 𝐵𝑐𝑜𝑠(𝑥). By

evaluating 𝑦(𝑥) and 𝑦′(𝑥) at 0 and 1 we get end conditions

𝑦(0) = 𝐹(0) = 0 𝑎𝑛𝑑 𝑦′(1) = 𝐹′(1) = 1, we obtain

𝑦(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑐𝑜𝑠 (1)
.

b) Method of Collocation:

Assuming the approximation 𝑦(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2, we

have 
1
= 1, 

2
= 𝑥 𝑎𝑛𝑑 

2
= 𝑥2; for 𝑘(𝑥) ≡

∫ 𝐾(𝑥, 𝜀)
𝑘
(𝜀)𝑑𝜀

𝑏

𝑎
 we obtain

1 = ∫ 𝜀𝑑𝜀
𝑥

0
+ ∫ 𝑥𝑑𝜀

1

𝑥
= 𝑥 −

𝑥2

2
; 2=∫ 𝜀2𝑑𝜀

𝑥

0
+ ∫ 𝑥𝜀𝑑𝜀

1

𝑥
=

𝑥

2
−

𝑥3

6
; 3 = ∫ 𝜀3𝑑𝜀

𝑥

0
+ ∫ 𝑥𝜀2𝑑𝜀

1

𝑥
=
𝑥

3
−

𝑥4

12

𝑠1(𝑥) = 
1
(𝑥) − 1(𝑥)=1−𝑥 +

𝑥2

2
; 𝑠2(𝑥) = 

2
(𝑥) −

2(𝑥)=
𝑥

2
+

𝑥3

6
; 𝑠3(𝑥) = 

3
(𝑥) − 3(𝑥)=−

𝑥

3
+ 𝑥2 +

𝑥4

12

Hence, the approximate equality ∑ 𝑐𝑘𝑠𝑘(𝑥)
𝑛
𝑘=1  𝐹(𝑥)

produces 𝑐1 (1 − 𝑥 +
𝑥2

2
) + 𝑐2 (

𝑥

2
+

𝑥3

6
) + 𝑐3 (−

𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑥 which evaluation at collocation points 0, 0.5 and 1

leads to the three equations in three unknown c’s:
𝑐1 = 0

5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1

}

𝑐1 = 0
𝑐2 = 1.98795
𝑐3 = −0.43373

} 𝑜𝑟 𝑦(𝑥)

1.98795𝑥 − 0.43373𝑥2

c) Method of Weighted Coefficient or Galerkin:

Assuming 𝑦(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 and by choosing the

weighting functions to be 
1
= 

1
= 1,

2
= 

2
= 𝑥 and


3
= 

3
= 𝑥2, the Galerkin system of equations

∑ 𝑐𝑘 ∫ 
𝑖
𝑠𝑘𝑑𝑥 = ∫ 

𝑖
𝐹𝑑𝑥 (𝑖 = 1, 2, 3; 𝑘 = 1, 2, 3)

𝑏

𝑎

𝑏

𝑎
𝑛
𝑘=1

becomes:

