
 

 
Abstract—In this work it is proposed a metric to modeling a 
certain kind of the “lowness” of entropy that must have existed 
in the past with the objective of know if it is equivalent to the 
state of high entropy of the present, taking into account the 
gravitational clumping of matter both for the singularity at the 
big bang, as for a black hole. 
The state of low entropy as a very special case of the Big Bang 
singularity (gravitational clumping of matter), supported by 
the Penrose´s Weyl curvature hypotesis ( Penrose´s WCH), is 
studied here by developing a standard metric to discuss 
whether it is possible to link to the also gravitational clumping 
of matter corresponding to a black hole in the classical phase-
space volume (CPSV), placing such groupings in the same 
number of Hawking´s box and therefore, in the time. 
It satisfies the Penrose's WCH detaching it from the classic 
phase-space volume (CPSV) that turns out to be inappropriate 
as WCH´s link that requires the second law of thermodynamics 
by the asymmetrical-time ingredient that presents the entropy 
in the past and in the present. 

It emphasizes the need to discover a mathematical space that 
allow us to obtain the link between WCH and CPSV with the 
combination of variables that represent the past, present, high 
and low entropy. 
 

Index Terms—asymmetrical-time, general relativity, Ricci 
tensor, Weyl curvature hypothesis, Weyl tensor 
 

I. INTRODUCTION 

his paper discusses the idea of Roger Penrose about the 
low power state in the Big Bang which gives us the 
second law of thermodynamics, involved in his Weyl 

curvature hypothesis (WCH)) from thirty-three years ago 
[1]. Since then, although there have been numerous 
cosmological models, these results show that they only 
satisfy the WCH but have not allowed the linking of WCH 
and classical phase-space volume (CPSV) [2,3]. 

    We know there is an ingredient of asymmetrical-time 
[1,2,7-9]  with second law implications for the unification of 
CPSV and WCH. 

Therefore, it is a priority to discover a mathematical 
space that complements WCH, as the CPSV turns out to be 

 
Manuscript received March 23, 2015. 
 
1 R. Leticia Corral Bustamante is with the Technological Institute of 
Cuauhtémoc City, Tecnológico Ave. S/N, 31500 Cuauhtémoc City, 
Chihuahua, México (corresponding author phone: 625-582-3609; fax: 625-
581-1707 Ext. 1000; e-mail: leticia.corral@cimav.edu.mx).  

 
2 Marco A. Flores Trevizo was with the Technological Institute of 
Cuauhtémoc City, Tecnológico Ave. S/N, 31500 Cuauhtémoc City, 
Chihuahua, México (e-mail: marco.flores.trevizo@gmail.com ). 

 

inappropriate to meet the Penrose hypothesis, not only in 
general relativity (GR), but also in cosmology [2,3]. 

    With the aim of finding answers to unify the CPSV and 
WCH, the present study focuses on computations made in 
GR making use of the mathematical expression of entropy 
as a state of the logarithm measure of the volume [2] of 
matter using  Ricci tensor, as well as the use of the 
Bekenstein-Hawking formula [2,4,9] in such tensor [4]. 

    However, the model studied here allows to "measure 
the entropy", throwing results of the prevailing special state  
in the singularity of the Big Bang that argues the Penrose´s 
WCH in [2], contradicting to the CPSV. 

    Thus, it is inappropriate the phase-space volume 
occupied by the matter in the Hawking´s box to link it with 
Penrose`s WCH because gravity of matter introduces an 
additional level of unpredictability over quantum 
uncertainty that has not been resolved yet. To obtain entropy 
equivalence between past and present it is required a 
mathematical model not yet discovered, that clarifies the 
asymmetrical-time [1,2,7-9]  ingredient of time. 

    There should be a quantum world that allows us to 
simultaneously measure the entropy of the past and present, 
like the Schrödinger´s cat scenario, alive and dead at the 
same time [5,6].    

    Asymmetrical-time [1,2,7-9] implications in 
measurements of entropy for study of the behavior of matter 
in the space-time continuum in General Relativity, is 
currently one of the most important issues to resolve in 
order to find a theory of quantum gravity [10-15] that allows 
unify confluence and spreading of flow lines in phase-state 
[13-15] in a gravitational body, according with the second 
law of thermodynamics, since the entropy is a quantum 
gravitational effect. 

