

Abstract— One major challenge still faced by most

Distributed Association Rule Mining (DARM) systems is the
inability of existing systems to adapt to constantly changing
databases and mining environments. In this work, an Adaptive
Incremental Mining Algorithm (AIMA) is therefore proposed
to address these problems. AIMA was designed to adapt to
changes in the distributed databases by mining only the
incremental database updates and using this to update the
existing rules in order to improve the overall response time of
the DARM system. In this system, global association rules were
integrated incrementally from one data site to another. The
mining agents in AIMA were made adaptive by defining
mining goals with reasoning and behavioral capabilities and
protocols that enabled them to either maintain or change their
goals. AIMA employed Java Agent Development Environment
Extension for designing the internal agents’ architecture.
Results from experiments conducted on real datasets showed
that the adaptive system, AIMA performed better than the
non-adaptive systems.

Index Terms— Adaptivity, Data Mining, Distributed
Association Rule Mining, Incremental Mining, Mobile Agents.

I. INTRODUCTION

ANY businesses have become reliant on data mining
patterns and trends to make important decisions [1].

Association rule mining (ARM) is a very significant data
mining method, which finds frequent patterns, associations,
correlations, or casual structures sets of items or objects in
these databases. Mining association rules has received a lot
of attention to the data mining community [2]. Majority of
modern organizations are now geographically distributed;
hence most databases are now of distributed nature where
each local database stores it’s ever increasing amount of
day-to-day data. Distributed Association Rule Mining
(DARM) environments are constantly changing in real-life
situations and there is a great need for systems that will
efficiently respond to these real-time changes in the
database and the entire system over time. This implies that

Manuscript received March 10, 2015.
A. O. Ogunde is with the Department of Computer Science, Redeemer’s

University, P.M.B 230, Ede, Osun State, Nigeria, CO 80305 USA
(+2348054579091; e-mail: ogundea@run.edu.ng).

O. Folorunso is with the Department of Computer Science, Federal
University of Agriculture, Abeokuta, Nigeria. (e-mail:
folorunsolusegun@yahoo.com).

A. S Sodiya is with the Department of Computer Science, Federal
University of Agriculture, Abeokuta, Nigeria. (e-mail:
sinaronke@yahoo.co.uk).

both expected and unexpected events may occur in data
mining environments and these may seriously affect the
outcome or the overall performance or successful
completion of mining tasks, most especially in distributed
settings and databases. There is therefore an urgent need for
distributed association rule mining systems that would adapt
to both expected and unforeseen changes in the distributed
databases and in the environment where mining agents will
operate. Therefore, an adaptive incremental association rule
mining system, which is improvement of our past works,
was designed in this work to mine across distributed
databases while adapting to expected and unexpected
changes in the database and the entire system, using mobile
agents.

II. LITERATURE REVIEW

A. Distributed Association Rule Mining (DARM)

Data Mining (DM) is the process of extracting novel,
hidden but useful hidden knowledge from data in databases
[3]. DM techniques have shown very good results when
applied successfully in many problem areas. DARM is the
semi-automatic pattern extraction of frequent patterns and
rules from distributed data sources [4]. In a DARM
environment, often one needs to handle multiple large
databases. No algorithm can claim to be the best in all
circumstances out of all the algorithms already proposed in
this area of study [5]. Sound solutions to the many multi-
database mining problems can be obtained through the
model of local pattern analysis [2].

ZigZag algorithm was proposed by Otey et al. [6]. In this

algorithm, the data is initially distributed on different sites
before the mining task. Schuster et al. [7] furthered their
earlier work by proposing a distributed sampling algorithm
called D-Sampling. D-Sampling assumed a centralized
dataset and later distributes it during execution. In this
work, each node is responsible for a set of items. Ariwa et
al. [4] also proposed an optimized Incremental Knowledge
Integration (OIKI) model. Here, , the client controls
movement of the mining results among data servers for local
integration before finally transferring the results to the
client.

