
Investigating the Polarization Tensor to Describe
and Identify Metallic Objects

Taufiq K. A. Khairuddin, Paul D. Ledger and William R. B. Lionheart

Abstract—This paper presents a few properties of the polar-
ization tensor for conducting and magnetic objects to describe
and classify the objects. In order to achieve this, the polarization
tensor of the objects are numerically determined by the previous
hp-FEM method. We then focus on the polarization tensor for
magnetic but non-conducting objects. After that, the polariza-
tion tensor for translated and rotated objects are discussed.
Finally, this paper also highlights the polarization tensor for a
few threat and non-threat objects which might appear in metal
detection for security screening and landmine clearance.

Index Terms—metal detectors, land mine detection, eddy
currents, hp-FEM method, matrices.

I. INTRODUCTION

IN the eddy current approximation to Maxwell’s equation,
Ammari et al. [1] derived an asymptotic formula that

represented the perturbation of the magnetic fields due to the
presence of an isolated conducting object. Two polarization
tensors were then introduced from the formula, namely the
conductivity polarization tensor (CPT) and the magnetic
polarization tensor (MPT). They also designed a statistical
algorithm to locate a spherical target based on induction
data derived from eddy currents by using the CPT in [1]
and extended it for an arbitrary target in [2].

Furthermore, based on the foundation given in [1], Ledger
and Lionheart [3] further investigated the MPT and CPT to
describe conducting and magnetic objects. The reduction in
the number of independent coefficients for the CPT and MPT
for objects with rotational and mirror symmetries were also
highlighted. They also applied tensor operations to introduce
a new polarization tensor by combining MPT and CPT.

In the engineering literatures, Marsh et al. [4], [5] recon-
structed the magnetic polarizability tensor of several detected
objects by making measurements of the fields generated by
the metal detector in order to describe the location, dimen-
sion, orientation and material properties of an object for
security screening. Similarly, Dekdouk et al. [6] conducted
experiments to estimate the magnetic polarizability tensor of
landmines to increase the chance of identifying them in a
contaminated environmental field by using metal detector. It
is shown in [3] that the magnetic polarizibilty tensor in [4],
[5], [6] is the same as the rank 2 polarization tensor of [3]
that combines both CPT and MPT.

In this study, the polarization tensor for a few objects are
numerically computed according to the formula and method
presented in [3].
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II. MATHEMATICAL FORMULATION OF THE
POLARIZATION TENSOR

The mathematical formulation of the polarization tensor is
discussed now by considering first the eddy current model
presented in [3]. Following Ammari et al. [1], we assume
the presence of an object in the form Bα = z + αB where
B is a unit object centered at the origin, α denotes a scaling
for B and z denotes a translation vector. Introduce

µα =

{
µ∗ in Bα
µ0 in R3 \Bα

, σα =

{
σ∗ in Bα
0 in R3 \Bα

(1)

where µ0 denotes the permeablitiy of free space while both
µ∗ and σ∗ denote the permeability and conductivity of the
inclusion Bα. In this case, µ∗ and σ∗ are just constants
and we drop the subscript ∗ when considering B later on.
Moreover, the conductivity contrast between the object and
the background is assumed to be sufficiently high that the
background can be approximated by a zero conductivity.

Let Eα and Hα be the time harmonic eddy current fields
(electric and magnetic) in the presence of conducting object
Bα that result from a current source J0 located outside Bα.
Suppose that ∇·J0 = 0 in R3. Both fields Eα and Hα satisfy
the eddy current equations

∇× Eα = iωµαHα in R3, (2)

∇×Hα = σαEα + J0 in R3, (3)

Eα(x) = O(|x|−1), Hα(x) = O(|x|−1) as |x| → ∞ (4)

where i is the standard imaginary unit and ω is a fixed angular
frequency of the current source. The depth of penetration of
the magnetic field in the conducting object is desribed by its
skin depth, s =

√
2/(ωµ0σ∗). On the other hand, without

the object Bα, the fields E0 and H0 that result from the time
varying current source satisfy

∇× E0 = iωµ0H0 in R3, (5)

∇×H0 = J0 in R3, (6)

E0(x) = O(|x|−1), H0(x) = O(|x|−1) as |x| → ∞. (7)