𝑐1∫ (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0

+ 𝑐2∫ (
𝑥

2
+
𝑥3

6
)𝑑𝑥

1

0

+𝑐3∫ (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑑𝑥

1

0

= ∫ 𝑥𝑑𝑥
1

0

𝑐1 ∫ 𝑥 (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0
+ 𝑐2 ∫ 𝑥 (

𝑥

2
+

𝑥3

6
)𝑑𝑥

1

0

+𝑐3 ∫ 𝑥 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
)𝑑𝑥

1

0
= ∫ 𝑥2𝑑𝑥

1

0

𝑐1 ∫ 𝑥2 (1 − 𝑥 +
𝑥2

2
)𝑑𝑥

1

0
+ 𝑐2 ∫ 𝑥2 (

𝑥

2
+

𝑥3

6
)𝑑𝑥

1

0

+𝑐3 ∫ 𝑥2 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑑𝑥

1

0
= ∫ 𝑥3𝑑𝑥

1

0 }



𝑐1 [𝑥 −
𝑥2

2
+

𝑥3

6
]
0

1

+ 𝑐2 [
𝑥2

4
+

𝑥4

24
]
0

1

+ 𝑐3 [−
𝑥2

6
+

𝑥3

3
+

𝑥5

60
]
0

1

= [
𝑥2

2
]
0

1

𝑐1 [
𝑥2

2
−

𝑥3

3
+

𝑥4

8
]
0

1

+ 𝑐2 [
𝑥3

6
+

𝑥5

30
]
0

1

+ 𝑐3 [−
𝑥3

9
+

𝑥4

4
+

𝑥6

72
]
0

1

= [
𝑥3

3
]
0

1

𝑐1 [
𝑥3

3
−

𝑥4

4
+

𝑥5

10
]
0

1

+ 𝑐2 [
𝑥4

8
+

𝑥6

36
]
0

1

+ 𝑐3 [−
𝑥4

12
+

𝑥5

5
+

𝑥7

84
]
0

1

= [
𝑥4

4
]
0

1

}

(1 −
1

2
+

1

6
) 𝑐1 + (

1

4
+

1

24
) 𝑐2 + (−

1

6
+

1

3
+

1

60
)𝑐3 =

1

2

(
1

2
−

1

3
+

1

8
)𝑐1 + (

1

6
+

1

30
)𝑐2 + (−

1

9
+

1

4
+

1

72
)𝑐3 =

1

3

(
1

3
−

1

4
+

1

10
)𝑐1 + (

1

8
+

1

36
)𝑐2 + (−

1

12
+

1

5
+

1

84
)𝑐3 =

1

4}



2

3
𝑐1 +

7

24
𝑐2 +

11

60
𝑐3 =

1

2
7

24
𝑐1 +

1

5
𝑐2 +

11

72
𝑐3 =

1

3
11

60
𝑐1 +

11

72
𝑐2 +

9

70
𝑐3 =

1

4}



𝑐1 = −0.0137
𝑐2 = +2.0196
𝑐3 = −0.4358

} 𝑦(𝑥)− 0.0137 +

2.0196𝑥 − 0.4358𝑥2

d) Method of Least Square:

We evaluate 𝑐1 (1 − 𝑥 +
𝑥2

2
) + 𝑐2 (

𝑥

2
+

𝑥3

6
) +

𝑐3 (−
𝑥

3
+ 𝑥2 +

𝑥4

12
) 𝑥 at 0, 0.25, 0.5, 0.75 and 1 (refer to

the above point b) for the evaluation at 0, 0.5 and 1) and

calculate the weighting matrix S* by:
𝑐1 = 0

𝑐1 (1 −
1

4
+

1

32
) + 𝑐2 (

1

8
+

1

384
) + 𝑐3 (−

1

12
+

1

16
+

1

3072
) =

1

4
5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2

𝑐1 (1 −
3

4
+

9

32
) + 𝑐2 (

3

8
+

27

384
) + 𝑐3 (−

1

4
+

9

16
+

81

3072
) =

3

4
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1 }



𝑐1 = 0
25

32
𝑐1 +

49

384
𝑐2 −

63

3072
𝑐3 =

1

4
5

8
𝑐1 +

13

48
𝑐2 +

17

192
𝑐3 =

1

2
17

32
𝑐1 +

171

384
𝑐2 +

1041

3072
𝑐3 =

3

4
1

2
𝑐1 +

2

3
𝑐2 +

3

4
𝑐3 = 1 }



S*=DS =

[

1

12
0 0 0 0

0
1

3
0 0 0

0 0
1

6
0 0

0 0 0
1

3
0

0 0 0 0
1

12]

[

1 0 0
25

32

49

384
−

63

3072
5

8

13

48

17

192
17

32

171

384

1041

3072
1

2

2

3

3

4]

=

[

1

12
 0 0

25

96

49

1152
−

21

3072
5

48

13

288

17

1152
17

96

57

384

347

3072
1

24

1

18

1

16]

where D is the matrix of weighting coefficients according

to Simpson’s rule at 5 odd points: 𝐷 =
ℎ

3
{1,4,2,4,1} =

(1−0/(5−1)

3
{1,4,2,4,1} =

1

12
{1,4,2,4,1} = {

1

12
,
1

3
,
1

6
,
1

3
,
1

12
}.