Silvestri and Orlando [8] proposed an algorithm called

Distributed Approximate Mining of Frequent Patterns. This

The Design of an Adaptive Incremental
Association Rule Mining System

Adewale O. Ogunde, Member, IAENG

Olusegun Folorunso, and Adesina S. Sodiya

M

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

algorithm performs the distributed exact computation of
locally frequent itemsets for inferring the local support of
locally unfrequented itemsets. To further this work, [9]
proposed a perspective on DDM algorithms in the context
of multi-agent systems, discussing broadly the connection
between DDM and MAS. Byrd and Franke [10] worked on
the state of the art distributed clustering for DDM and
frequent itemset mining. Furthermore, [11] proposed a
distributed algorithm for frequent itemsets generation on
heterogeneous clusters and grid environments called
Distributed Frequent Itemsets Mining in Heterogeneous
Platforms. The proposed approach uses a dynamic workload
management through a block-based partitioning, and takes
into account inherent characteristics of the Apriori algorithm
related to the candidate sets generation.

Moreover, [12] proposed the New Fast UPdate algorithm

(NFUP) for efficiently incrementally mining association
rules from large transaction database. This method only
requires scanning of the incremental database on the
assumption that a lot of time is usually wasted in scanning
the original database. In many situations, new information is
more important than old information, such as in publication
database, stock transactions, grocery markets, or web-log
records [12]. Consequently, a frequent itemset in the
incremental database is also important even if it is
infrequent in the updated database. To mine new interesting
rules in updated database, AIMA algorithm dynamically
adapts to changes in the incremental database as opposed to
NFUP which partitions the incremental database logically
according to unit time interval. In real life situations this
may not be appropriate as relatively large numbers of new
transactions could be added to the database just in few days.
The Adaptive Incremental Mining Algorithm (AIMA)
proposed in this work was designed with great flexibility to
allow users determine and choose when exactly to mine the
updated database. For example, for each mining of the
updated database, we may assume a dynamic incremental
mining task for every seconds, or minutes or hours or days
etc. Consequently, this may happen in a day, few days,
weeks, months or years as the case may be, depending on
how frequently new transactions are added to the database.
For each case, the mined updated database eventually
becomes the old database. The new and latest transactions
then form the candidate for the new incremental database.

Meo et al. [13] presented a non-incremental algorithm

called CARE and an unnamed constrained based
incremental algorithm. CARE was specifically designed to
deal with context dependent constraints on both the body
and the head of association rules. CARE was implemented
on a standalone database and rules mined were majorly
constrained based as opposed to the method proposed in this
work which is majorly on distributed data sites. Excessive
constraints were avoided in this work as this could leave out
some very important rules and create a robust system
capable of accommodating unforeseen and real-life
situations.

Badal and Tripathi [14] also proposed the VS_Apriori,
which is an extension of the classical Apriori algorithm. The
researchers claimed that VS_Apriori algorithm works faster
than the classical and also scales well when the support
threshold decreases. Rao and Vidyavathi [15] in their work
employed game theory in data mining. Paul [16] also used
XML data to work on DARM in conjunction with
traditional global knowledge integration. Umarani and
Punithavalli [17] also carried out an overview of sampling-
based ARM, positing that sampling can speed-up the mining
of association rules. Saravanan and Christopher [3]
proposed a knowledge integration (KI) method in parallel
and distributed environment with association rule mining
using XML data. Details of the knowledge integration of the
XML data done was not presented in the work.

Albashiri [18] worked on EMADS, an Extendible Multi-

Agent Data mining System. The concept sees DARM as a
community of multiple agents from several sources
interacting to solve a common problem. EMADS
concentrated on agent based data classification. In earlier
works on EMADS [19], [20], a DM agent and task agents
combines to solve the DARM task. There is a one-to-one
relationship between a given data agent and a given data
source. After some pre-processing was done, there were
massive movements of either the entire data set or a subset
of it while in the system AIMA proposed in this work, data
agents do not have to forward their data at any point in time
as this could be very costly for most real life applications.
All sort of data movement were maximally eliminated in
this work.

Albashiri [21] also described a Multi-Agent based

approach to Data Mining using a Multi-Agent System
(MADM) that comprises a collection of agents cooperating
to solve given data mining tasks. Partitioning of datasets
was used to achieve parallel/distributed ARM. A
compressed set enumeration tree data structure called T-tree
was used together with an associated ARM algorithm called
Apriori-T. All the described methods presented DARM
using various models all of which are still opened for further
research.