By introducing ν = 2α2/s2, the related asymptotic for-
mula for the above model that describes the pertubation in
the magnetic field at a position x, away from z, due to the
presence of Bα when ν = O(1) and (µ∗/µ0) = O(1) as
α→ 0 is given by Ammari et al. [1] in the form

(Hα −H0)(x) = − iνα3

2

∑3
i=1 H0(z)i(

∫
B

D2
xG(x, z)ξ×

(θi + êi × ξ)dξ) + α3
(

1− µ0

µ∗

)
(
∑3
i=1 H0(z)iD2

xG(x, z)

∫
B

(
êi + 1

2∇× θi
)

dξ) +R(x)
(8)
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where ξ is measured from the center of B. Here, G(x, z) =
(4π|x− z|)−1 is the free space Laplace Green’s function and
R(x) = O(α4) is a small remainder term. Furthermore, for
i = 1, 2, 3, êi is a unit vector for the i-th Cartesian coordinate
direction, H0(z)i denotes the i-th element of H0(z)i and θi
is the solution to the transmission problem

∇ξ × µ−1∇ξ × θi
−iωσα2θi = iωσα2êi × ξ

in B ∪Bc,

∇ξ · θi = 0 in Bc,

[θi × n̂]Γ = 0 on Γ,

[µ−1∇ξ × θi × n̂]Γ = −2[µ−1]Γêi × n̂ on Γ,

θi(ξ) = O(|ξ|−1) as |ξ| → ∞
(9)

where n̂ is the outward normal vector to Γ, the boundary of
B. Based on (8), two polarization tensors are introduced by
[1] namely the conductivity polarization tensor (CPT) and
the magnetic (permeability) polarization tensor (MPT).

Using this framework, Ledger and Lionheart [3] have
applied tensor operations to combine both CPT and MPT
as well as reformulate (8) in the alternative form

(Hα −H0)(x) = D2
xG(x, z)MH0(z) +R(x) (10)

where M is the new polarization tensor for a conducting and
magnetic inclusion B. In their study [3], M is expressed
either as rank 4 or rank 2 tensor. The hp-finite element
method presented in [7] is also used in [3] to numerically
compute M as both rank 4 and rank 2 tensors. For the
purpose of this study, the same M as the rank 2 tensor is
considered where our main motivation for choosing this is
because it agrees with the engineering prediction about the
polarization tensor for metal detector [3]. The rank 2 tensor
M is given by [3] as

M = N − C (11)

where the coefficients of N and C are

α3

(
1− µ0

µ∗

)∫
B

(
êl · êi +

1

2
êl · ∇ × θi

)
dξ (12)

and (
− iνα3

4

)
êl ·
∫
B

ξ × (θi + êi × ξ)dξ (13)

for l = 1, 2, 3.

III. METHODOLOGY

We now state several properties of the rank 2 tensor M .
The coefficients of M can be expressed as 3× 3 matrix and
it is proven in [3] that M is complex symmetric so both real
and complex parts of M have three real eigenvalues. In their
studies, [3] also explain that M = N for a magnetic non-
conducting object Bα. Moreover, N here reduces to the first
order Generalized Polarization Tensor (GPT) of [8] when
Bα is simply connected and M can now be determined by
solving boundary integral equations, which is given in [8]
where the parameter k is the contrast µ∗/µ0 (or the relative
permeability of Bα). In this case, an analytical formula of
M for an ellipsoid is also given.

Furthermore, M for an object Bα depends on the geom-
etry, orientation and material of the object as given in (12)
and (13). It also depends on the size but not on the position

Fig. 1. A comparison between the coefficients of M for a magnetic but non-
conducting ellipsoid as obtained by hp-FEM method (F) and the analytical
solution (A)

of Bα. In addition, if the object Bα is rotated and becomes
B′α, it can be shown by following [2] and [8] that M for B′α
denoted by MB′ satisfies the following relation

MB′ = RMBR
T (14)

where MB is M for the original Bα, R is the appropriate
rotation matrix and RT is the transpose of R.

