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Abstract—In this paper, we study the existence of solutions of
a second-order difference equation with summation boundary
value problem at resonance by using intermediate value theo-
rems and Schaefer’s fixed point theorem, we obtain a sufficient
condition for the existence of the solution for the problem.
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fixed point theorem, cone.

I. INTRODUCTION

THE study of the existence of solutions of multipoint
boundary value problems for linear second-order ordi-

nary differential and difference equations was initiated by
Ilin [1]. Then Gupta [2] studied three-point boundary value
problems for nonlinear second-order ordinary differential
equations. Since then, nonlinear second-order three-point
boundary value problems have also been studied by many
authors, one may see the text books [3-4]. We refer the
readers to [6-13] and references therein. Also, there are a
lot of papers dealing with the resonant case for multi-point
boundary value problems, see [14-19].

In this paper, we study the existence of solutions of a
second-order difference equation with summation boundary
value problem at resonance

∆2u(t− 1) + f(t, u(t)) = 0, t ∈ {1, 2, ..., T}, (1)

with summation boundary condition

u(0) = 0, u(T + 1) = α

η∑
s=1

u(s), (2)

where f is continuous, T ≥ 3 is a fixed positive integer,
η ∈ {1, 2, ..., T − 1}, 2(T+1)

αη(η+1) = 1. we are interested in
the existence of the solution for problem (1)-(2) under the
condition 2(T+1)

αη(η+1) = 1, which is a resonant case. Using some
properties of the Green function G(t, s), intermediate value
theorems and Schaefer’s fixed point theorem, we establish a
sufficient condition for the existence of positive solutions of
problem 2(T+1)

αη(η+1) = 1.
Let N be the nonnegative integer, we let Ni,j = {k ∈

N| i ≤ k ≤ j} and Np = N0,p.
Throughout this paper, we suppose the following condi-

tions hold:
(H) f(t, u) ∈ C(NT+1 ×R,R) and there exist two positive
continuous functions p(t), q(t) ∈ C(NT+1, R

+) such that

|f(t, tu)| ≤ p(t) + q(t)|u|m, t ∈ NT+1, (3)
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where 0 ≤ m ≤ 1. Furthermore,

lim
u→±∞

f(t, tu) = ∞. (4)

for any t ∈ N1,T .
To accomplish this, we denote C(NT+1, R),the Banach

space of all function u with the norm defined by ∥u∥ =
max{u(t) | t ∈ NT+1}

The proof of the main result is based upon an application
of the following theorem.

Theorem 1. ([5]). Let X be a Banach space with C ⊂ X
closed and convex. Assume that U is a relatively open subset
of C with 0 ∈ U and T : U → C is completely continuous.
Then either
(i) T has a fixed point in U , or
(ii) there exist u ∈ ∂U and µ ∈ (0, 1) with u = µTu.

The plan of the paper is follows. In Section 2, we recall
some lemmas. In Section 3, we prove our main result. Some
illustrate example are presented in Section 4.

II. PRELIMINARIES

We now state and prove several lemmas before stating
our main results.

Lemma 1. The problem (1)-(2) is equivalent to the following

u(t) =

T∑
s=1

G(t, s)f(s, u(s)) +
u(T + 1)

T + 1
t, (5)

where
G(t, s) =

1

(T + 1)(α− 1)
× (6)

αt(T + 1− s)− 1
2αt(η − s)(η − s+ 1)

− (T + 1)(α− 1)(t− s), s ∈ N1,t−1 ∩ N1,η−1

αt(T + 1− s)− 1
2αt(η − s)(η − s+ 1), s ∈ Nt,η−1

αt(T + 1− s)− (T + 1)(α− 1)(t− s), s ∈ Nη,t−1

αt(T + 1− s), s ∈ Nt,T ∩ Nη,T

Proof. Assume that u(t) is a solution of problem (1)-(2) ,
then it satisfies the following equation:

u(t) = C1 + C2t−
t−1∑
s=1

(t− s)f(s, u(s))

where C1, C2 are constants. By the boundary value condition
(2), we obtain C1 = 0. So,

u(t) = C2t−
t−1∑
s=1

(t− s)f(s, u(s)) (7)
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From (2.3),
η∑

s=1

u(s) =
η(η + 1)

2
C2 −

1

2

η−1∑
s=1

(η − s)(η − s+ 1)y(s)

From the second boundary condition, we have

(2T + 2−αη(η + 1))C2 = 2

T∑
s=1

(T + 1− s)f(s, u(s))

+ α

η−1∑
s=1

(η − s)(η − s+ 1)f(s, u(s)). (8)

Since 2(T+1)
αη(η+1) = 1, then (10) is solvable if and only if

T∑
s=1

(T+1−s)f(s, u(s)) =
α

2

η−1∑
s=1

(η−s)(η−s+1)f(s, u(s)).