    A strong constraint on “lowness” entropy in the big 
bang is that which holds that the Weyl tensor is identically 
zero [2,9,16-18]. In this case, as we approach the initial 
singularity [1,2,19-23] more and more closely, we find that 
Ricci tensor becomes infinite dominating near the initial 
singularity [2,9,24,25]. Thus Ricci dominates the initial 
singularity, rather than Weyl.  This allows us to present 
arguments that have to do with the CPSV in which is 
discussed the high entropy by gravitational clumping in a 
tiny phase-space volume of Hawking´s box since point of 
view of Penrose [2,9,16-18]. 

    The universe was created in a very special low entropy 
state with something like the 0Weyl constraint and, 

according with Penrose [2], the entailment between WCH 
and R (quantum-mechanical state-vector reduction) is very 
strong at this respect, and everything seems to point in the 
same direction. 
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II. MODELLING 

The entropy in phase-space volume of Hawking´s box is 
directly proportional to the logarithm of the volume 
contained in phase-space point that represents the state [2] 

 
 VlogS   (1) 

 
where S  [JK-1] is the entropy in phase-space volume, V  

[m3] phase-space volume and  [ JK-1] the Boltzman 
constant (  = 1.3806504 10-23 JK-1).  

    While, to calculate the entropy of a black hole, was 
used the Bekenstein-Hawking formula [2,4,9], namely 
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where 2cGMm  [m], is the geometric mass  of 

gravitational body, bhS  [Jkg-1 K-1] the entropy of black hole 

by Bekenstein-Hawking; G [Nm2kg-2] the universal 
gravitation constant (G = 6.6738410-11 Nm2kg-2); M [kg], 
the mass  of gravitational body; c [ ms-1], the speed of light 
(3108 ms-1) and  [Js] the reduced Planck´s constant 
(1.054571726   10-34 Js). 

    The spatial and temporal coordinates, in a 4-

dimensional space,  ;,,,i,xi 4321  that were used to model 

tensors in GR are denoted     ,,S,tx,x,x,x 4321 . t  is the 

temporal coordinate, S ,  and  , are spatial coordinates 

that represent respectively, entropy [JK-1], energies (kinetic, 
potential, internal, quantized) [J] and enthalpy [Jkg-1K-1].  
With the proposed metric given by 
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where s [m], is the arc length or arch element, and )(Su  

and )(Sv  are unknown functions to be determined. The 
Ricci tensor non-zero components is  
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    While, the Weyl tensor non zero components is given 
by 
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which vanishes as follows 
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    The solutions of the Ricci tensor are given as 
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    Where 1c  is a constant to be determined. The Ricci 

Scalar  is given by 
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III. RESULTS´S GROUNDWORK 

 

A.  The Weyl curvature hypothesis 

      
    It is demonstrated the low entropy state at big bang in a 

gravitational clumping matter (singularity) in Figs. 1-3 
satisfying the Penrose's WCH [1-3,9,26-30]. 

    Figs. 1-3 show graphs of entropy bhS  (equation (2)) of 

matter using: i. u and v solutions in non-zero component 

11R  of Ricci tensor, ii. solutions u and v  and  iii. the Ricci 

Scalar, respectively. 
    In the limit of the space´s coordinate S, the black 

hole´s entropy of the matter computed with Bekenstein-
Hawking formula [2,4,9], bhS , in 11R of Fig. 1, were 

obtained the following results:  a) 0


bh
S

Slim , b) 

0


bh
S

Slim  and c)  


FloatSlim bh
S 0

 .  The 

“lowness” of entropy can be seen in a) and b) and the 
singularity in c). 

    Moreover, in Fig. 2 we can observe that   


Sulim
S 0

 

and    ImFloatSvlim
S
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B.  Classical phase-space volume 

 
    Figs.1 to 3 show results of the matter of gravitational 

bodies in CPSV of Hawking´s box (Fig. 4).  
    As we can see in Fig. 4, increasing entropy from left to 

right with increasing time.  In the box on the left, there is a 
uniform distribution of gravitational bodies representing 
relatively low entropy (Fig. 4 a) Box #1). As the entropy 
increases with time, gravitational bodies begin to clump 
collapsing to a black hole with maximum entropy as in Fig. 
4 c) Box #3. 