In this study, the hp-FEM method described in [3] is also
used here to numerically compute M for a series of known
objects relevant to magnetic induction such as in metal
detector. The object is firstly approximated by a tetrahedral
mesh by using the Netgen mesh generator [9] (see pictures
in Table IV and Table V for examples). The mesh can be
generated either as linear or quadratic elements and both are
supported in the method. However, if the object has curved
boundary segments, quadratic elements must be selected for
the mesh. Here, the convergence of M is achieved either by
refining the size of the mesh in Netgen or by using higher
degree polynomial of the edge element discretisation in the
hp-FEM method.

IV. NUMERICAL RESULTS

The polarization tensor M for magnetic non-conducting
objects is firstly computed and presented in this section
where the coeffiecients (elements) of M in the first row are
denoted starting from the first column by 1, 2 and 3 followed
by 4, 5 and 6 for the second row, and 7, 8 and 9 for the
third row. We then investigate M for a translated and rotated
object. The polarization tensor M for a few threat and non-
threat objects, which might appear in metal detection, are
also considered.

A. M for Magnetic non Conducting Objects

Let Bα be the ellipsoid defined by x2

a2 + y2

b2 + z2

c2 = 1 where
a = 0.3, b = 0.2, c = 0.1 centimeters (cm) and suppose that
Bα is non-conducting and its relative permeability is equal
to 1.5. By using 11665 tetrahedral meshes and polynomials
of degree three in the hp-FEM method, an agreement of the
computed coefficients of M for Bα to the analytical solution
[8] is obtained. Figure 1 compares every coefficient of M for
Bα based on analytical solution given in [8] with the same
coefficients of M computed by the hp-FEM method.

On the other hand, Figure 2 shows a comparison of
the coefficients of M for a non-conducting toroidal object
with relative permeability 500 computed based on boundary
integral formula of the first order GPT in [8] and also by
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Fig. 2. A comparison between the coefficients of M for a magnetic but
non-conducting torus as obtained by hp-FEM method (F) and the boundary
integral formulation of the first order GPT in BEM++ (A)

Fig. 3. The base of a L-shaped object

hp-FEM method. The diameter and height of the object are
0.2 and 0.1 cm, respectively, and the object has a cylindrical
hole with diameter and height both approximately equal to
0.1 cm. Here, the convergence of M in the hp-FEM method
is achieved by approximating the object by 27919 tetrahedral
meshes and uniformly increasing the degree of polynomial
until order three. On the other hand, the boundary integral
formula in [8] is numerically approximated by the software
called as BEM++ [10] which converges with 16174 surface
elements.

B. M for a Translated and Rotated Object

In order to demonstrate the effect on the coefficients of
the polarization tensor M under translation and rotation,
we consider Bα as a three-dimensional L-shaped object
(dimensions of the object are in cm). Here, the base of the
object if viewed in two dimensions, is shown in Figure 3.
Three points P , Q and R are also chosen for references when
translating or rotating the object.

We now assign the base to be above the xy-plane and
for any point, p ∈ Bα where (xp, yp, zp) is the coordinate
of p in the three dimensional Cartesian coordinate system,
xp, yp, zp ≥ 0. We also let the height of the object to be equal
to 1.5 so that 0 ≤ zp ≤ 1.5. In this case, P,Q and R are
firstly set to be (0,0,0), (5.8,0,0) and (0,7.6,0) respectively.
The object is approximated in Netgen by a linear mesh and
assuming that the object is both conducting and magnetic
(σ∗ = 4.5× 106 S/m (Siemens per meter) and µ∗ = 1.26×
10−4 NA−2 (Newton per ampere2)), the convergence of M
for the object denoted by ML is obtained in the hp-FEM
method by uniformly increasing the degree of polynomial
until order three with 57456 tetrahedra. The converged ML

is written in the form ML = R+ J i where

R = 10−3 ×

 0.2314 −0.0818 0
−0.0818 0.3530 0

0 0 0.0686

 (15)

and

J = 10−3 ×

−0.0200 0.0168 0
0.0168 −0.0400 0

0 0 −0.0024

 . (16)

1) M for a translated object: In order to investigate M
for the L-shaped object under a few translations, every point
p that lies in the original object will be translated by a
translation coordinate v = (vx, vy, vz) such that every p for
the translated object becomes (xp + vx, yp + vy, zp + vz).
A few v are considered, as listed in Table I, where the new
P,Q, R as well as the new minimum and maximum values
of zp are given. Each translated object is then created in
Netgen and approximated by a linear tetrahedral mesh. Using
these approximations, M for the object at every new position
denoted by ML′ is recomputed with the hp-FEM method. By
using the third order polynomial, each ML′ converges on the
mesh with N number of tetrahedra, where N is also included
in Table I.

