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Abstract—Multiple Rocket Launcher Systems (MLRS) are 

used to aim rockets to the desired elevation (pitch) and azimuth 

(yaw) angles in order to hit targets. In this paper, a dynamic 

model for an MLRS with electromechanical actuators is 

presented along with performance evaluation of four different 

friction models. The final model is simulated and the results are 

compared with the test data taken from the real MLRS. The 

results show that the proposed model is accurate within, on 

average, 5% of the actual system. 

 
Index Terms—azimuth and elevation, dynamic modeling, 

electromechanical actuators, multiple launch rocket system.  

 

I. INTRODUCTION 

ultiple Launch Rocket Systems (MLRS) are designed 

based on the requirements arising from the type of 

ammunition and the field of operation. Constraints are 

imposed by the structure of the carrier vehicle and the thrust 

force of the ammunition. A MLRS has two degrees of 

freedom; elevation axis (pitch) and azimuth axis (yaw).  An 

MLRS produced by Roketsan is shown in Fig. 1 as an 

example. 

 

 
Fig. 1. Firing a 300 mm Rocket from Roketsan Launcher System [1] 

 

A general schematic of an MLRS is given in Fig. 2. 

Rotation around the azimuth axis is done by a turntable. 

Although several mechanisms can be applied for rotation,  

the most common one is the slewing ring mechanism [2]. 

The slewing ring is driven by a pinion attached to a geared 

drive motor. A brake motor is also included for fixing the 

turntable during firing.  
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Fig. 2. General Schemtic of an MLRS 

 

The elevation table rotates with the turntable. Pitch 

motion around the elevation axis is achieved by using 

hydraulic pistons [3] or electromenhanical linear actuators  

[4]. In this case the elevation actuator consists of two linear 

actuators, two corner gearboxes, a center gearbox and an 

electric motor. The schematic of the elevation actuator is 

given in Fig. 3. 

 

 
Fig. 3. Elevation Actuator 

II. MATHEMATICAL MODEL OF MLRS 

A. Assumptions and System Definition 

The mathematical model only includes the components 

that affect the dyamics of the system. These are; rockets, 

tubes, elevation table, turntable, base table, slewing ring, 

azimuth actuator and elevation actuator. Geometric, physical 

and mechanical properties of these parts are obtained from 

3D models. The base table is assumed rigid and stationary, 

hence its mass and inertia is not modeled. For azimuth 

motion, the coordinate system is placed at the center of the 

base plate. Slewing is considered as a bearing with rigid 
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rings and balls. The gap between its inner and outer rings, 

and the gaps between balls and the rings are ignored. The 

turntable is placed on the slewing ring. Azimuth actuator is 

mounted on the turntable but the teeth of the pinion are in 

contact with the slewing ring. The rod ends of the elevation 

actuator are connected to the turntable and the elevation 

table via spherical bearings. In order to simplify the 

simulations, elevation and azimuth motions are analyzed 

separately [6]. 

B. Model of the Elevation Motion 

The schematics of the elevation mechanism is given in 

Fig. 4. 

 

 
Fig. 4. Schematics of the Elevation Mechanism 

 

The large block at the top represents the tube with rockets 

and the smaller block at the bottom represents the elevation 

table. A, B and C are revolute joints and the  sign on the 

top block indicates the center of gravity of the two blocks 

combined. Variable dimensions are length (c) and  

inclination (λ) of the elevation actuator, and the elevation 

angle θ. The dashed line is the reference line showing the 

position when the elevation table is at 0° elevation angle.  