Fig.  1  Entropy bhS  of matter with u and v  

solutions in non-zero components of Ricci tensor.  

S  [JK-1] 

   Sv,Su   

Ricci

a) 

S  [JK-1] 

   Sv,Su   

b) 

Fig. 2.  a) The entropy of matter calculated with 
the solutions u and v of the Ricci tensor, b) 
enlargement of a). 
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    Of statistical mechanics, specifically with the Maxwell-
Boltzmann theory, it is known that the entropy of a system 
is proportional to the natural logarithm of the number of 
microstates, in this case, we say the number of possible 
volumes, equation (2), and then we can calculate the 
volumes of the entropy of the material with that 
relationship.  Knowing S  [J K-1] and Boltzman constant, 
 , of equation (2) we have  SexpV  , then calculate 

the volumes for negative and positive values of S in the 
Figs.1-3 (a negative value of entropy means that entropy 
is transferred from the system [31]), and is obtained two 
types of results for these values respectively: underflow 
and overflow for  V .  I interpreted underflowV   

and overflowV   as tiny and huge ( ) volumes in the 

phase-state. 
    In the box 3 of Fig. 4 c) del CPSV is showed that the 

matter collapsed to a black hole due to the singularity 
(gravitational clumping matter) whose behavior observed 
in Figs.1-3. 

    As can be seen in Figs.1-3, the material is clumped 
together in the horizontal axis ( 0bhS ).  This is a very 

special state called the “lowness” of entropy. This 
restriction satisfies WCH [1-3,9,26-30] and contradicts 
CPSV. 

    Then, low entropy state with huge volume 
( overflowV  ), and low entropy with tiny volume 

( underflowV  ), are respectively, in total and partial 

contradiction with CPSV. 
    The quality or “lowness” of entropy produced in the 

big bang that gives us the second law of thermodynamics, 
in a huge volume ( overflowV  ), wasn`t merely a 

consequence of the "smallness" of the universe at the time 
of the big bang as Penrose argues in [2].  

 

IV. RESULTS 

 
    The metric used in this work allows us to obtain results 

that meet the requirements of: i. low entropy, and ii. tiny 
and huge volumes. This satisfies the Penrose's WCH [1-
3,9,26-30] and contradicts the CPSV, disabling the link 
between WCH and CPSV that requires the second law, due 
to the asymmetrical-time [1,2,7-9]  ingredient present in the 
entropy of the past and of the present.        Perhaps this is 
because Jacob D. Bekenstein [32] found that the entropy of 
a black hole is proportional to its horizon area, not its 
volume, and because of the accuracy of the formula 
developed by Stephen W. Hawking [33] for their 
calculation. 

    We determined the entropy of matter with the 
Bekenstein-Hawking formula [2,4,9] (equation (2)) for a 
black hole, with u and v  solutions into Ricci tensor. 

     Assuming Ricci = Energy = Mass and 2mcE  , 
2cEm  and taking into account that the geometric mass 

is 2cMGm  , we use 2cGRm ii in equation (2). iiR  

are the nonzero components of the Ricci tensor. 

     As we can appreciate in Fig. 1, there is a singularity in 
0S  in 11R . This behavior persists in the 3322 R,R  and  

44R of the Ricci tensor but graphs are not presented here.  

     If we consider the restriction of low entropy in the 
time of big bang, where Ricci , coupled with the fact 

that 0Weyl  (equations (5) and (6), respectively), in Fig. 1 

we can see that it fulfill the "lowness" of entropy according 
to the second law of thermodynamics. 
 

Fig. 2 shows the entropy of matter (equation (2)) 
computed with the solutions u  and v  (equations (7)) of the 

Ricci tensor. Again, these entropies seem to correspond with 
the "lowness" of entropy during the big bang to Ricci . 