Each ML′ is now compared with the original ML

where DL′ = ML′ − ML is firstly determined in the
software MATLAB. Let D̃L′ be a 9 × 1 column vec-
tor which contains all coefficients of DL′ . By using the
function roundn in MATLAB, D̃L′ is round to 5 and
6 decimal places with the command roundn(D̃L′ ,−5)
and roundn(D̃L′ ,−6), respectively. The function any is
then applied to roundn(D̃L′ ,−5) and roundn(D̃L′ ,−6)
to decide whether D̃L′ is a zero column vector or not.
The outputs for commands any(roundn(D̃L′ ,−5)) and
any(roundn(D̃L′ ,−6)) in MATLAB are given as (d,−5)
and (d,−6) in the last two columns of Table I.

2) M for a rotated object: The L-shaped object at the
original position in the Cartesian plane is now rotated three
times. Points P ,Q and R after rotation as well as minimum
and maximum value for zp of point p lying in the object, are
given in Table II. The polarization tensor M for each object
at the new position after rotation is denoted by MLr and
computed after that. Similarly, each rotated object is firstly
approximated by a linear tetrahedral mesh in Netgen. The
number of elements N, needed for each MLr to converge
after is computed by using the third order polynomial in the
hp-FEM method are then given in Table II.

Next, the polarization tensor ML for the object at the
original position is transformed three different times by using
(14) according to each rotation performed to the object. The
resulting transformed ML is denoted by M̃Lr for each rota-
tion r. The rotation matrix R used for each transformation is
shown in Table III. Each M̃Lr is then compared to MLr by
following the same steps as in the translation case. (dr,−5)
and (dr,−6) in Table III are the results from MATLAB that
tell whether a 9 × 1 column vector where its elements are
all coefficients of M̃Lr −MLr is a zero vector or not.

C. M for Threat and Non-threat Objects

A knife, a gun (dimension and material for the gun and
the knife are based on that given in [11]) and a detonator
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TABLE I
TRANSLATION OF THE L-SHAPED OBJECT

Translation, L′ v P Q R z
(min)
p z

(max)
p N

(d, j)

j = −5 j = −6

1 (2,2,2) (2,2,2) (7.8,2,2) (2,9.6,2) 2 3.5 52993 0 1
2 (2,2,-2) (2,2,-2) (7.8,2,-2) (2,9.6,-2) -2 -0.5 55096 0 1
3 (-6,2,2) (-6,2,2) (-0.2,2,2) (-6,9.6,2) 2 3.5 55871 0 1
4 (-6,2,-2) (-6,2,-2) (-0.2,2,-2) (-6,9.6,-2) -2 -0.5 54844 0 1
5 (2,-8,2) (2,-8,2) (7.8,-8,2) (2,-0.4,2) 2 3.5 54242 0 1
6 (2,-8,-2) (2,-8,-2) (7.8,-8,-2) (2,-0.4,-2) -2 -0.5 51678 0 1
7 (-6,-8,2) (-6,-8,2) (-0.2,-8,2) (-6,-0.4,2) 2 3.5 53723 0 1
8 (-6,-8,-2) (-6,-8,-2) (-0.2,-8,-2) (-6,-0.4,-2) -2 -0.5 51248 0 1
9 (-1,-1,-0.5) (-1,-1,-0.5) (4.8,-1,-0.5) (-1,6.6,-0.5) -0.5 1 54918 0 1

TABLE II
ROTATION OF THE L-SHAPED OBJECT (A)

Rotation, r P Q R z
(min)
p z

(max)
p N

90◦ around xy-plane (0,0,0) (0,-5.8,0) (7.6,0,0) 0 1.5 41583
90◦ around xz-plane (0,0,0) (0,0,5.8) (0,7.6,0) 0 5.8 58648
90◦ around yz-plane (0,0,0) (5.8,0,0) (0,0,7.6) 0 7.6 42358

