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Abstract− In this paper, we analyze a linear time invariant 

(LTI) descriptor system of large dimension. Since these systems 

are difficult to simulate, compute and store, we attempt to 

reduce this large system using Low Rank Cholesky Factorized 

Alternating Directions Implicit (LRCF-ADI) iteration followed 

by Square Root Balanced Truncation. LRCF-ADI solves the 

dual Lyapunov equations of the large system and gives low-

rank Cholesky factors of the gramians as the solution. Using 

these cholesky factors, we compute the Hankel singular values 

via singular value decomposition. Later, implementing square 

root balanced truncation, the reduced system is obtained. The 

bode plots of original and lower order systems are used to show 

that the magnitude and phase responses are same for both the 

systems.   

Keywords− LTI descriptor system, suboptimal shift parameter, 

Lyapunov equation, low rank Cholesky factor alternating 

direction implicit (LRCF-ADI), square root balanced 

truncation. 

 

I.  INTRODUCTION 

1With the advancement of technology, our lives are 

getting simpler but systems around us are getting compact 

and complex. Often, these complex systems, such as multi 

body dynamics with constrains, electrical circuit simulation, 

fluid flow dynamics, VLSI chip design are modeled as 

Descriptor systems or generalized state space systems of 

very large dimension. Even though, the computational speed 

and performance of the contemporary computers are 

enhanced, simulation and optimization of such large-scale 

systems still remain difficult due to storage limitations and 

expensive computations [1]. In order to eliminate this 

problem, reduction of such large systems is mandatory. 

Large systems are generally comprised of sparse matrices 

[2]. The system was reduced after implementing several 

numerical methods namely Arnoldi iteration for calculating 

the Ritz values, ADI min-max problem to get the shift 

parameters heuristically, then low-rank Cholesky factor 

alternating directions implicit iteration for low rank 
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approximations of the cholesky factors of the controllability 

and observability Gramians of the system. Finally, by using 

the Hankel Singular Values, calculated from singular value 

decomposition of the product of the approximated cholesky 

factors, were able to discard the states of the system that are 

both difficult to observe and control. Only the Hankel 

Singular Values of large magnitude determine the dimension 

of the reduced system, since these values describe the 

dominant dynamics of the large system. Thus using 

projection matrices, the original system matrices are 

transformed into reduced dimension, same as the quantity of 

the Hankel Singular Values retained. However, the major 

difficulty while conducting this research was in calculating 

the optimal shift parameters.  

 

II.  MATHEMATICAL MODEL 

Our system of concern is a continuous Linear Time 

Invariant (LTI) system of Descriptor form and can be 

represented as follows: 

 𝐸�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). 

 

(1) 

Where, 𝐸 ∈ ℝ𝑛×𝑛, 𝐴 ∈ ℂ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑝×𝑛, 𝐷 ∈ ∅.  

Here, 𝐸 is sparse, non-singular (i.e. invertible) and is a 

symmetric positive definite matrix, like most other large 

systems, indicating that all the variables are state variables 

and cannot be neglected [3]. If E = I, then the LTI 

continuous system is a standard state space system, else, it is 

a descriptor or generalized state space system. 𝐴 is a 

complex, sparse Hurwitz matrix (i.e. all the real parts of the 

eigenvalues of 𝐴 are negative). Both 𝐴 and 𝐸 are tridiagonal 

for this system. 𝐵 is the m-dimensional input vector, 𝐶 is the 

p-dimensional output vector, As this is not a closed loop 

system, so 𝐷 is null, 𝑥(𝑡) is the n-dimensional 

descriptor/state vector of the system and 𝑢(𝑡) and 𝑦(𝑡) are 

the system input and  output respectively. This is a single-

input-single-output (SISO) system so, 𝑚 = 𝑝 =1. As, 

𝐸, 𝐴, 𝐵, 𝐶 are constant matrices and independent of time, 

hence this system is linear and time invariant. As rank 

[𝛼𝐸 − 𝛽𝐴, 𝐵] =rank [𝛼𝐸𝑇 − 𝛽𝐴𝑇 , 𝐶𝑇] = 𝑛, for ∀(𝛼, 𝛽) ∈
(ℂ × ℂ)\{0,0} for this system, hence it is completely 