B. JADEX Agents and Goal Revision

Agents are special software capable of carrying out
autonomous action based on their design [22]. Java Agent
Development Environment Extension (JADEX) is an
integration of an agent middleware, with a reasoning engine
in order to combine the advantages of both. Jadex allow the
construction of rational agents in order to exhibit goal-
directed behaviour. The Jadex Control Center (JCC)
represents the main access point for all available Jadex
runtime tools. The JCC itself provides its functionalities via
plug-ins and is therefore quite easily extensible [23].

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

An agent is like a black box which receives and sends
messages when viewed externally. The behaviour of a
specific agent is therefore determined solely by its concrete
beliefs, goals, and plans. An agent needs to adapt whenever
its environment changes. Few researches have been done on
agents’ adaptability but there are none on the adaptivity of
DARM agents [24]. Here are some of the few other
researchers that have contributed in the area of agents’
beliefs and goals changing [25], [26], [27], [28] and [29].

III. DESIGN METHODOLOGY

The design of AIMA was based on the definitions of the
multi-agents and researchers earlier work defined in [29]
and [30]. AIMA was equipped to dynamically mine the
updated distributed databases based on flexible preset
options. For each mining of the updated database, we
assume dynamic mining task depending on the choice of the
data miner even though there is a default setting for update
search in the design. Consequently, updates may be
searched from the distributed data sites in seconds, minutes,
hours, days, weeks, months or years as the case may be,
depending on how frequently new transactions are added to
the database. For each case, the mined updated database
eventually becomes the old database. The new and latest
transactions then form the candidate for the new incremental
database. The final set of frequent itemsets consists of the
three following types. (1) set: these are frequent itemsets
in the updated database (DB) (2) set: these are frequent
itemsets in the old database (db) but infrequent in DB and
(3) set: frequent itemsets in DB, but infrequent in db. It
should be noted that there will be no need of representing
the case where an itemset is infrequent in the DB and also
infrequent in the db. Also note that AIMA keeps a record
(date/time) and counter (alpha) for all the incremental
mining tasks performed on all db. This is to know when
exactly an itemset became frequent or infrequent in the DB.

AIMA scans the db to obtain the occurrence count of each

k-itemset. Since the occurrence counts of Fk in DB are
known in advance, the total occurrence count of arbitrary X
is easily calculated if X is in one of the cases one to three
described above. The frequent set of itemsets of DB is
known in advance while AIMA scans the incremental
database, that is, db for new frequent itemsets. This is then
used to determine whether an itemset that had been frequent
is still frequent or now infrequent. Also, this will also help
to discover whether an initially infrequent itemset in DB is
now frequent. For db, the process starts at 1-itemsets. Each
candidate or frequent itemset has two attributes. That is (1)
X.count: includes the occurrence count in db and (2) X.type:
denotes one of the three types: , , and . The three sets are
usually empty at the initial stage. After the db has been
scanned, all frequent 1-itemsets are added into the set.
Each frequent 1-itemset is joined to form 2-itemset
candidates. Each frequent 2-itemset is joined to form 3-
itemset candidates and so on. In db, the process is
performed like that of the Apriori algorithm and this is

repeated until no more candidate k-itemsets can be
generated in db. The occurrence count of each candidate in
db is known after db is scanned. In db, AIMA determines
which candidate k-itemset will become an element of , ,
or set. After db is scanned, the occurrence count is usually
accumulated with that of DB. Note that db.date keeps the
date of the system for the corresponding incremental
database, db, when X becomes an element of frequent set.

A. The Design of AIMA Agents

The mining agent for the system, AIMA, in this work is
referred to as Adaptive Mobile Agent Association Rule
Miner (AMAARM). An adaptive MAARM, can be
completely described at any point in time by the three tuple,
which are its state, the adaptation plan, and the motivation
degree function. The adaptive state of the AMAARM is thus
the 3-tuple <MS, AS, ASS>, where MS is the Mechanism
state, AS is the Adapting state, and AS is the Application-
specific state for the AMAARM. The AMAARM model
described here consists of two components; a Mechanism
and an Adapter and all other parameters as described in
[29]. The Adapter is the component that decides whether
adaptation is necessary or not. If adaptation is necessary, the
adapter determines how best to adapt to the current
environment. The Mechanism senses the environment
through the sensors, analyze them, and create a view of the
environment called a belief. The belief is passed on to the
adapter, which then decides whether adaptation is necessary
or not. The Mechanism senses the environment through the
sensors, analyses them, and creates a view of the
environment called a belief. The belief is passed on to the
adapter, which uses it to decide whether adaptation is
necessary or not. If adaptation is needed, a new set of goals
is passed on to the mechanism, which then transforms the
set of goals into a set of actions to be carried out, and then
carries out the actions. The actors are used to make any
environment change specified in an action.