TABLE III
ROTATION OF THE L-SHAPED OBJECT (B)

Rotation, r R (dr,−5) (dr,−6)

90◦ around z-axis

0 −1 0

1 0 0

0 0 1

 0 0

90◦ around y-axis

0 0 −1

0 1 0

1 0 0

 0 0

90◦ around x-axis

1 0 0

0 0 −1

0 1 0

 0 0

analogue (DA) of type 72 AP-mine [6] are categorized as
threat objects. On the other hand, the following non-threat
objects are considered : 1 pound British coin [12], a ball
bearing (diameter 0.9 cm) and a belt buckle (see [11] for
example). After choosing suitable values of ω for a metal
detector and setting µ∗ (NA−2) and σ∗ (S/m) for each object
according to its material, M for each object denoted by MB

is computed by hp-FEM method. During all computations,
after every object is approximated by N tetrahedral elements
(mesh for both knife and gun are linear while others are
quadratic), every converged MB is obtained when the degree
of the polynomial is increased uniformly to the third order
in the hp-FEM method. Table IV and Table V shows the
number of elements, N needed by MB for threat and non-
threat object to converge.

In order to describe and identify each object, we first note
that each MB can be expressed as MB = RB +JB i where
RB and JB are real symmetric 3×3 matrices containing all
real and complex coefficients of MB , respectively. Two real
symmetric 3×3 matrices MRB

and MJB
are now introduced

where elements of MRB
are absolute value of elements

(coefficients) of RB while elements of MJB
are absolute

value of elements of JB . Let êMRB
be a column vector

containing all normalized eigenvalues of MRB
such that

êMRB
contains every ratio of the eigenvalues of MRB

to the
largest eigenvalues of MRB

. On the other hand, let êMJB be
a column vector containing every ratio of the eigenvalues of
MJB

to the largest eigenvalues of MJB
. We propose to use

êMRB
and êMJB instead of the original MB for describing

and identifying each object where êMRB
and êMJB are also

given in Table IV and Table V.

V. DISCUSSION AND CONCLUSION

This paper discusses an approach to describe conducting
and magnetic metallic objects by using the polarization
tensor, M . By considering a potential application in metal
detection, mathematical formulation of the rank 2 M from
the eddy current model which is based on [3] is reviewed. We
also highlight several properties of M that are very useful to
our purpose. During several studies conducted by engineers
[4], [5], [6], polarization tensor for a few tested objects were
reconstructed from metal detector measurements to describe
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TABLE IV
THE NORMALIZED EIGENVALUES OF M FOR THREAT OBJECTS

Object, B Material N êMRB
êMJB

Knife stainless-steel 13621 1 1
µ∗ = 1.26× 10−6 NA−2 0.9996 0.9355

σ∗ = 1.39 S/m 0.9957 0.0651

Gun type I steel 57456 1 1
µ∗ = 1.26× 10−4 NA−2 0.4826 0.2113
σ∗ = 4.50× 106 S/m 0.1741 0.0480

DA of 72 AP-mine aluminium 17257 1 1
µ∗ = 1.26× 10−6 NA−2 0.3781 0.8578
σ∗ = 3.50× 107 S/m 0.3781 0.8578

TABLE V
THE NORMALIZED EIGENVALUES OF M FOR NON-THREAT OBJECTS

Object Material N êMRB
êMJB

Belt Buckle titanium 32640 1 1
µ∗ = 1.26× 10−6 NA−2 0.9995 0.0100
σ∗ = 2.38× 106 S/m 0.4170 0.0069

1 Pound Coin nickel-brass 23930 1 1
µ∗ = 1.26× 10−6 NA−2 0.0083 0.0475
σ∗ = 15.90× 106 S/m 0.0083 0.0475

Ball Bearing type II steel 6252 1 1
µ∗ = 4.40× 10−4 NA−2 1 1
σ∗ = 4.65× 106 S/m 1 1

them. In contrast to their works, polarization tensor for a
few specified objects are numerically computed by solving
(9) and using (11) in this study.