controllable and observable [1] and is an important criterion 

for executing balanced truncation [4]. For generalized state 

space models like this, the eigenvalues of the matrix pair (E, 

A), i.e. pencil (𝜆𝐸 − 𝐴), determines the stability of the 
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system. This pencil must be regular, i.e. det(𝜆𝐸 − 𝐴) ≠ 0 

and all the eigenvalues must lie on the left half plane to 

ensure that the LRCF-ADI iteration converges.  

After undergoing the model order reduction process, 

this descriptor system will be approximated by a reduced-

order system as: 

 𝐸𝑟�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡), 

𝑦(𝑡) = 𝐶𝑟𝑥(𝑡).  

 

(2) 

Here, 𝐸𝑟 ∈ ℝ𝑙×𝑙 ,   𝐴𝑟 ∈ ℂ𝑙×𝑙 , 𝐵𝑟 ∈ ℝ𝑙×𝑚, 𝐶𝑟 ∈ ℝ𝑝×𝑙  and 

𝑙 ≪ 𝑛. These are the system matrices of the reduced system 

where 𝑙 is the dimension of the reduced system.  

 

III.  PRELIMINARIES  

A.    Block Arnoldi Iteration 

As mentioned in [5], Arnoldi method creates an 

orthogonal basis of a Krylov subspace represented by the 

orthonormal matrix, 𝑉 =  (𝑣1, 𝑣2, 𝑣3 … … … … , 𝑣𝑘) ∈ ℂ𝑛×𝑘 

such that 𝑉∗𝑉 = 𝐼, where 𝑉∗ is the conjugate transpose of 𝑉.  

Here 𝑠𝑝𝑎𝑛(𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑘) ≅ 𝛫𝜅(𝐹, 𝑏) means 

𝑠𝑝𝑎𝑛(𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑘) ≅ 𝑠𝑝𝑎𝑛(𝑏, 𝐹𝑏, 𝐹2𝑏, … , 𝐹𝑘−1𝑏) 

Where, 𝐹 = 𝐸−1𝐴, and 𝑏 is a random initial vector, 

required to start the Arnoldi iteration. The generalized 

eigenvalues can be approximated from the eigenvalues of 

the Hessenberg matrix 𝐻 (i.e. Ritz values) provided that the 

same eigenvector is present in the subspace, where 𝐻 =
𝑉∗𝐹𝑉 and 𝐻 ∈ ℂ𝑘×𝑘 and is generated as a by-product of the 

Arnoldi iteration. The algorithm of the Arnoldi Iteration up 

to k-th step is depicted in [6]. Solving the equations (3) and 

(4) at each step, is the main job till the k-th step is reached.  

 𝐹𝑉 = 𝑉𝐻 + 𝑓𝑒𝑘 , 
𝐻 = 𝑉𝑇𝐹𝑉,    𝑉𝑇𝑉 = 𝐼𝑘 ,     𝑉𝑇𝑓 = 0. 

(3) 

(4) 

       𝐻 is the Hessenberg matrix and 𝑉 is the orthonormal 

vector matrix and 𝑓 is the residual at each iteration and 𝑒𝑘 is 

the last column of   𝐼𝑘. Arnoldi algorithm generates a 

factorization of the form 𝐹𝑉𝑘 = 𝑉𝑘+1𝐻𝑘 [7]. Initially, 𝑉1 is 

set as the unit vector of the initial vector,  𝑏. Then it 

computes 𝐻1 = 𝑉1
∗𝐹𝑉1 followed by the residual 𝑓1 = 𝐹𝑉1 −

𝑉1𝐻1 which in turn is orthogonal to 𝑉1. Thus 𝑉2 =

[𝑉1    
𝑓1

||𝑓1||
]. Then again 𝐻2 = 𝑉2

∗𝐹𝑉2 and 𝑅2 = 𝐹𝑉2 − 𝑉2𝐻2, 

resulting in 𝑅2=[0  𝑓2] = 𝑓2𝑒2. Sequentially, 𝑉3,  𝐻3, 𝑅3 are 

calculated and so are the respective matrices until the last 

Arnoldi iteration step is reached to give 𝑉𝑘  and 𝐻𝑘 .  