B. Adaptivity in AIMA

A task is executed by a mobile agent. A single mobile
agent may execute multiple tasks or may clone itself to
handoff some tasks to the cloned agents to be done in
parallel. A mobile agent executing a mining task migrates to
a data site that has the data to be mined, and performs the
local mining task there. If the data is available and the
environment is conducive for mining, the task is executed.
Otherwise, the environment is sensed by the mechanism
described in the previous sections and a belief of the
situation is formed, which enables the mining agent to take
the right decision. This was actually proven with the 99%
task completion rate obtained during the experimentation
and testing stage of this work. The various protocols
required supporting the identified primary functions of
AIMA agents and high-level interactions were defined for
each agent.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

IV. SYSTEM IMPLEMENTATION

The input to the system is an ARM task consisting of
mining at either single or multiple data sites. Each
individual data server has some specific data and resource
requirements, all of which have to be satisfied before the
task can be started. Association Rules are to be mined on
distributed database servers, each of which has a (possibly
different) set of data sizes. It is assumed that the set of
database servers and the data sizes are static, and this
information is available at all servers. However, the load
conditions at the servers can vary with time. The aim of the
system is to complete all the ARM tasks on the distributed
network as fast as possible subject to dependency and
resource constraints. An ARM task is fully executed by the
agent - MAARM. A MAARM executing an ARM task
migrates to a server that has the data that is required for the
mining task, and tries to generate the frequent itemsets. If all
the necessary resources at the data site are available and the
environment is conducive, then the mining task is executed.
Otherwise, the data server environment is sensed to get an
idea of what the environmental change is and the MAARM
may have to adapt to the changing environment using the
hard-coded instructions programmed into it as described in
section three.

A. Description of datasets

 Datasets can thus be considered to be NxD tables where
N is the number of columns and D is the number of records.
Data used in this work were real datasets downloaded from
the popular UCI Machine Learning Repository hosted by
the Centre for Machine Learning and Intelligent Systems
[31]. Four major benchmark data popularly used for
distributed association rule experiments were downloaded
and used for all the experiments. They are: Pima-Indians-
Diabetes, Letter-Recognition, Connect-4 and Cover Type.

B. Virtual Implementation of the Distributed Data sites

 A software tool called VMWare Workstation version
7.0.1 was used for creating the distributed environment
where the datasets were stored. A total of four data sites
were created on three virtual machines and the host system.
Description of Datasite1 (Host System): Hard Disk - 400
GB, Memory - 3GB, Processors - 2 Core(s), Guest
Operating System - Windows 7 Home Premium.
Description of Datasite2: Hard Disk - 100 GB, Memory - 1
GB, Processors – 1, Guest Operating System - Windows 7
Ultimate Edition. Description of Datasite3: Hard Disk -100
GB, Memory - 1GB, Processors – 1, Guest Operating
System - Windows 7 Ultimate Edition. Description of
Datasite4: Hard Disk - 100 GB, Memory - 1 GB, Processors
– 1, Guest Operating System - Windows 7 Ultimate
Edition.

C. Experimentation and Analysis of Results

experiments were simulated on four virtual machines
running on Intel (R) Core (TM) i5-2450M CPU @
2.50GHz, 2501 MHz, 2 Core(s), 3 Logical Processor(s)
Pentium(R) with 6GB of main memory running on

Windows 7 Home Premium Edition. Datasets were thus
distributed on four virtual machines at the most. The
experiments were performed by varying the minimum
support threshold between the ranges of 0% to 100% of
total transactions depending on the particular dataset used.
In order to evaluate AIMA, the experiments were also
repeated by varying the sizes of the different datasets at
various data sites in order to know how the algorithm scales
in mining the incremental databases compared to existing
methods that have to mine the entire databases all over. For
users that selected DARM task from the ARM task page,
they also have the additional option of choosing either (i) a
manually executed AIMA, where user have to activate the
mining agents, pick all the parameters, determine all or
selected data sites to be mined or the global mining
function, which is an adaptive AIMA where the entire
distributed mining process is carried mainly by the agents
using the default parameters and without the usual user
interference or (ii) an adaptive incremental mining
algorithm (AIMA) function that automatically adapts the
system to changes found in any of the data sites, most
especially data increments; where results are automatically
processed and presented to the user by simply and quickly
mining the distributed incremental database by updating the
past results. For the purpose of experimentation, the
minimum support of 20% and a minimum confidence of
80% were used as default values for AIMA. These values
could be changed anytime by the user as the need arises.