Fig.  3  Entropy of matter using the information carried by 
the Ricci Scalar for spatial coordinate .S   
 

S  [JK-1] 

bhS  [Jkg-1 K-1] 

Fig.  4.  Classic  phase-space volume of Hawking´s box as in  
[2,9] for gravitating bodies.  Entropy and time increases from 
left to right in:  a) box # 1 containing a uniform distribution 
with relatively low entropy, b) box # 2: uniformly spread 
system in box # 1 starts to clump,   and c) box # 3: 
gravitational bodies clump together until maximum entropy 
for collapse to a black hole. 

a)  Box # 1 

  

Entropy increases 

c)  Box # 3 b)  Box  # 2 

Time increases 
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     Fig. 3 shows the entropy of matter calculated with the 
Bekenstein-Hawking formula [2,4,9], bhS , using the 

information carried by the Ricci Scalar (equations (8)).  
     As we can see in Fig. 3, the entropy tends to zero.     

In the limit, we obtain entropy with identical results to those 
obtained for 11R in Fig. 1.   

    On the other hand, of equation (6), Weyl tensor is 
identically zero. According with Penrose [2], this is the 
constraint on time of Big Bang. 

     Here the distorting a tidal effect provided by the Weyl 
tensor is entirely absent.  Instead there is symmetrical 
inward acceleration acting on any spherical surface of 
particles surrounding the matter (i.e., a black hole).  This is 
the effect of the Ricci tensor, rather than Weyl.  This 
behavior is similar to Friedmann-Robertson-Walker space-
times, FRW-Model, in which 0Weyl always hold [2]. 

     It is Ricci that becomes infinite, instead of Weyl, and 
it is Ricci that dominates near the initial singularity, rather 
than Weyl. 

    Of equation (4) we have that: 


4321
0

,,,iRlim ii
S

 

Error, numeric exception: division by zero.       This 
indicates us that there is an initial singularity in non-zero 
components of Ricci Tensor. This provides us with a 
singularity of low entropy. 

     Our universe was created in a very special low entropy 
state (agree with second law of thermodynamics), with 
something like the 0Weyl  constraint of the FRW-Models 

imposed upon it [2]. This is associated with the Big Bang, 
which was so precisely organized in terms of the behavior 
of the Weyl part of the space-time curvature at space-time 
singularities.  

     The constraint obtained for 0Weyl  at initial space-

time singularities seems to be that confines the material to 
this very tiny region of phase-space.  Penrose called to this 
assumption of constraint applied at any initial (but not final) 
space-time singularity: "The Weyl Curvature Hypothesis" 
[1-3,9,26-30] as an asymmetrical-time [1,2,7-9]  ingredient. 

     The model studied here is satisfied for 0Weyl , 

Ricci  and the graphics in Figs.1 to 3 indicate 
"lowness" of entropy as in the big bang. 

     After that, just a theory of quantum gravity that meets 
with certain requirements, could be able to solve the results 
here exposed, i.e., it is necessary to solve important points 
as the described by Penrose in [2], namely: i. Riddle space-
time singularities instead of nonsensical "infinity" of the 
classical theory, ii.      At the big bang -past singularity- 
quantum gravity must tell us that a condition something like 

0Weyl must hold, iii. The striking fact that the quantum 

gravity is blatantly asymmetrical-time [1,2,7-9] quantized 
theory.  At the singularities inside black holes or in the 
possible big crunch -future singularities- we expect the 

Weyl  when approaching the singularity. According 

with Penrose [2], this is a clear indication that the quantum 
gravity theory is an asymmetrical-time-theory. 

All cases (Figs.1 to 3) are disagree with phase-state 
volumes for a gravitational body mentioned above and 
probably have to do with the opinion of  Penrose [2] about 
the link with the WCH and the CPSV of Howking´s box in 
the sense that for a "correct quantum gravity" theory (CQG), 
neither Hilbert space (not studied here) nor classical phase-

space would be appropriate and that it is very probably that 
we must use a hitherto undiscovered type of mathematical 
space which is intermediate between the two and that has to 
do with the relationship between WCH and R (the state-
vector reduction). 
 