Note that

u(T + 1)−
η∑

s=1

u(s) = (T + 1)C2

−
T∑

s=1

(T + 1− s)f(s, u(s))− η(η + 1)

2
C2

+
1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s)),

and then

C2 =
α

(T + 1)(α− 1)

[
u(T + 1)−

η∑
s=1

u(s)

+
T∑

s=1

(T + 1− s)f(s, u(s))

− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]
.

We now use that u(T +1) =
2(T + 1)

η(η + 1)

η∑
s=1

u(s) to get

α

(T + 1)(α− 1)

[
u(T + 1)−

η∑
s=1

u(s)

]
=

u(T + 1)

T + 1
,

and

C2 =
α

(T + 1)(α− 1)

[ T∑
s=1

(T + 1− s)f(s, u(s))

− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]
+

u(T + 1)

T + 1
.

Hence the solution of (1)-(2) is given, implicity as

u(t) =
αt

(T + 1)(α− 1)

[ T∑
s=1

(T + 1− s)f(s, u(s))

− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]

−
t−1∑
s=1

(t− s)f(s, u(s)) +
u(T + 1)

T + 1
t. (9)

According to (211) it is easy to show that (7) holds.
Therefore, problem (1)-(2) is equivalent to the equation
(7) with the function G(t, s) defined in (8). The proof is
completed. �
Lemma 2. For any (t, s) ∈ NT+1 × NT+1, G(t, s) is
continuous, and G(t, s) > 0 for any (t, s) ∈ N1,T × N1,T .

Proof. The continuity of G(t, s) for any (t, s) ∈ NT+1 ×
NT+1, is obvious. Let

g1(t, s) = αt(T+1−s)−1

2
αt(η−s)(η−s+1)−(T+1)(α−1)(t−s),

where s ∈ N1,t−1 ∩ N1,η−1

Here we only need to prove that g1(t, s) > 0 for s ∈
N1,t−1∩N1,η−1, the rest of the proof is similar. So, from the
definition of g1(t, s), η ∈ N1,T−1 and the resonant condition
2(T+1)
αη(η+1) = 1, we have

g1(t, s) = αt(T + 1− s)− 1

2
αt(η − s)(η − s+ 1)

− (T + 1)(α− 1)(t− s)

> (T + 1)(t− s)− α

2

> (T + 1)(t− s)− T + 1

η(η + 1)

> (T + 1)(t− s)− (T + 1)

= (T + 1)(t− s− 1)

≥ 0,

for s ∈ N1,t−1 ∩ N1,η−1.
Since t > s and η(η+1) ≥ 2(T +1− t) where T ≥ 3. The
proof is completed. �

Let
G∗(t, s) =

1

t
G(t, s). (10)

Then

G∗(t, s) =
1

(T + 1)(α− 1)
×

α(T + 1− s)− 1
2α(η − s)(η − s+ 1)

− 1
t (T + 1)(α− 1)(t− s), s ∈ N1,t−1 ∩ N1,η−1

α(T + 1− s)− 1
2α(η − s)(η − s+ 1), s ∈ Nt,η−1

α(T + 1− s)− 1
t (T + 1)(α− 1)(t− s), s ∈ Nη,t−1

α(T + 1− s), s ∈ Nt,T ∩ Nη,T

(11)
Thus, problem (1)-(2) is equivalent to the following

equation:

u(t) =
T∑

s=1

tG∗(t, s)f(s, u(s)) +
u(T + 1)

T + 1
t, (12)

By a simple computation, the new Green function G∗(t, s)
has the following properties.