D. Experiments of Adaptive Incremental Mining

 AIMA offers the opportunity to dynamically the
distributed data sites as the system adapts to any changes
found in some or all of the data sites by automatically
mining the concerning sites and presenting an up-to-date,
real-time result to the data miner. This is done with details
of significant changes that occurred in the concerned
databases. The system immediately notifies the user
whenever there is an update in any of the data sites and
then go ahead with the mining process without the usual
users’ interference. The experiment was conducted on five
different distributed databases named: DDB_0, DDB_1,
DDB_2, DDB_3, and DDB_4 using the Pima Indian
Diabetes dataset as the experimental data. Each of the
distributed databases has four sites each. The first case (that
is, DDB_0) is the case where no update is found in any of
the four data sites. The second case (that is, DDB_1) is the
case where an update is found the first data site but no
update in the remaining sites and so on. A full description of
the distributed databases used for the experiment with
respect to whether a data site is updated or not is shown in
Table 1. The normal DARM was performed with AIMA
described in this work while the AIMA, the adaptive
incremental mining algorithm aspect of our system was used
for the incremental mining of the distributed databases.
These results are automatically generated by the system and
displayed with Jaspersoft iReport. The reports can be
printed or saved in any format, for example, .doc, .pdf etc.
as determined and chosen by the data miner.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

Results obtained from the experiment showed that the
adaptive incremental mining algorithm (AIMA) performed
better than the normal DARM in mining the updated
databases (fig. 1). Response time of the system actually
increased for the two methods as the size of each of the
distributed databases increased whenever new updates were
found. It was also observed from the result that the rate of
improvement of AIMA was far better than the normal
method as the size of updated databases becomes bigger and
bigger.

E. Performance Study on Mining Algorithm’s Adaptivity

A study was conducted to test how adaptive the mining
agents, MAARM, used in the system are. For this
experiment, adaptive MAARM is the mining agent hard-
coded with the adaptive model described while the non-
adaptive MAARM is the normal MAARM without the
adaptive model. The experiment showed the number of
times the mining process was completed with the adaptive
MAARM and non-adaptive MAARM for all the datasets
used in this work. The experiments were repeated twenty
five times for each dataset, also covering each of the two
options (adaptive MAARM and non-adaptive MAARM),
and the number of times the DARM task completed were
observed. The results showed that the adaptive MAARM
performed better (99%) than the non-adaptive MAARM
(94%) out of the 100 times the experiments were performed
on all datasets (fig. 2).

V. CONCLUSION AND FUTURE WORKS

An important study on distributed association rule mining

area of the subject data mining was conducted in this work.
The review conducted revealed that most of the current
DARM algorithms are complex and also requires massive
movement of data to a central memory, which is not feasible
in many real life situations that has big data. Moreover,
expected and unforeseen changes are bound to happen in the
mining environment. For instance, most existing systems
assume a static database while in real life transactional
databases in science, engineering, business etc. change from
time to time. This work therefore addressed a number of
these challenges by tapping into the power of mobile agents,
which was programmed and deployed, to mine these
constantly changing distributed databases on behalf of the
user. An improved system called AIMA was designed to
adapt to both expected and unforeseen changes in the
distributed databases and in the mining environment where
the mining mobile agents will operate. The target of this
design was to reduce the total response time and
communication overhead usually incurred by existing
DARM tasks. Adaptivity of mining agents were also hard-
coded into the system.

The results of the distributed incremental association rule

mining by AIMA proved that the proposed system can
easily adapt to real-time changes in the database by
adaptively mining the updated database and presenting
detailed and interesting results to the data miner about the
current situation of the updated database through the
distributed incremental mining of transaction changes in
these updated databases. The adaptive MAARM performed
better (with 99% DARM task completion rate) than the non-
adaptive MAARM (with 94% DARM task completion rate)
out of the 100 times the experiments were performed on all
datasets used in this work.

