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Abstract—The present study is devoted to the problem of
optimal loading pressure identification by the prescribed dis-
placements vector. The mathematical model of large elastocreep
deformations is used. The problem of deformation of the
material in the vicinity of microdefect was considered. Integro-
differential equations for the external pressure, irreversible
deformations and displacements were derived. The optimization
algorithm for this problem was proposed. The optimal strain-
stress state parameters were computed and analyzed.

Index Terms—creep, elasticity, residual stress, swarm intelli-
gence method, zero-order optimization.

I. INTRODUCTION

S IMILAR problems arise in the calculation of stress-strain
state of the metal forming processes. In the design of

ship hulls and aircraft are widely used panels and profiles
of hardly-deformed aluminum alloys. Traditional methods
of formation of such structural elements often leads to the
appearance of the plastic breaks, cracks and other damages.
Thus, the effective way of this fabrication is metal forming
under creep and low strain rates. These processes ensures the
production of construction with high accuracy, which reduces
the complexity of assembly and welding, and increase the
residual life and the quality of construction [1].

The mathematical description of the processes of ther-
momechanical treatment of contracture materials is faced
with the need to consider the elastic properties of materials
at all stages of the product life cycle. Consideration of
the problems in the classical models of small deformations
is impossible when the relative shape change of the body
is large. One such typical application is the problem of
modeling processes of deformation metals in vicinity of
micropore under the action of intense pressure. In this case,
we are forced to assume large deformation. Experiments are
known [2] to significantly increase the long-term strength
of metal products after the treatment them under hydrostatic
pressure. Attempts to simulate such process of the microp-
ores “healing” in the metal have been made repeatedly. In [3]
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such problems are considered on the basis of the framework
of large elastic-plastic deformation. In this case, the effect
of adaptability to periodic loading on the cycle “loading and
unloading” was shown in [2].

Since classic work E. Lee [6], lots of plastic flow frame-
works with large reversible and irreversible deformations
were built [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Lot of them use a Lagrangian description [8],
[9], [11], [12], [13], [14]. But in this case the results of
mathematical modeling is physically difficult interpreted. If
we want to build a framework of the flow in Eulerian de-
scriptions, then we are faced with two fundamental problems.
The first problem is identification irreversible and reversible
components of the total strain tensor. The second problem
is definition of irreversible strain source. The mathematical
model which was proposed in [7] and detail described in [4],
[5] is used throughout the paper. The problem of a spherically
symmetric compression of the ball with micropore in the
center is considered.

II. GOVERNING EQUATION

The calculations of the residual stresses close the mi-
crodefects is necessary carried out in the finite irreversible
strain framework with complicated rheological properties.
Further consideration is provided by the framework of finite
elastocreep deformations (see details in [16]). The kinematic
equation for parts of the Almansi total strain dij can be
written in the Cartesian system (Eulerian coordinates) in the
form

Deij
Dt

= εij − γij −
1

2
((εik − γik + zik)ekj+

+eik(γkj − εkj − zkj)) ,
Dpij
Dt

= γij − pikγkj − γikpkj ,

(1)

where eeij = eij − 0.5eikekj is the reversible part of the
Almansi total strain tensor, pij is the irreversible part of the
Almansi total strain tensor, D/Dt denotes the convective
derivative with respect to time, γij is the irreversible strain
rate tensor, εij is the strain rate tensor. The strain rate tensor
can be computed by the equation

εij =
1

2
(vi,j + vj,i) , (2)

where vi are the components of velocity vector, the index
after comma denotes partial derivative with respect to the
corresponding spatial coordinate.
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The convective derivative with respect to time in (1) from
an arbitrary tensor nij read:

Dnij
Dt

=
dnij
dt
− riknkj + nikrkj ,

rij = wij + zij (eij , εij) , wij =
1

2
(vi,j − vj,i) ,

(3)

wherein wij is the angular rate tensor and zij(eij , εij) is
the nonlinear part of the rotation tensor rij (see in full in
[7]). Thus, the components of the Almansi total strains dij
in terms of its parts eij and pij taking account of equations
(1) and (3) are presented as follows

dij =
1

2
(ui,j + uj,i − ui,kuk,j) =

= eij + pij −
1

2
eikekj − eikpkj − pikekj+

+eikpkmemj ,

(4)

where ui are the translational displacements. This assumption
allows to derive the constitutive equation like the Murnaghan
equation of state well known in the non-linear elasticity [17]:

σij = −pδij +
∂Q

∂eik
(δkj − ekj) , (5)

where Q is the strain-energy function, p denotes the hydro-
static pressure function as a Lagrangian multiplier to enforce
the incompressibility constraint. For isotropic hyperelastic
materials, the strain-energy function can be expressed in
terms of the invariants of the reversible strain tensor. Let us
expand Q into the Taylor series in the vicinity of the natural
state eij = 0, disregarding the terms of higher order than the
second one. The following form of the expansion is obtained
for isotropic, homogeneous and incompressible bodies

Q = (α− µ)J1 + αJ2 + βJ2
1 − κJ1J2 − ζJ2

1 ,
J1 = eejj , J2 = eeije

e
ji,

(6)

wherein α, µ, β, κ, ζ are elastic modules.
During process, anticipating plastic flow, and in the un-

loading, the irreversible strain rate tensor γij is identified by
the creep strain rate tensor γij = εvij . The energy dissipation
law is valid for creep stage of deforming. Let accept the
dissipation potential in the power form like Norton-Bailey
creep law [18], [19]:

εvij =
∂V (Σ)

∂σij
,

V (Σ) = BΣn (σij) ,

Σ =
√

3
2 ((σ1 − σ)2 + (σ2 − σ)2 + (σ3 − σ)2).

(7)

Here σ1, σ2, σ3 are principal values of Cauchy stress tensor
and B,n are the creep constants.

III. BOUNDARY VALUE PROBLEM

Let examine the changes in the geometry of a single
spherical microdefect (micropore) under hydrostatic com-
pression and stress relaxation process during unloading of
the material within the proposed framework. We consider
the solid ball of the initial radius R0 with a single spherical
defect (micropore) of the initial radius s0 in the center of the
sphere. The process of deformation is given by the boundary
conditions

σrr|r=R(t) = −P (t),

σrr|r=s(t) = 0,
(8)

where σrr is the radial component of the stress tensor in the
spherical coordinates (r, θ, ϕ), R(t) >> r0 is the radius of
the spherical surface which is given by the external pressure
P (t), s(t) is the current radius of the micropore. Reversible
(elastic) eij and irreversible (creep) pij parts of the Almansi
total strain tensor equation (4) are defined by the differential
equations of change (transfer) (1). Stresses with reversible
deformations are related by equations (5). The constraints
of the incompressibility in the present case of the spherical
symmetry leads to the continuity equation

(1− ur,r) ·
(

1− ur
r

)2
= 1, (9)

where ur is the only nonzero displacement. The solution of
the equation (9) is obtained in form

ur = r −
(
r3 + ϕ(t)

) 1
3 ,

ϕ(t) = s30 − s3(t) = R3
0 −R3(t).

(10)

Note that the kinematics is specifies with an accuracy of
an unknown function ϕ(t).

The equation of motion in considered case of spherical
symmetry can be deduced in form

σrr,r + 2
σrr − σθθ

r
= −ρ0

(
ϕ̈(t)

3r2
+

2

9

ϕ̇2(t)

r5

)
, (11)

wherein σθθ denotes the angular stress, ρ0 denotes the mass
density.

Equation of motion (11) should be supplemented by equa-
tion for components of irreversible strain tensor

dprr
dt

= Bn(1− 2prr)Φ
n−1 (err, eθθ) ,

pθθ =
1

2

(
1− 1√

1− 2prr

)
,

(12)

wherein Φ is derived by formula

Φ(a, b) = 2µ(a− b)− λ1a2 + λ2b
2 + λ3a

3 − λ4b3+

+λ5

(
1

2
ab2 − ab

)
+ λ6

(
a2b− 1

2
a2b2

)
− λ7a4 + λ8b

4+

+λ9

(
a4b+ 2a3b2 − 1

2
a4b2 − 4a3b

)
+ λ10

(
1

2
a6 − 3b5

)
,

λ1 = µ+ 4α+ 4β + 2ξ,
λ2 = µ+ 4α+ 8β + 4ξ,
λ3 = 2 (2α+ 2β + 4ξ + 3χ) ,
λ4 = 4(α+ 2β + 4ξ + 6χ),
λ5 = 4β + 2ξ,
λ6 = 2β + 7ξ + 18χ,

λ7 = α+ β +
19

2
ξ + 9χ,

λ8 = α+ 2β + 19ξ + 36χ,

λ9 =
3

4
(ξ + 3χ) ,

λ10 =
1

2
(5ξ + 11χ).