Lemma 3. For any (t, s) ∈ NT+1 × NT+1, G
∗(t, s) is

continuous, and G∗(t, s) > 0 for any (t, s) ∈ N1,T × N1,T .
Furthermore,

lim
t→0

G∗(t, s) := G∗(0, s)

=
1

(T + 1)(α− 1)


α(T + 1− s)− 1

2α(η − s)(η − s+ 1),

s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T

(13)
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Lemma 4. For any s ∈ N1,T , G
∗(t, s) is nonincreasing with

respect to t ∈ NT+1, and for any s ∈ NT+1,
△tG

∗(t,s)
△t < 0,

and △tG
∗(t,s)

△t = 0 for t ∈ Ns. That is, G∗(T + 1, s) ≤
G∗(t, s) ≤ G∗(s, s) where

G∗(t, s) ≤ G∗(s, s)

=
1

(T + 1)(α− 1)


α(T + 1− s)− 1

2α(η − s)(η − s+ 1),

s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T

(14)
G∗(t, s) ≥ G∗(T + 1, s)

=
1

(T + 1)(α− 1)


(T + 1)(T + 1− s)− 1

2α(η − s)×
(η − s+ 1), s ∈ N1,η−1

(T + 1)(T + 1− s), s ∈ Nη,T

(15)

Let
u(t) = tw(t). (16)

Then u(T +1) = (T +1)w(T +1), and equation (14) gives

w(t) =
T∑

s=1

G∗(t, s)f(s, sw(s)) + w(T + 1), (17)

Now we have

y(t) = w(t)− w(T + 1), (18)

Then y(T + 1) = w(T + 1)− w(T + 1) = 0, and equation
(19) gives

y(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + w(T + 1))), (19)

We replace w(T +1) by any real number λ, then (21) can
be rewritten as

y(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ)), (20)

The following result is based on Schaefer’s fixed point
theorem. We define an operator T on the set Ω = C(NT+1)
as follows:

Ty(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ)), (21)

Lemma 5. Assume that f ∈ C(NT+1 × R,R),∑T
s=1 G

∗(t, s)q(s) < T + 1 and (1.5) holds. Then the
equation (20) has at least one solution for any real number
λ.

Proof. We divide the proof into four steps.
Step I. Continuity of T . Let yn be a sequence such that
yn → y in Ω. Then, for each t ∈ NT+1, we get

∥(Tyn)(t)− (Ty)(t)∥

= ∥ 1

T + 1

T∑
s=1

G∗(t, s)[f(s, s(yn(s)

+λ))− f(s, s(y(s) + λ))]∥

≤ 1

T + 1
∥

T∑
s=1

G∗(t, s)∥∥f(s, s(yn(s)

+λ))− f(s, s(y(s) + λ))∥

Since f(t, ty) is continuous function and from Lemma 4,
it is continuous with respect to (t, s) ∈ NT+1 × NT+1, we
have ∥(Tyn)(t)− (Ty)(t)∥ → 0 as n → ∞. This means that
T is continuous in Ω.
Step II. T maps bounded sets into bounded sets in Ω. Let
us prove that for any R > 0, there exists a positive constant
L such that for each y ∈ BR = {y ∈ C(NT+1 ×R) : ∥y∥ ≤
R}, we have ∥(Ty)(t)∥ ≤ L. Indeed, for any y ∈ BR,we
obtain

∥(Ty)(t)∥

= ∥ 1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ))∥

≤ 1

T + 1

T∑
s=1

G∗(t, s)p(s) +
1

T + 1

T∑
s=1

G∗(t, s)q(s)×

(∥y(s)∥+ ∥λ∥)m

≤ 1

T + 1

T∑
s=1

G∗(s, s)p(s) +
(R+ ∥λ∥)m

T + 1
×

T∑
s=1

G∗(s, s)q(s)

:= L. (22)

Step III. T (BR) is equicontinuous with BR defined as in
Step II. Since BR is bounded, then there exists M > 0 such
that |f | ≤ M . For any ε > 0, there exist t1, t2 ∈ NT+1, t1 ≤
t2 such that

M

T + 1

[
(t1 − 1)(t2 − t1)

2
+

t2 + 1

2
+

(t1 + 1)(t1 − 2t2)

2t2

]
< ϵ.