In addition, effective distribution and parallelization of

DARM tasks was attained with great flexibility. Adaptivity
was achieved both in changes occurring in the updated

TABLE I
DESCRIPTION OF DDB USED IN TESTING ADAPTIVE

INCREMENTAL MINING

 Data site 1 Data site 2 Data site 3 Data site 4
DDB_0 No update

found
No update
found

No update
found

No update
found

DDB_1 Update
found

No update
found

No update
found

No update
found

DDB_2 Update
found

Update
found

No update
found

No update
found

DDB_3 Update
found

Update
found

Update
found

No update
found

DDB_4 Update
found

Update
found

Update
found

Update
found

Fig. 1: Normal DARM compared with adaptive incremental DARM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

DDB_0 DDB_1 DDB_2 DDB_3 DDB_4

R
e
sp
o
n
se
 T
im

e
 (
se
c
o
n
d
s)

Number of Site(s) Incremented

Adaptive Incremental Mining Against Normal Mining on
Four Sites

NORMAL DARM

AIMA

Fig. 1: Normal DARM compared with adaptive incremental DARM

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

databases and also the mining environment and finally
response time and communication overhead of distributed
association rule mining tasks were generally reduced. The
design, analysis and implementation of AIMA had really
opened up a lot of some other explorable issues in the field
of DARM; hence more efforts in the area of future works
are required to fully develop the system to meet with future
challenges. Future extensions of AIMA can also address
more issues in the area of security and fault tolerance of the
mining agents and the entire system. This could help to
improve the reliability and trustworthiness of the system.

REFERENCES
[1] M.G. Kaosar, R. Paulet, X. Yi, Fully homomorphic encryption based

two-party association rule mining. Elsevier Journals: Data &
Knowledge Engineering. Volume 76–78 (2012) 1–15.

[2] A. Adhikari A., J. Adhikari, W. Pedrycz, Data Analysis and Pattern
Recognition in Multiple Databases. Intelligent Systems Reference
Library 61, @ Springer International Publishing Switzerland, (2014)
21-42.

[3] S. Saravanan, T. Christopher, A Study on Milestones of Association
Rule Mining Algorithms in Large Databases. International Journal of
Computer Applications, Volume 47, No.3 (2012) Pg 12-19.

[4] F.I. Ariwa, B.S. Mohamed, M.M. Mohamed, Informatization and E-
Business Model Application for Distributed Data Mining Using
Mobile Agents. International Conference WWW/Internet2003.

[5] K.A. Albashiri, EMADS: An Investigation into the Issues of Multi-
Agent Data Mining. PhD Thesis, The University of Liverpool, Ashton
Building, Ashton Street, Liverpool L69 3BX, United Kingdom, 2010.

[6] M.E. Otey, C. Wang, S. Parthasarathy, A. Veloso, J.W. Meira, Mining
Frequent Itemsets in Distributed and Dynamic Databases. In ICDM
2003: Third IEEE International Conference on Data Mining (2003)
617 - 620.

[7] A. Schuster, R. Wolff, D. Trock, A high-Performance Distributed
Algorithm for Mining Association Rules. In TCDM ‘03: Proceedings
of the Third IEEE International Conference on Data Mining,
Washington, DC, USA (2003) page 291.

[8] C. Silvestri, S. Orlando, Distributed Approximate Mining of Frequent
Patterns. ACM Symposium on Applied Computing, Italy (2005).

[9] C. Silvestri, Distributed and Stream Data Mining Algorithms for
Frequent Pattern Discovery. Ph.D. Thesis: TD-2006-4, Universit’a
Ca’ Foscari di Venezia.

[10] M. Byrd, C. Franke, The State of Distributed Data Mining. ECS265
Project Report UC Davis, Davis CA 95616, USA (2007).

[11] N.A.L. Khac, L.M Aouad, M. Kechadi, Distributed Knowledge Map
for Mining Data on Grid Platforms. International Journal of Computer
Science and Network Security, Vol.7 No.10 (2007).

[12] C. Chang, Y. Li, J. Lee, An Efficient Algorithm for the Incremental
Mining of Association Rules. Proceedings of the International
Workshop on Research Issues in Data Engineering: Stream Data
Mining and Applications, (2005) 1-8.