V. DISCUSSION 

 
    Although the standard metric (equation (3)) used here 

allows to fulfill the requirement of Penrose´s WCH that 
Ricci  (equation (4)) and 0Weyl  (equations (5) and 

(6)), this does not ensure the link between WCH and CPSV. 
In this regard, Penrose suggests the quantum-mechanical 
state-vector reduction (R) as the other side of the coin of 
WCH instead of CPSV [2]. Figs.1-3 show the singularity 
( Ricci ). 

    To meet the requirements that simultaneously satisfy 
WCH and CPSV, it is used the portrait of the third 
Hawiking´s box in CPSV (see Fig. 4), that is, in the state of 
highest entropy represented by the collapse of the matter to 
a black hole, achieved by gravitational clumpling, which 
already is controversial with the low entropy state required 
by the Big Bang, so it contradicts the Penrose´s WCH [1-
3,9,26-30]. 

    The results obtained with this model, allow me to 
corroborate the nonexistent link between CPSV and WCH 
under some questions and their possible answers. To allow 
comparisons of matter in the third Hawking´s box in the 
phase-space volume I wonder if: Is the big bang matter like 
the matter of a black hole? for that to comply with the 
gravitational clumping of matter in such box. The answer is 
yes, if we consider that according to the Big Bang theory, 
the universe was originated from a space-time singularity of 
infinite density mathematically paradoxical. Therefore, we 
meet the tiny volume in this third box, but there is the 
question of the magnitude of the entropy of this volume that 
has to be high in CPSV, and low in WCH. 

    How to measure a thermodynamic variable such as the 
entropy with the requirement of being high and low 
simultaneously? 

Although the black hole evaporates by Hawking radiation 
and finally disappears, even in this state, the entropy due to 
the emissions produced by the hole during its evaporation 
increases with time, meeting with the high-entropy state of 
CPSV. 

    I say that the matter collapsed to a black hole has high 
entropy by gravitational clumping, satisfying the 
expectations of phase-state volume, while the expanded 
matter of the evaporated and disappeared black hole (so 
their emissions ceased to exist), is in an undefined state of 
entropy theoretically unresolved with the GR model used. 

    The second law of thermodynamics allows defining the 
sense of time, which runs in the direction in which the 
entropy increases. The high-entropy matter of the past turns 
out to be low in the present. Is it possible to find a 
mathematical model to link past and present getting high 
and low entropy at the same time, while meeting the 
expectations of the WCH and CPSV, respectively, in a 
Hawking fourth box?  

    If an evaporated black hole and present in an imaginary 
4th box has low entropy, the time elapsed from the third box 
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(when it wasn`t evaporated) to the fourth box, should have 
given us a higher entropy than the 3rd box and still satisfy 
the concept of phase-space volume in contradiction with 
WCH. 

    Evaporation and eventual disappearance of a black 
hole does not contradict the second law of thermodynamics: 
while the entropy-area of the hole decreases, the radiation 
produced has very high entropy, so the total entropy always 
increases, which satisfies the phase-space volume and 
contradicts the restriction of low entropy in the big bang 
which includes the WCH. 

    Therefore,  the entropy of matter that collapses to a 
black hole and an evaporated black hole always will be 
increased and always it is satisfied the CPSV in 
contradiction with the low entropy state that is expected 
must have existed in the big bang, contradicting the 
Penrose´s WCH [1-3,9,26-30].  

 

VI. CONCLUSION 

 
    The GR model studied allows to predict the "lowness" 

of entropy at the Big Bang which gives us the second law of 
thermodynamics as a requirement to meet Penrose`s WCH 
together with the constraint where the Ricci tensor prevail 
rather than Weyl  (which vanishes, as expected). 

    Although the asymmetrical-time ingredient, avoids link 
the CPSV with WCH, this study is a contribution at the state 
of art of modeling and simulation of astrophysical 
phenomenon according with the series of works in 
mathematical general relativity produced for thirty-three 
years ago, time in which Roger Penrose laid the foundation 
of his hypothesis.  

    I propose the need to discover a mathematical space to 
link past and present with low and high entropy in order to 
link WCH and CPSV, respectively, in which the 
wormholes´ theory and the phenomenon of quantum gravity 
become important. 
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