Torque requirement from the elevation motor changes as 

θ varies between 0° and 60°. To model the motor torque as a 

function of the elevation angle, firstly, moment with respect 

to joint A is written as; 

 

)sincos (λ aFθ)(β g dm ee   (1) 

 

where; me is the total mass of the elevation table and loaded   

tubes, g is the gravitational acceleration, and Fe is the force 

acting on the elevation actuator at joint C. Rearranging the 

terms to express Fe results in: 

 

)sin

cos

(λa

θ)(β g dm
F e

e


  (2) 

 

To eliminate the variables other than θ from the right hand 

side of (2), sin(λ) is replaced by; 
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where c can be written, by applying the law of cosines to the 

triangle ABC, as; 
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Substituting in (2) results in an expression for Fe in terms 

of θ:  
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Torque applied by the elevation motor Tme is related to Fe 

as follows; 

 

)(2 mececocecolie Tnn  p F   (6) 

 

where; p is the pitch of the linear actuator, nco and nce are the 

reduction ratios of the corner and center gearboxes 

respectively, and ηli , ηco and ηce are the efficiencies of the 

linear actuator, corner gearbox and center gearbox 

respectively. Replacing (5) in (6) and rearranging terms 

results in: 
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In order to find the angular velocity of the elevation motor 

dθme/dt as a function of the elevation velocity dθ/dt, firstly, 

(4) is differentiated. 
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Then, the relation between the velocity of the linear 

actuator dc/dt and dθme/dt is written as: 
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 Substituting (4) and (9) in (8) and rearranging the terms 

results in: 
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 Equations (7) and (10) express, respectively, the torque 

and the angular velocity of the elevation motor as a function 

of the elevation angle. 

 

C. Model of the Azimuth Motion 

The schematics of the azimuth mechanism is given in Fig. 

5. The two blocks at the top are the ones in Fig. 4. The  

sign on the turntable indicates its center of gravity. The 

coordinate system is placed on slewing ring. D is the 

revolute joint of the turntable and the azimuth motion is 

around the z-axis. All the parameters shown in Fig. 5. are 

constants. 
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Fig. 5. Schematics of the Azimuth Mechanism 

  

In order to calculate the friction force due to slewing ring,  

the axial force and bending moment acting on the slewing 

ring are determined. The axial force Fsr acting at the center 

of the slewing ring is; 

 

etsr WWF   (11) 

 

where, We is the total weight of the elevation table and 

loaded tubes, and Wt is the weight of the turntable. 

 Bending moment Msr at the center of the slewing ring is; 

 

)sin()coscos(  wWduWM tesr   (12) 

 

According to [7], friction moment Msrf on the slewing ring 

is calculated from Fsr and Msr as; 

  

)4.4)(2/( Lsrsrsrf D FM M    (13) 

 

where, DL  is the raceway diameter, and μ is the coefficient of 

friction.  

Slewing ring friction is affected by various parameters. 

Based on the empirical knowledge, the error margin is 

±%25. Also, if the slewing ring is mounted on a surface with 

flatness deviation of 1 mm, friction moment increases by 

%75 [7]. If these values are applied as factors of safety, the 

friction moment on the slewing ring becomes; 

 

srfsrf MM )75.1)(25.1(  (14) 

 

During azimuth motion, torque is also required to 

backdrive the azimuth brake. Although the brake is released 

during rotation, it resists the motion due to backdriving its 

gearbox with a high reduction ratio. Consequently, the 

torque required from the aximuth motor to rotate the MLRS 

is; 
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where, Mback is the backdriving torque of azimuth brake, nsr 

is the reduction ratio between the slewing ring and the 

pinion, ngear and ηgear are, respectively, the reduction ratio 

and efficiency of the aximuth motor gearbox, and ηmech is the 

efficiency of the intermediate mechanical parts. 

It should be noted that the inertia of the MLRS is ignored 

because the azimuth motion is very slow. The required 

torque to move against inertia is negligible compared to the 

friction torque. 

Finally, the relation between angular velocity of the 

aximuth motor dθma/dt and the azimuth velocity dθa/dt is 

written as: 
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III. FRICTION MODEL 

The most basic approach for modeling friction in a MLRS 

is the simple Coulomb friction model with a single, constant 

coefficient of friction, which is usually estimated 

empirically. However, this model does not reflect the real 

characteristics of the system. There exist various friction 

models, details of which can be found in the academic 

literature such as  [8]. The aim of this section is to find an 

appropriate friction model for the MLRS by implemeting the 

most commonly used ones to the MLRS model and 

comparing the simulation results with the data measured 

from the actual system. 