       We will execute the Arnoldi iteration one more time, 

using 𝐹−1 instead of 𝐹, this process is referred to as the 

inverse Arnoldi iteration. From each of the Hessenberg 

matrices, which are always upper triangular matrices, 

obtained from the iterations, would help us in better 

approximation of the large as well as the small generalized 

eigenvalues of the system. In other words, smaller and the 

largest eigenvalues of the pencil are approximated from the 

eigenvalues of each of the Hessenberg matrices. The process 

of how the eigenvalues of the system is approximated is 

mentioned elaborately in [5]. At the end, we get the Ritz 

values that are pretty good approximation of the significant 

eigenvalues (i.e. smallest and largest ones). 

B.    Low-Rank Cholesky Factor ADI 

The system is a model of continuous generalized 

Lyapunov equation that helps to determine the asymptotic 

stability of the system [8]. The generalized Lyapunov 

equation is shown in (4). 

 𝐴𝑋𝐸𝑇 + 𝐸𝑋𝐴𝑇 = −𝐺𝐺𝑇 . (4) 

We consider the solutions of the dual Lyapunov 

equations in (5) 

 𝐴𝑃𝐸𝑇 + 𝐸𝑃𝐴𝑇 = −𝐵𝐵𝑇 , 
𝐴𝑇𝑄𝐸 + 𝐸𝑇𝑄𝐴 = −𝐶𝑇𝐶. 

 

(5) 

The solutions of the equations in (5) are matrices 𝑃, the 

controllability Gramian, and 𝑄, the observability Gramian 

[9]. There are several methods for solving Lyapunov 

equations, namely Bartel-Stewart method, alternating 

direction implicit (ADI) method, Smith method, Krylov 

subspace method [10].   But, LRCF-ADI gives the low-rank 

approximations �̂�, �̂� instead of the full rank solutions from 

the methods mentioned earlier, especially when the right 

hand side of the equation has low rank. This is a major 

improvement suggested in [11] and is a great advantage for 

storage space and computational speed.  

 

LRCF-ADI gives low rank approximated Cholesky 

factors �̂�𝐶   and  �̂�𝑂 of the controllability and observability 

gramians respectively, such that 

 �̂� = �̂�𝐶�̂�𝐶
𝑇 , �̂� = �̂�𝑂�̂�𝑂

𝑇 . (7) 

Initial task is to compute optimal shift parameters, 

 {𝑝1, 𝑝2, 𝑝3,, … . . 𝑝𝑗}. LRCF-ADI only converges if the shift 

parameters are negative, retrieved if the eigenvalues of the 

pencil (𝜆𝐸 − 𝐴) are negative. These shift parameters are the 

solution of rational discrete min-max problem as depicted in 

[2].  

 
𝑚𝑖𝑛

𝑝1, 𝑝2, 𝑝3,𝑝4, … . . 𝑝𝑗         

𝑚𝑎𝑥
𝑥𝜖ℝ

∏
(𝑝𝑗 − 𝑥)

(𝑝𝑗 + 𝑥)

𝑗

𝑛=1

 

 

(8) 

In (8), 𝑥 represents the set of ritz values obtained from 

the Arnoldi iteration. Though, they should be a set of real 

values, in this case these are complex. The process (8) 

decides whether the parameters selected are optimal, 

suboptimal or near-optimal. If the eigenvalues of the pencil 

(𝜆𝐸 − 𝐴) are strictly real and is bounded, then it is possible 

to retrieve optimal parameters. As the Ritz values are 

complex, so the parameters are sub-optimal.  