Then we have

∥(Ty)(t2)− (Ty)(t1)∥

≤ ∥ 1

T + 1

T∑
s=1

|G∗(t2, s)−G∗(t1, s)||f(s, s(y(s) + λ))|

≤ M

T + 1

[
t1−1∑
s=1

s(t2 − t1)

t1t2
+

t2−1∑
s=t1

(
1− s

t2

)]

=
M

T + 1

[
(t1 − 1)(t2 − t1)

2
+

t2 + 1

2

+
(t1 + 1)(t1 − 2t2)

2t2

]
≤ ϵ.

This means that the set T (BR) is an equicontinuous set.
As a consequence of Steps I to III together with the Arzela’-
Ascoli theorem, we get that T is completely continuous in
Ω.
Step IV. A priori bounds. We show that the set

E = {y ∈ C(NT+1,R) / y = µTy for some µ ∈ (0, 1)}

is bounded.
By Lemma 1, assume that there exist y ∈ ∂BR with

∥y(t)∥ = R and µ ∈ (0, 1) such that y = µTy. It follows
that

y(t) = µ|(Ty)(t)| = µ

T + 1

∣∣∣∣∣
T∑

s=1

G∗(t, s)f(s, s(y(s) + λ))

∣∣∣∣∣
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and

∥y(t)∥ =

∥∥∥∥∥ µ

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ))

∥∥∥∥∥
<

1

T + 1

[ T∑
s=1

G∗(s, s)p(s) +

T∑
s=1

G∗(s, s)q(s)×

(∥y(s)∥+ ∥λ∥)m
]

≤ 1

T + 1

T∑
s=1

G∗(s, s)p(s) +
(R+ ∥λ∥)m

T + 1
×

T∑
s=1

G∗(s, s)q(s)

:= L. (23)

This shows that the set E is bounded. As a consequence
of Schaefer’s fixed point theorem, we conclude that T has a
fixed point which is a solution of problem (3)-(4). �

III. MAIN RESULTS

In this section, we prove our result by using Lemmas
2.5-2.7 and the intermediate value theorem.

Theorem 2. Assume that (H1) holds. If∑T
s=1 G

∗(s, s)q(s) < 1, then the problem (1)-(2) has
at least one solution, where

G∗(s, s)

=
1

(T + 1)(α− 1)


α(T + 1− s)− 1

2α(η − s)(η − s+ 1),

s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T

Proof. Since (25) is continuously dependent on the parameter
λ. So, we should only investigate λ such that y(T + 1) = 0
in order that u(T + 1) = λ.

Equation (22) is rewrite as

yλ(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(yλ(s) + λ)), t ∈ NT+1. (24)

where λ is any given real number.
Equation (26) show that there exists λ such that

L(λ) := yλ(T+1) =
1

T + 1

T∑
s=1

G∗(T+1, s)f(s, s(yλ(s)+λ))

(25)
and we can observe that, yλ(T+1) is continuously dependent
on the parameter λ.

To prove that there exists λ∗ such that yλ∗(T +1) = 0, we
must to show that lim

λ→∞
L(λ) = ∞ and lim

λ→−∞
L(λ) = −∞.

Firstly, we prove that lim
λ→∞

L(λ) = ∞ by supposing
that lim

λ→∞
L(λ) < ∞ as acontradiction. Therefore there

exists a sequence {λn} with lim
n→∞

L(λ) = ∞ such that
lim

λn→∞
L(λn) < ∞. This implies that the sequence {L(λn)}

is bounded. Since the function f(t, ty) is continuous with
respect to t ∈ NT+1 and y ∈ R, we have

f(t, t(yλn(t) + λn)) ≥ 0 , t ∈ NT+1 (26)

where λn is large enough, Assuming that (28) is true and
using (26), we have

yλ ≥ 0 , t ∈ NT+1. (27)

Therefore,

lim
λn→∞

f(t, t(yλn(t) + λn)) = ∞ , t ∈ NT+1. (28)

From (H), we get

lim
λ→∞

f(t, tu) = ∞ , t ∈ NT+1. (29)

From (27),(30) and (31), we have

lim
λn→∞

yλn(T + 1)

= lim
λn→∞

T∑
s=1

G∗(T + 1, s)f(s, s(yλn(s) + λn))

≥ lim
λn→∞

3
4 (T−1)∑

s= 1
4 (T−1)