The required three linear equations of the system are found

by calculating S*
T
SA, where SA is the augmented matrix of

the above system. With the use of MS Excel, we obtain:

TABLE 1 - LEAST SQUARE APPROXIMATION

Hence the approximation

𝑦(𝑥)− 0.0123 + 2.0147𝑥 − 0.4333𝑥2.

e) Method of the Approximation of the Kernel:

Now, if we assume the kernel is such that 𝐾(𝑥, 𝜀)𝑐1 +

𝑐2𝑥 + 𝑐3𝑥
2. The evaluation of ∫ 𝐾(𝑥, 𝜀)𝑑𝑥

1

0
 gives ∫ (𝑐1 +

1

0

𝑐2𝑥 + 𝑐3𝑥
2)𝑑𝑥 𝑐1 +

𝑐2

2
+

𝑐3

3
 and ∫ 𝐾(𝑥, 𝜀)𝑑𝜀

1

0
= ∫ 𝜀𝑑𝜀

𝑥

0
+

0.46680 0.16808 0.09514 0.29167 c1= -0.0123

S*TSA = 0.16808 0.12079 0.09509 0.20009 c2= 2.0147

0.09514 0.09509 0.08660 0.15289 c3= -0.4333

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

∫ 𝑥𝑑𝜀
1

𝑥
=𝑥 −

𝑥2

2
. (a) The integral of the kernel must equal its

approximation over (0,1), hence 𝑐1 +
𝑐2

2
+

𝑐3

3
= 𝑥 −

𝑥2

2
.

Additionally, the kernel approximation is exact at ends

points 0 and 1; (b) 𝐾(0, 𝜀) = 𝑥|𝑥=0 = 0 = 𝑐1 and (c)

𝐾(1, 𝜀) = 𝜀|𝑥=1 = 𝜀 = 𝑐1 + 𝑐2 + 𝑐3. Conditions (a), (b)

and (c) lead to the system

𝑐1 +
𝑐2

2
+

𝑐3

3
= 𝜀 −

𝜀2

2

𝑐1 = 0
𝑐1 + 𝑐2 + 𝑐3 = 𝜀

}

𝑐1 = 0
3𝑐2 + 2𝑐3 = 3𝜀(2 − 𝜀)

𝑐3 = 𝜀 − 𝑐2

}

𝑐1 = 0
𝑐2 = 𝜀(4 − 3𝜀)

𝑐3 = 3𝜀(𝜀 − 1)
} 𝐾(𝑥, , 𝜀) 𝜀(4 − 3𝜀)𝑥+3𝜀(𝜀 − 1)𝑥2

Using the method of separable kernel, the following steps

lead to the approximation:

𝑦(𝑥) = 𝑥 + ∫ 𝐾(𝑥, , 𝜀)𝑦(𝜀)𝑑𝜀
1

0
 becomes 𝑦(𝑥) = 𝑥 +

𝑥 ∫ [𝜀(4 − 3𝜀)]𝑦(𝜀)𝑑𝜀
1

0
+ 𝑥2 ∫ [3𝜀(𝜀 − 1)]𝑦(𝜀)𝑑𝜀

1

0

Let 𝑎1 = ∫ [𝜀(4 − 3𝜀)]𝑦(𝜀)𝑑𝜀
1

0
 and 𝑎2 = ∫ [3𝜀(𝜀 −

1

0

1)]𝑦(𝜀)𝑑𝜀; we have 𝑦(𝑥) = 𝑥 + 𝑎1𝑥 + 𝑎2𝑥
2 (I)

Multiplying (I) successively by 𝑔1(𝑥) = 𝑥(4 − 3𝑥) and

𝑔2(𝑥) = 3𝑥(𝑥 − 1) and integrating over (0,1), we obtain

the system:
∫ 𝑥(4 − 3𝑥)𝑦(𝑥)𝑑𝑥
1

0
= 𝑎1 = ∫ 𝑥2(4 − 3𝑥)𝑑𝑥

1

0
+ 𝑎1 ∫ 𝑥2(4 − 3𝑥)𝑑𝑥

1

0
+ 𝑎2 ∫ 𝑥3(4 − 3𝑥)𝑑𝑥

1

0

∫ 3𝑥(𝑥 − 1)𝑦(𝑥)𝑑𝑥
1

0
= 𝑎2 = ∫ 3𝑥2(𝑥 − 1)𝑑𝑥

1

0
+ 𝑎1 ∫ 3𝑥2(𝑥 − 1)𝑑𝑥

1

0
+ 𝑎2 ∫ 3𝑥3(𝑥 − 1)𝑑𝑥

1

0

}

𝑎1 =
7

12
+

7

12
𝑎1 +

2

5
𝑎2

𝑎2 = −
1

4
−

1

4
𝑎1 −

3

20
𝑎2
}

5

12
𝑎1 −

2

5
𝑎2 =

7

12
1

4
𝑎1 +

23

20
𝑎2 = −

1

4

}

𝑎1 =
137

139
0.9856

𝑎2 = −
60

139
 − 0.4317

}

𝑦(𝑥)𝑥 + 0.9856𝑥 − 0.4317𝑥21.9856𝑥 − 0.4317𝑥2.