(13)
Resulting system of the integro-differential equations after

integrating equation (11) under condition (8) is transformed
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into

P (t) = 2
R(t)∫
s(t)

Ψ(r, prr(r, t), ϕ(t))

r
dr−

−ρ0
(
ϕ̈(t)

3

(
1

R(t)
− 1

s(t)

)
+

+
ϕ̇2(t)

18

(
1

R(t)4
− 1

s(t)4

))
,

dprr
dt

= (1− 2prr)BnΨn−1(r, prr(r, t), ϕ(t)),

(14)

wherein

Ψ(r, prr(r, t), ϕ(t)) = Φ (err, eθθ) ,

after substituting err, eθθ by the rules

err = 1−H− 2
3 (1− 2prr)

− 1
2 ,

eθθ = 1−H 1
3 (1− 2prr),

H = 1 + r−3ϕ(t).

(15)

For the calculations of the strain-stress state parameters,
we define the following dimensionless parameters:

αµ−1 = 0.9, βµ−1 = 4, ξµ−1 = 20,

B0 = nBρ0R0µ
n−2 = 3.5, χµ−1 = 80,

n = 3, kµ−1 = 0.003, s0R
−1
0 = 0.03.

The system (14) is numerically analyzed by using sym-
bolic computation algebra Mathematica.

IV. OPTIMIZATION PROBLEM AND SOLUTION

Let us introduce the functional

J(ϕ(·)) = max
ϕ(·)

P (t). (16)

J(ϕ(·))→ inf is required to find, given that

ϕ(τ) = 269 ∗ 10−7

(
1− exp

(
5∑
i=0

αiτ
i

)2
)
,

αi ∈ [−2.0; 2.0]

(17)

that is ϕ(τ) is searched among the set of polynomials with
coefficients αi ∈ [−2.0; 2.0]

A certain complexity in the problem at hand creates a
rather time-taking process of the objective function com-
puting calculated by numerical methods. The pure random
search method, which tried to use to solve the problem at
the beginning of the study showed not too high efficiency
and rather low reliability. Therefore, specifically for this op-
timization problem was developed greatly simplified analog
of the classical bees algorithm [20], [21]. This method allows
to find the near-optimal solution in a reasonable running time.

In contrast to the classical version of the algorithm con-
siders only two types of bees (agents), namely scout bees
(sj) and worker bees (wk) recruited for best sites. So the
swarm is the set SW = {sj ∪ wk, j = 1, S, k = 1,W}.
Scout bees are researching throughout the whole search
space. Workers are engaged in exploitation phase of the
algorithm in the neighbourhood of the best sites, that had
been found by scouts. Neighborhood size in our case is fixed
Nradius = 0.25.

Allocate an array of size [S + W + S] × [5 + 1] for
storing the values of the polynomial coefficients and the
values of the objective function. This array is required to

find the best sites. In the first part of the array is stored
the best values found. The second is used to store checked
values. In the initialization phase, the entire array is filled
with random values of coordinates (polynomial coefficients)
and evaluate the objective function in this points. Then the
array is sorted by the value of the objective function in order
to find the “best” values that will be used by the worker bees,
performing a local search.

The main loop consists of three stages. The first one
is the generation of a new random set of the polynomial
coefficients (for conducting the global search phase of the
method). The second one is the generation of random points
in the neighborhood of the best sites, that located at the top of
the array. Then is required to compute the objective function
in all of the generated random sets and sort the array. These
steps are repeated so far as the stopping criterion will not be
satisfied. In our case used a simple limitation on the number
of iterations.

So, the original method of the bees algorithm inspired
the authors to develop a rather simple optimization method.
There are only three adjustable parameters in concerned
algorithm. All parameters are fixed. Due to the sorting
procedure at the top of the array at each stage are the best
values. Despite a strong simplification of the original algo-
rithm proposed computational process shows good results
compared to undirected random search. Thus, the goal is
to increase the efficiency of the optimization procedure was
achieved.

The figure 1 shows graphs of convergence of the method
at hand.
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Fig. 1. The algorithm convergence

The optimum dynamics of the micropore surface s(t) is
shown on Figure 2. Figure 3 shows the optimum loading
pressure P (t) which determined by the results of the numer-
ical calculations.
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Fig. 2. The optimal micropore surface dynamics
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V. CONCLUSION

The presented mathematical framework of large elas-
tocreep deformations is based on equations (1), (4), (5), (7),
(11). One can use the presented approach for mechanical
design creep fabricated parts from creep-elastic materials
determining the strength and the shape of final products.
Solved problems for a ball-shaped body with a single
spherical defect are consistent with well-known micropore
welding process [3]. The proposed method of the loading
pressure computing for a given displacements can be used to
optimize the treatment metal process under creep conditions.
Moreover, on the basis of this mechanical analysis one
can work out effective recommendations for improving the
technological process.
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