G∗(T + 1, s)f(s, s(yλn(s) + λn))

= ∞, (30)

we find that this result contradicts our assumption.
We define

Sn = {t ∈ NT+1 | f(t, t(yλn(t) + λn)) < 0}.

where λn is large. Note that Sn is not empty.
Secondly, we divide the set Sn into set S̃n and set Ŝn as

follows:

S̃n = {t ∈ Sn | yλn + λn > 0},
Ŝn = {t ∈ Sn | yλn + λn ≤ 0}

where S̃n ∩ Ŝn = ∅, S̃n ∪ Ŝn = Sn. So, we have from (H)
that Ŝn is not empty.

In addition, we find from (H) that the function f(t, tu) is
bounded below by a constant for t ∈ NT+1 and λ ∈ [0,∞).
Thus, there exists a constant M(< 0) which is independent
of t and λn, such that

f(t, t(yλn(t) + λn)) ≥ M , t ∈ S̃n, (31)

Let

h(λn) = min
t∈Sn

yλn(t)

and using the definitions of S̃n and set Ŝn, we have

h(λn) = min
t∈Ŝn

yλn(t) = −∥yλn(t)∥Ŝn
.

It follows that h(λn) → −∞ as λn → ∞ since if h(λn) is
bounded below by a constant as λn → ∞, then (32) holds.
Therefore, we can choose largeλn1 such that

h(λn) <
1

T+1 ×

max
{
−1,

M
∑T

s=1 G∗(s,s)−
∑T

s=1 G∗(s,s)p(s)

1−
∑T

s=1 G∗(s,s)q(s)

}
(32)
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for n > n1. Employing (H), (26), (33), (34), the definitions
of S̃n, and set Ŝn, for any λn > λn1 , we have

yλn(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(yλn(s) + λn))

≥ 1

T + 1

[
M

∑
s∈S̃n

G∗(s, s)−
∑
s∈Ŝn

G∗(s, s)p(s)

−
∑
s∈Ŝn

G∗(s, s)q(s)∥yλn(s) + λn∥m
]
.

It follows that

yλn(t) ≥ 1

T + 1

[
M

T∑
s=1

G∗(s, s)−
T∑

s=1

G∗(s, s)p(s)

−
T∑

s=1

G∗(s, s)q(s)∥yλn(s) + λn∥mSn

]
,

≥ 1

T + 1

[
M

T∑
s=1

G∗(s, s)−
T∑

s=1

G∗(s, s)p(s)

−
T∑

s=1

G∗(s, s)q(s)h(λn)

]
, t ∈ Sn

which implies that

h(λn) ≥
1

T + 1

[
M

∑T
s=1 G

∗(s, s)−
∑T

s=1 G
∗(s, s)p(s)

1−
∑T

s=1 G
∗(s, s)q(s)

]
.

This result contradicts (34). Thus, the proof that
lim
λ→∞

L(λ) = ∞ is done. using a similar method, we
can prove that lim

λ→−∞
L(λ) = −∞.

Notice that L(λ) is continuous with respect to λ ∈
(−∞,∞). From the intermediate value theorem, there exists
λ∗ ∈ (−∞,∞) such that L(λ∗) = 0 , that is, y(T + 1) =
yλ∗(T + 1) = 0, which satisfies the second boundary value
condition of (4). The proof is completed. �

IV. SOME EXAMPLES

In this section, we give an example to illustrate our
result.
Example Consider the BVP

∆2u(t− 1) + t2 +
1

2
u(t) = 0, t ∈ N1,4, (33)

u(0) = 0, u(5) =
5

6

2∑
s=1

u(s). (34)

Set α = 5
6 , η = 2, T = 4, f(t, u) = t2 + 1

2u(t).
So we have

αη(η + 1)

2(T + 1)
= 1

and
f(t, tu) = t2 +

t

2
u(t).

Now we take q(t) = t
5

It is easy to check that

lim
u→±∞

f(t, tu) = ±∞

and
4∑

s=1

G∗(s, s)q(s) ≤ 1

25

4∑
s=1

(5− s)s =
4

5
< 1.

Thus the conditions of Theorem 2 are satisfied. Therefore
problem (35)-(36) has at least a nontrivial solution.
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