f) Comparison table and graph:

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑐𝑜𝑠 (1)

𝑦𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 1.98795𝑥 − 0.43373𝑥
2

𝑦𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛(𝑥) − 0.0137 + 2.0196𝑥 − 0.4358𝑥
2

𝑦𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒(𝑥)− 0.0123 + 2.0147𝑥 − 0.4333𝑥
2

𝑦𝑘𝑒𝑟𝑛𝑒𝑙 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑥)1.9856𝑥 − 0.4317𝑥
2

IV. IMPLEMENTATION

This section is based on ([3], p.68-112), inspired by ([1],

p.337-457).

Mesh Generator:

We have developed our Delaunay Triangulations (interior

of the circumscribed sphere does not contain any vertex of

the triangulations) and non-Delaunay options with insertion

of triangle centers.

Alternative Mesh Generator

There are many types of triangle centers. We use them to

generate the mesh; this is a non-Bowyer-Watson mesh

generation. However, it can be shown that a Delaunay mesh

is easily reached from a square diagonally split, then by

simple successive insertion of the circumcenter. This is our

fundamental results for building a mesh.

Modified Bowyer-Watson Algorithm:

The algorithm inserts successive points inside a triangle and

split is in finer pieces, refining the mesh to a better

representation of the domain. The more points are inserted,

the more represented is the domain and the more accurate is

the solution. This is similar to approaching a cercle with a

polygon to which the number of sides is gradually increased.

Modified Delaunay Algorithm

To generate a mesh, first we construct a background mesh

that will be attached to the domain at its interception points

with that domain. The elements that overlap the boundary

will be replaced by their parts that are interior to the domain

when the parts that are exterior will be deleted from the

mesh. And, if the part that is interior is not a triangle, it will

be triangulated. The mesh can be initially variable in each

direction (for instance, for 2D mesh, Ni intervals in x

direction and Nj intervals in y direction).

Illustrative Example of Mesh of Complex 2D Polygon Shape

Fig. 1 - Meshing a U Shape Reservoir before Refinement

Quadratures, Assembling and Storage

Assembling

This refers to the phase in the finite element program where

the entries of the stiffness matrix and the right-hand side

vector are computed.

Storage and Sparse Matrices

Let 𝒜 ∈ ℝ𝑁,𝑁′. Denote by nnz the number of non-zero

entries in 𝒜. The matrix 𝒜 is said to be sparse if 𝑛𝑛𝑧 ≪
𝑁 × 𝑁′. CSR or CSC format or Ellpack-Itpack format

methods are used to condition the matrix.

Linear Algebra

We used conditioning and reordering techniques to save

memory and accelerate the convergence to the solution of

the system. We used LU factorization, LDL
T
 factorization

and Choleski factorization.

Posteriori Error Estimates and Adaptive Meshes

The goal is to assess the error between the exact solution

and its finite element approximation in term of known

quantities only, i.e., the size of the mesh cells, the problem

data and the approximate solution. The a posteriori estimate

assesses the quality of the approximation solution and

provides information to construct a new mesh, a process that

can be repeated several times, thereby generating a sequence

of so-called adaptive meshes.

Adaptive Mesh Generation

We use the local errors indicators to generate a new mesh:

|ℇ| ≤ (∑ η𝐾(𝑢𝐾 , 𝑓)
2

𝐾∈𝔗ℎ
)
1

2

The quantities η𝐾(𝑢𝐾 , 𝑓) are error indicators and can be

readily evaluated when using residual–based or hierarchical

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

error estimates. For duality techniques, η𝐾(𝑢𝐾 , 𝑓) requires

solving a dual problem.

Implementation of Iterative Techniques:

We used “Direct Methods” (Gaussian Pivot and Gauss-

Jordan Pivot [2], p.1; Crout Method [2], p.339) and

“Indirect Methods” (Jacobi, Gauss-Seidel [5]; Krylov

Spaces: CG and Bi-CG Stabilized [1], p.401-413 and [6],

p.11-64).