 

Once the parameter selection is complete, then the ADI 

iteration is carried out, that will give �̂�𝐶   and  �̂�𝑂. ADI solves 

the following iterations using (5), (6) 

(𝐴 + 𝑝𝑗𝐸)𝑋
𝑗 − 

1
2

= −𝐺𝐺𝑇 − 𝑋𝑗−1(𝐴𝑇 − 𝑝𝑗𝐸), 

(𝐴 + 𝑝𝑗𝐸)𝑋𝑗 = −𝐺𝐺𝑇 − 𝑋
𝑗 − 

1
2

𝑇 (𝐴𝑇 − 𝑝𝑗𝐸). 

 

(9) 

These two steps are required to ensure the symmetry of 

the solution, 𝑋𝑗, where j is the number of iteration steps. 

Combining these two steps in (9), by substituting the first 
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iteration of 𝑋
𝑗 − 

1

2

 in the second one for 𝑋𝑗, we get one-step 

iteration  

𝑋𝑗 = 

 
−2𝑝𝑗(𝐴 + 𝑝𝑗𝐸)

−1
𝐺𝐺𝑇  (𝐴 + 𝑝𝑗𝐸)

−𝑇
+(𝐴 + 𝑝𝑗𝐸)

−1
 

    (𝐴 − 𝑝𝑗𝐸)𝑋𝑗−1  (𝐴 − 𝑝𝑗𝐸)
𝑇

(𝐴 + 𝑝𝑗𝐸)
−𝑇

. 

(10) 

         Now, writing 𝑋𝑗 as the product of Cholesky factors, it 

turns out to be 𝑋𝑗 = 𝑍𝑗𝑍𝑗
𝑇 , now relating this factorization to 

the one-step iteration above  

𝑍𝑗=[√−2𝑝1 ((𝐴 + 𝑝1𝐸)−1𝐺),   (𝐴 + 𝑝𝑗𝐸)
−1

(𝐴 − 𝑝𝑗𝐸)𝑍𝑗−1],   

Where the result of very first iteration 

 
𝑍1

= √−2𝑝1((𝐴 + 𝑝1𝐸)−1𝐺). 

At every iteration step, a new column is added to the 

Cholesky factors in the following process i.e.  

𝑍𝐽 =  [𝑧𝐽,   𝑃𝐽−1𝑧𝐽,   𝑃𝐽−2(𝑃𝐽−1𝑧𝐽), … …  ,   𝑃1(𝑃2 …  𝑃𝐽−1𝑧𝐽)]   , 

Where  𝑃𝑖 =
√−2𝑅𝑒(𝑝𝑖)

√−2𝑅𝑒(𝑝𝑖+1)
 (𝐴 + 𝑝𝑖𝐸)−1 (𝐴 − 𝑝𝑖−1𝐸) .   

𝑃𝑖  is the iteration step operator and the product  𝑍𝑗𝑍𝑗
𝑇 is 

calculated to get 𝑋𝑗, which after substitution in the equation 

(4), the residual norm is checked after each iteration step.  

||𝐴𝑋𝑗𝐸𝑇 + 𝐸𝑋𝑗𝐴𝑇 + 𝐺𝐺𝑇|| < 𝜀. 

Until, a desired residual tolerance, 𝜀, is overcome, the steps 

3 to 5 of the algorithm in [12] are repeated. 

 �̂� = �̂�𝐶�̂�𝐶
𝑇 , 

�̂� = �̂�𝑂�̂�𝑂
𝑇 . 

(11) 

(12) 

LRCF-ADI solves (5) and (6) to give  �̂�, �̂� in (11) and 

(12). Which are the low-rank approximation to the 

Controllability and Observability Gramians.  Column 

compression computes a compressed form of the Cholesky 

factor using rank revealing QR decomposition [12]. Column 

compression process is required in case of failure to 

compute the optimal shift parameters resulting in slow 

convergence with many iteration steps. This will gradually 

increase the dimension of the subspace spanned by the 

columns of the low-rank Cholesky factors. As a new column 

is added in every iteration step to the Cholesky factor 𝑍𝑗. 