Friction models are applied to the azimuth axis. Elevation 

angle is kept at 0° so that the unbalance load remains 

constant. Since the azimuth velocity is low, inertial loads are 

neglected and the torque requirement is assumed to be 

caused by friction only.  

 

 
Fig. 6. Azimuth Velocity Profile (a) and Measured Motor Torque (b) 

 

 
Fig. 7. Comparison of Friction Models and Test Data (a) Absolute Percent 

Relative Error of Friction Models (b) 

 

 The actual MLRS is tested with the velocity profile given 

in Fig. 6(a) and the measured motor torque is given in Fig. 

6(b). The same velocity profile is input to the azimuth model 
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with Coulomb, Coulomb+Viscous (CV), Coulomb+ 

Viscous+StartUp (CVS), and Stribeck friction models. More 

detail on the implementation of the models can be found in 

[9].  

 Fig. 7(a) shows that, only the CVS and Stribeck models 

simulate the beginning of the motion (i.e. 0 to 0.5 s). In the 

acceleration and deceleration regions all models except the 

Coulomb model have similar trends. The absolute relative 

percent error in the constant velocity region is below an 

acceptable 10% for all of the models (Fig. 7b). 

  
TABLE I 

IAE AND ITAE FOR FRICTION MODELS 

 CV CVS Stribeck 

IAE 0.50 0.50 0.82 

ITAE 0.40 0.40 0.67 

 

 Considering the Coulomb model as a baseline, IAE 

(Integral Absolute Error) and ITAE (Integral Time-

Weighted Absolute Error) are calculated for the other 

models and given in Table 1.  Although the CV and CVS 

models scored the same IAE and ITAE, the CV model can 

not simulate the stiction at the beginning of the motion. 

Consequently, the CVS friction model is chosen as the best 

alternative.  

IV. RESULTS 

To confirm the validity of the derived MLRS model, 

simulations are compared to the test data of the elevation 

axis, in which the motor torque is required to support the 

unbalance load in addition to the friction torque. During 

simulations, the CVS friction model is added to the elevation 

axis model. 

 

 
Fig. 8. Comparison of Elevation Velocity of Test and Simulation (a) 

Absolute Percent Relative Error of Elevation Velocity (b) 

 

The actual elevation axis is given velocity profile in Fig. 

8(a). The model is tuned by iteration until the overall 

average of the absolute percent relative error is below 1% 

(Fig. 8b).  

 
Fig. 9. Comparison of Motor Torques of Test and Simulation (a) Absolute 

Percent Relative Error of Elevation Motor Torque (b) 

 

Fig. 9(a) presents the torque data of the elevation motor. It 

is shown that the actual motor torque is closely matched by 

the simulation. According to Fig. 9(b), the absolute percent 

relative error stays below 10% along two thirds of the 

motion, then raises up to 20% towards the end of the 

constant speed section and reaches to a maximum of 27% 

during deceleration. A possible explanation for this trend is 

that the friction characteristics change due to increasing  

unbalance load. However, the overall average of the absolute 

percent relative error remains below 5%. 

V. CONCLUSION 

In this paper, dynamic model of a multiple launch rocket 

system with electromechanical actuators is constructed and 

the mechanisms for azimuth and elevation are explained. 

Performances of four different friction models are evaluated 

on the azimuth axis by comparing simulation results with 

data measured from the actual system. The Coulomb+ 

Viscous+StartUp friction model is shown to be the best 

alternative for the application. This friction model is then 

implemented into the elevation axis model, which is more 

complicated than the azimuth axis model due to unbalance 

loading. It is shown, by comparing the elevation simulations 

with the test data, that the model is accurate within, on 

average, 5% of the actual system. 
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