Example of Time-Marching Algorithms (Case of PDEs):

The Implicit Euler is given by the formulation
1

∆𝑡
(𝑢ℎ

𝑛+1 − 𝑢ℎ
𝑛, 𝑣ℎ)𝐿 + (𝐴𝑢ℎ

𝑛+1, 𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ)𝐿 , ∀ 𝑣ℎ

∈ 𝑉ℎ
Other time-marching algorithms programmed are Explicit

Euler, Leap-Frog and Backward-Differential. More details

could be found in [1], p.279-334.

The Finite Element Calculator (FEC©)

A software was specifically developed to illustrate the

application of the method of finite element ([3], p.68-112).

It is named the “Finite Element Calculator©” which is self-

explanatory. Our objective is to build a library of solutions

of real life problems such as heat transfer, reservoir

simulation, earthquake, economical predictions, quantum

mechanics, etc.

Example 1: Simulated Atm. Pressure along a cockpit:

Using a 15x15 on a [0,1]x[0,1] background mesh, we obtain

the following:

Fig. 2 – Profile of Atm. Depression along the Cockpit

Example 2: Water Saturation Profile in U shape Reservoir:

Fig. 3 – U Shape Reservoir Layer – Water Saturation

Profile, perspective view

V. CONCLUSION

Complex natural phenomena and engineering applications

can often be represented by Integral Equations (IE).

Because it could be challenging to solve some of these

equations using conventional and/or analytical methods, we

use numerical techniques by mean of computers. The most

powerful method of the latter is the so called the Finite

Element Method (FEM). The FEM refers not only to the

partitioning of a domain in smaller pieces called cells or

elements, constituting the mesh, but also the use of

mathematical polynomials as shape functions, the

discretization of the equations, leading to a system of linear

equations in matrix format, more suitable for computer

iterative solving techniques.

This paper presented our implementation of the FEM using

enhanced adaptive meshes to solve and simulate a broad

range of real life complex problems that can be formulated

in the forms of Integral Equations.

TABLE 2 - SYMBOLS

Symbol Description

𝐿𝑝() Functions whose p-th power is Lebesgue integrable

‖𝑓‖𝑋 = Norm of 𝑓 in the normed space X

𝑊𝑠,𝑝() Function whose derivatives up to order s are in 𝐿𝑝()

∂𝛼 𝑢 ∂𝑥1
𝛼1… ∂𝑥𝑑

𝛼𝑑𝑢 is a multi-index

ℒ𝑚
𝑘 (𝑠𝑙) Lagrange Polynomial

𝑔𝑖 geometric reference nodes

̂
1
 geometric reference shape functions

𝛿𝑚𝑙 Kronecker symbol

ACKNOWLEDGEMENT

This paper is submitted as a continuation of my works

started during my PhD in Applied Mathematics related to

finite element implementation. Therefore, I would like to

take this opportunity to express my gratitude to those that

have been very supportive and of great help, many of my

great colleagues, friends, former teachers, parents and close

family, my mother Clementine Avome Ndong and my

uncle, Paul Ovono Ndong for their moral encouragements

throughout my life and studies.

REFERENCES

[1] Alexandre.Ern, Jean-Luc Guermond, “Theory and Practice of Finite

Element”, Springer, Vol.159, 2010
[2] Francis B. Hildebrand, “Methods of Applied Mathematics”, Prentice

Hall, The Dover edition, 1992
[3] Dieudonne N. Ovono, PhD Thesis “Implementation of Advanced

Finite Element Solution to Complex Problems: Partial Differential,

Mixed Problem and Integral Equations”, B.I.U, 2014, p.13-17, p.18-

25, p.31-42, p.68-112

[4] C.Antonini, J-F Quint, P.Borgnat, J.Berard, E.Lebeau, E.Souche,

A.Chatean, O.Teytaud, “Les Mathématiques pour l’Agrégation
(Translation: Mathematics for Aggregation)”, Mai 2002. p.154-161,

p.473-499.
[5] R.L. Burden & J.D. Faires, “Numerical Analysis - 9th Edition”,

Brooks/Cole, 2011, Cengage Learning

[6] C.T. Kelly, Iterative Methods for Linear and Nonlinear Equations,
North Carolina, States University.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