These new columns occupy the memory and increases the 

computational cost of the iteration. It is therefore required to 

keep the factors as small in rank as possible.  

C.   Balanced Truncation 

Balanced Truncation is an important projection method 

which delivers high quality reduced models by choosing the 

projection subspaces based on the Controllability and 

Observability of a control system [13], by truncating low 

energy states of the system corresponding to the small 

Hankel singular values. [14] 

Among couple of methods, Square Root Balanced 

Truncation (SRBT) is used here for truncating the system. 

SRBT algorithms often provide more accurate reduced-

order models in the presence of rounding errors [15]. This 

method needs the Hankel singular values, and low-rank 

Cholesky factors in (11) and (12), obtained from LRCF-ADI 

iteration. These are considered as a measure of energy for 

each state in the system. They are the basis of balanced 

model reduction, in which low energy states are identified 

from the high energy states and are truncated.  

Hankel singular values are calculated as the square 

roots of the eigenvalues for the product of the low-rank 

controllability and the observability Gramians. These 

Hankel singular values 𝜎𝑖,  are the diagonal entries of the 

Hankel matrix Σ.     

        𝜎𝑖(𝛴) =  √𝜆𝑖(�̂��̂�)         , 

The Hankel singular values calculated from singular 

value decomposition of the product of the low-rank 

Cholesky factors and the matrix 𝐸 shown in (13), truncates 

the states of the large system that are both difficult to 

observe and control. This factorization is known as full 

singular value decomposition [14].  

             𝑈𝛴𝑉𝑇 = 𝑠𝑣𝑑(�̂�𝑂
𝑇𝐸�̂�𝐶)       . (13) 

Where 𝑈 𝜖 ℝ𝑚 𝑥 𝑚 is a unitary matrix, and UUT = VVT = I  

and 𝛴 𝜖 ℝ𝑚 𝑥 𝑛 is a diagonal matrix with positive real 

numbers, and 𝑉 𝜖 ℝ𝑛 𝑥 𝑛 is another unitary matrix. 

𝑉𝑇 denotes the conjugate transpose of 𝑉. This factorization 

is called a singular value decomposition and the diagonal 

entries of Σ are known as the singular values.  

A tolerance level is necessary so that the Hankel 

singular values less than that in magnitude will be truncated. 

Now, for instance if the number of Hankel singular values 

above the tolerance level is 𝑞, then the first 𝑞 columns from 

U and V will be retained and can be denoted  as 𝑈𝐶  and 𝑉𝐶 

respectively (𝑈𝐶  𝜖 ℝ𝑚 × 𝑞 and 𝑉𝐶  𝜖 ℝ𝑛 × 𝑞). After truncating 

the lower Hankel values and retaining the first 𝑞 values from 

the diagonal singular matrix, 𝛴 denoting the reduced matrix 

as 𝛴𝐶, where, 𝛴𝐶 = 𝑑𝑖𝑎𝑔(𝜎1 … … … … 𝜎𝑞) 𝜖 ℝ𝑞 𝑥 𝑞 then we 

can write this SVD as thin SVD or economic SVD [14], 

[16].  

The square root balanced truncation is successful if the 

error between the transfer function of both the systems is 

less than twice the sum of the truncated Hankel values 

𝜎𝑞+1, … … … 𝜎𝑛 and 𝑞 <  𝑛 [14]. 

‖𝐻(𝑠) − �̂�(𝑠)‖
ℋ∞

 ≤ 2(𝜎𝑞+1 + ⋯ + ⋯ + 𝜎𝑛).  

 
These reduced Hankel singular values are used to get the 

non-singular transformation/projection matrices  𝑇𝐿  and 𝑇𝑅 

such that 

𝑇𝐿 =  𝑍𝑂𝑈𝐶𝛴𝐶
−1/2

 and  𝑇𝑅 =  𝑍𝐶𝑉𝐶𝛴𝐶
−1/2

. 