[13] R. Meo, M. Botta, R. Esposito, A. Gallo, A Novel Incremental
Approach to Association Rules Mining in Inductive Databases.
Constraint-Based Mining and Inductive Databases, Springer Berlin
Heidelberg, Lecture Notes in Computer Science Volume 3848 (2006)
267-294.

[14] N. Badal, S. Tripathi, Frequent Data Itemset Mining Using
VS_Apriori Algorithms. International Journal on Computer Science
and Engineering. Vol. 02, No. 04 (2010) 1111-1118.

[15] V.S. Rao, S. Vidyavathi, Distributed Data Mining and Mining Multi-
Agent Data. International Journal on Computer Science and
Engineering Vol. 02, No. 04 (2010) 1237-1244.

[16] S. Paul, An optimized distributed association rule mining algorithm in
parallel and distributed data mining with xml data for improved
response time. International Journal of Computer Science and
Information Technology, Volume 2, Number 2 (2010).

[17] V. Umarani, M. Punithavalli, Sampling based Association Rules
Mining - A Recent Overview. International Journal on Computer
Science and Engineering Vol. 02, No. 02 (2010) 314-318.

[18] K.A Albashiri, Data Partitioning and Association Rule Mining Using
a Multi-Agent System. International Journal of Engineering Science
and Innovative Technology (IJESIT), Volume 2, Issue 5 (2013) 161-
169.

[19] K.A. Albashiri, F. Coenen, P. Leng, EMADS: An Extendible Multi-
Agent Data Miner. Knowledge-Based Systems (KBS) Journal,
Volume 22, Issue 7, (2009) 523-528.

[20] K.A. Albashiri, F. Coenen, P. Leng, An investigation into the issues
of Multi-Agent Data Mining. In Bouca, D. and Gafagnao, A. (Eds),
Agent Based Computing, Nova Science Publishers, ISBN: 978-1-
60876-684-0, 2010.

[21] K.A. Albashiri, Agent Based Data Distribution for Parallel
Association Rule Mining. International Journal of Computers Volume
8 (2014) 24-32.

[22] M. Wooldridge, An Introduction to Multi-Agent Systems. John Wiley
and Sons, Chichester, United Kingdom, 2009.

[23] A. Pokahr, L. Braubach, Jadex User Guide. Release 0.96, Distributed
Systems Group, University of Hamburg, Germany. http://vsis-
www.informatik.uni-hamburg.de/projects/jadex/, 2007.

[24] F.M.T. Brazier, N.J.E Wijngaards, Automated servicing of agents.
AISB journal, Vol.1, No.1 (2001) 5-20.

[25] S. Ranjan, A. Gupta, A. Basu, A. Meka, A. Chaturvedi, Adaptive
mobile agents: Modeling and a case study. 2nd Workshop on
Distributed Computing “IEEE md CFP : WDC (2000).

[26] L.H. Tamargo, A.J. Garcia, M.A. Falappa, G.R. Simari, Modeling
knowledge dynamics in multi-agent systems based on informants. The
Knowledge Engineering Review, Cambridge University Press, DOI:
10.1017/S000000000000000, Printed in the United Kingdom, vol.
00:0, (2010) pp. 1-31.

[27] S.M. Khan, Y. Lespérance, A Logical Framework for Prioritized Goal
Change. Proceedings of the 9th Int. Conf. on Autonomous Agents and
Multi-agent Systems (AAMAS 2010), Toronto, Canada, (2010) 283-
290.

[28] M.B. Riemsdijk, M. Dastani, M. Winikoff, Goals in Agent Systems:
A Unifying Framework. Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Sys (AAMAS 2008), May, 12-16, Estoril,
Portugal, (2008) 713-720.

[29] A.O. Ogunde, O. Folorunso, A.S. Sodiya, On the Adaptivity of
Distributed Association Rule Mining Agents. The Fourth International
Conference on Adaptive and Self-Adaptive Systems and Applications,
Adaptive 2012 Conference, IARIA July 22nd – 27th , Nice, France,
www.iaria.org/conferences (2012) 69-74.

[30] A.O. Ogunde, O. Folorunso, A.S. Sodiya, J.A. Oguntuase, Towards
an adaptive multi-agent architecture for association rule mining in
distributed databases. In IEEE Xplore database Adaptive Science and
Technology (ICAST), 2011, 3rd IEEE International Conference on
Adaptive Science and Technology, Pg 31 – 36.

[31] A. Frank, A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2010 .

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