In order to provide numerical examples for this study,
M for magnetic but non conducting objects are firstly
considered. Since M in this case reduces to the first order
GPT of Ammari and Kang [8] for simply connected objects,
the accuracy of the computed M for the object can then

be checked with the formula of GPT. An ellipsoid and a
torus are choosen for this purpose where we consider a low
permeability contrast for ellipsoid and a high permeability
contrast for torus. The ellipsoid is choosen because there
is a specified analytical formula for its first order GPT. On
the other hand, the torus with the choosen permeability is a
model of toroidal inductor, built by strong magnetic material,
for example ferrite (nickel zinc). Figure 1 and Figure 2
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show excellent agreement between M computed by the given
formula through hp-FEM method and the first order GPT.
It can be seen that M for both ellipsoid and torus here
are diagonal matrices. In addition, the first diagonal and the
second diagonal entries of M for the torus are equal.

Next, M for a translated and rotated object are examined.
The three dimensional L-shaped object used here with the
choosen µ∗ and σ∗ is actually the steel gun in Table IV. A
real situation is actually considered as our main motivation
for this investigation where a person might carry a gun with
many possible orientations on any part of his body when
passing a metal detector during security checking. For this
purpose, we first compute M for the object at a choosen
initial position by using the hp-FEM method, resulting to
the real and imaginary coefficients (15) and (16). The results
show that M is complex symmetric as predicted by the
theory in [3] for a conducting and magnetic object.

The results after 9 translations have been performed to
the object are shown in Table I where the first eight of L′

move the object in each octant of the three dimensional space
without including the origin. The last L′ translates the object
from its initial position and lies within the intersection of
every octant in three dimensional space, which will include
the origin. M of the object at the original (initial) position
is then compared to M for the object after it has been
translated, which is also computed by the hp-FEM method.
The values (d,−5) and (d,−6) in Table I are tests done in
MATLAB to decide whether D̃L′ is a zero column vector or
not after is rounded to 5 and 6 decimal places. If the value
is 0 then D̃L′ is a zero column vector while 1 indicates
that D̃L′ has at least one non-zero element. In this case, for
each L′, D̃L′ is a 9× 1 zero column vector after is rounded
to 5 decimal places which implies DL′ = ML′ −ML is a
zero matrix of size 3 and hence, ML′ = ML for all L′ at 5
decimal places or less, that is M of each translated object is
the same as M of the object before translation. The results
here consistent with our previous theory that M does not
depend on the position of the object.

In addition, similar tests are performed in MATLAB to
decide whether M of rotated objects computed by the hp-
FEM method is similar to transforming M of the object at
the original (initial) position according the same rotation. The
results in Table II show that a column vector containing all
coefficients of M̃Lr−MLr is a zero vector after is rounded to
5 and 6 decimal places. Consequently, at 6 decimal places or
less, M̃Lr −MLr is a zero matrix of size 3 so M̃Lr = MLr

for each r such that M of all rotated objects are similar to
transforming M of the object at original position. These also
give numerical evidences to suggest that M for the object
at original position can be used directly to find M for the
object after it is rotated, as given by (14). Therefore, it is then
possible to identify an unknown object by reconstructing and
comparing its M to any transformed M for a known object.

Finally, we also compute M for a few threat and non-threat
objects in metal detection. A coin, a ball bearing of a toy
(such as a yo-yo) and a belt buckle are non-threat objects
during security check and coin also is a wanted object in
treasure hunting by metal detector. Meanwhile, a gun and a
knife are threat objects in security screening and a detonator
analogue (DA) of type 72 AP-mine is the most important
part in land mine detection. Here, the normalized eigenvalues

for real and imaginary parts of M are used to describe all
objects. Based on Table IV and Table V, we can see that
ball bearing has one distinct normalized eigenvalues for both
real and imaginary parts of its M , coin and DA have two for
each parts while others has three. Moreover, in contrast to
other objects, DA and coin have the normalized eigenvalues
of the imaginary parts to be either larger or equal to the
normalized eigenvalues of the real part. This information
is very useful to describe and classify the objects and can
be further investigated. Our main aim after this will be to
compare these results with the reconstructed polarization
tensor and analyze them to hopefully improve metal detection
in the future.
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