Using these projection matrices (i.e. transformation 

matrices), the original system matrices are transformed into 

reduced order as shown in (14) 
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 𝐸𝑟 =  𝑇𝐿
𝑇 𝐸 𝑇𝑅 , 

𝐴𝑟 =  𝑇𝐿
𝑇 𝐴 𝑇𝑅 , 

𝐵𝑟 =  𝑇𝐿
𝑇 𝐵, 

𝐶𝑟 =  𝐶 𝑇𝑅 . 

 

 

(14) 

After undergoing the model order reduction process, 

this descriptor system will be approximated by a reduced-

order system as 

 𝐸𝑟�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡), 
𝑦(𝑡) = 𝐶𝑟𝑥(𝑡). 

 

(15) 

 

IV.  NUMERICAL RESULT 

To compute these Hessenberg matrices H, we used the 

Block Arnoldi method and inverse Arnoldi method. Here the 

Arnoldi process returns larger eigenvalues and Inverse 

Arnoldi process returns the smaller eigenvalues of the 

Hessenberg matrices, H, for the respective cases via QR 

algorithm. 

Numbers of steps for Arnoldi process and inverse 

Arnoldi processes are determined as 𝑘𝑝=35 and 𝑘𝑚=35 

respectively. Desired number of shift parameters for LRCF-

ADI are selected to be, 𝑙𝑜=25. The values selected are 

relatively high due to the complexity and large 

dimensionality of the system [11]. 

Using the Heuristic Algorithm, ADI min max rational 

problem computes the shift parameters heuristically from 

the Ritz values. These were sub-optimal due to the Ritz 

values being complex quantities. These parameters were not 

close to the largest Ritz values as shown in Fig. 1. 

 

 

Fig. 1: Suboptimal shift parameters and Ritz values 

 

We made a model of our system with Lyapunov 

equations (5) and (6) and solved these to get the low-rank 

Cholesky factors of controllability gramian and of 

observability gramian,  �̂�𝐶   and    �̂�𝑂  respectively 

where  �̂�𝐶  𝜖 ℂ645 𝑥 22   and   �̂�𝑂 𝜖 ℂ645 𝑥 21. The columns of 

the Cholesky factors of the controllability and observability 

gramians are 22 and 21 respectively; this is because the 

LRCF-ADI iteration converged to a residual norm of 10-5 by 

21 iteration steps. In addition, column compression 

frequency of 20 was used along with the column 

compression tolerance of 10-5. 

Later, using these cholesky factors, we computed 

Hankel singular values by singular value decomposition 

method. 

 𝑈𝛴𝑉𝑇 = 𝑠𝑣𝑑(𝑍𝑂
𝑇𝐸𝑍𝐶). (17) 

Here    𝑈 𝜖 ℝ21 𝑥 21 ,    𝛴 𝜖 ℝ21 𝑥 22 ,    𝑉 𝜖 ℝ22 𝑥 22 .  

As shown in Fig. 2, a truncation tolerance of  10−1 is 

used, considering that the Hankel values above 0.1 are 

dominating and represent the high energy states. Thus the 

most controllable and most observable Hankel singular 

values of the high energy states were eight among twenty 

five of them, which were retained such 

that    𝑈𝐶  𝜖 ℝ21 𝑥 8 ,    𝛴𝐶  𝜖 ℝ8 𝑥 8, 𝑉𝐶  𝜖 ℝ22 𝑥 8 . 

 

 

Fig. 2: Original and reduced hankel singular values with a tolerance of 10-1 

indicated by the green line 

 

Then we computed the transformation matrices 𝑇𝐿  

and 𝑇𝑅 using the dominating Hankel singular values.  We 

got    𝑇𝐿 𝜖 ℂ645 𝑥 8 and    𝑇𝑅  𝜖 ℂ645 𝑥 8.  

After that, we used these transformation matrices to get our 

reduced system (Er, Ar, Br, Cr) where  𝐸𝑟 =

𝐼 , 𝐴𝑟 𝜖 ℂ8 𝑥 8,  𝐵𝑟  𝜖 ℝ8 𝑥 1,    𝐶𝑟 𝜖 ℝ1 𝑥 8 .  

 

V.  DISCUSSION 

Even though, we faced some hurdles in obtaining the 

optimal parameters from the ADI min-max rational discrete 

problem, the LRCF-ADI iteration converged well, up to a 

residual of 10-5, we used a column compression frequency 

of 20 and a column compression tolerance level of 10-5, 

Taking higher column compression frequency would result 

in higher computational cost but would yield a very good 

approximation of the Cholesky factors of the system 

Gramians, while taking it larger, results in wrong 

approximation of the factors which in turn affects heavily on 
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the reduced model approximation. Thus 20, was chosen as 

the column compression frequency as a trade-off between 

the two ends.  Moreover, the column compression frequency 

should not exceed the number of columns of the Cholesky 

factors. In that case, column compression would not be 

performed at all. Thus it is absolutely necessary to consider 

the column compression to be lower than 21.  

 

 

Fig. 3: Eigenvalues of pencils of original and reduced system 

 

Fig. 3 shows clearly that, the stability of the original 

system is preserved by the reduced one i.e. the eigenvalues 

of both the systems lie on the open left half plane.    

 

 
Fig. 4: Magnitude and phase responses for original and reduced system 

 

Fig. 4 clearly illustrates that both the original and 

reduced system of dimension 8, have identical magnitude 

and phase responses for a wide range of frequencies.  

When we rewrite the system descriptor model in terms 

of frequency domain via Laplace Transformation; we get: 

𝑠𝐸𝑥(𝑠) = 𝐴𝑥(𝑠) + 𝐵𝑈(𝑠), 
𝑌(𝑠) = 𝐶𝑥(𝑠) + 𝐷𝑈(𝑠). 

     Then by substitution, we get 𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝐶(𝑠𝐸 − 𝐴)−1𝐵, where H(s) is the transfer function of the 

original system. Likewise, the transfer function derived from 

the reduced model is 𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝐶𝑟(𝑠𝐸𝑟 − 𝐴𝑟)−1𝐵𝑟 .  

 

 

Fig. 5: Transfer functions for both original and reduced system 

 

       Fig. 5 shows that the transfer functions of both the 

original and reduced systems are exactly the same for small 

as well as for the very large frequencies, indicating that our 

reduced model has very much accurately approximated the 

original counterpart.  

 

 
Fig. 6: The error between the norm of transfer functions.   

 

      Fig. 6 shows the error between the norm of the transfer 

functions of the large and reduced order systems. It is 

evident from here that, an error is observed only initially. 

Later no error were observed. We can see that this error 

value, 0.03, is below the global error bound, 0.1341 i.e. 

twice the sum of the truncated Hankel values. So this 

truncation was valid and yielded good approximation as it 

satisfied the priori error bound. 

 

VI.  CONCLUSION 
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Large scale descriptor systems can often be reduced 

significantly. We presented in this paper that several model 

order reduction techniques can be employed to attain a very 

low order system with very accurate responses. All the 

numerical methods mentioned in this paper are implemented 

via MATALAB. In our case, we could successfully 

approximate a large system of a dimension of 645 to a 

reduced-dimensional system of dimension 8. We actually 

obtained several reduced approximations of the large 

system. The reduced system approximations of dimensions 

3 and 5 yielded mismatch or deviation for the low frequency 

response. Only the 8-dimensional reduced system could 

perfectly produce a response most identical to the large 

system for all the frequency range. A key step in model 

reduction is the solution of two Lyapunov functions of a 

large system which is computationally intensive and 

difficult to store in memory. We presented low rank 

cholesky factorization ADI (LRCF-ADI) method which 

suppresses the computational load and memory storage 

requirement. However, this method required the selection of 

a set of suboptimal shift parameters, which are pretty hectic 

being the fact that these are chosen heuristically. The 

properties of the original system such as sparsity, symmetry, 

regularity, passivity, and stability are preserved in the 

reduced model as well.  
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