
On Counting Planar Models

Stefan Porschen∗, Tatjana Schmidt†

Abstract—We investigate the computational com-
plexity of #SAT for k-outerplanar formulas, a problem
which in general is #P-complete. For 1-outerplanar
formulas over n variables we solve #SAT in time
O(n5.13). More generally, we show that #SAT for k-
outerplanar graphs, k ≥ 2, can be solved in time
O(n1.7(2k+1)). Finally, we prove that #SAT for nested
formulas runs in time O(n8.5).

Keywords: CNF-formula, satisfiability, k-outerplanar,

counting-problem

1 Introduction

The propositional satisfiability problem (SAT) of con-
junctive normal form (CNF) formulas is an essential com-
binatorial problem, namely one of the first problems that
have been proven to be NP-complete [4]. More precisely,
it is the natural NP-complete problem and thus lies at
the heart of computational complexity theory. Moreover
SAT plays a fundamental role in the theory of designing
exact algorithms, and it has a wide range of applications
because many problems can be encoded as a SAT problem
via reduction [9, 8] due to the rich expressiveness of the
CNF language. The applicational area is pushed by the
fact that meanwhile several powerful solvers for SAT have
been developed (cf. e.g. [12, 18] and references therein).
Also from a theoretical point of view one is interested in
classes for which SAT can be solved in polynomial time.
There are known several subclasses of CNF restricted to
which SAT behaves polynomial-time solvable, so for in-
stance 2-CNF-SAT, where clauses have length at most
two [1], and Horn-SAT [15], confer also [16]. Also CNF
formulas for modelling industrial applications often admit
a specific structure which sometimes can be described by
graph-theoretic means. Clearly efficient algorithms for
such instances are of high interest if achievable. Our pa-
per specifically is devoted to study the problems SAT
and #SAT for CNF formulas admitting a k-outerplanar
graph structure. Recall that for unrestricted formulas
#SAT means to count all solutions and that it is known
to be a basic #P-complete problem [19]. Observe that
#SAT also solves SAT for a given instance.

In this paper we exploit the separator theorem proved in
[13]. It states that the vertex set of a planar graph can

∗Mathematics Group, Department 4, HTW Berlin, D-10313
Berlin, Germany, Email: porschen@htw-berlin.de.

†Waidmarkt 18, D-50676 Köln, Germany.

be partitioned into two sets V1 and V2 of at most 2n/3
vertices each, plus a separator set S containing O(n1/2)
vertices, such that no vertex in V1 is adjacent to a ver-
tex in V2. In [3] it is shown that the tree width of a k-
outerplanar graph G is at most 3k−1, in which case it is
ensured that G admits a type-2 1

2 (n− (3k−1))-separator
of size at most 3k, for positive integer k. Here, a type-2
k-separator is a set U ⊆ V , such that each connected
component of the induced subgraph G[V − U] contains
at most k vertices. Given a simple graph G = (V,E),
recall that an induced subgraph over vertex set U ⊆ V
admits exactly those edges of G joining the vertices in U
[7]. However, the separation approach due to [13] men-
tioned first seems to be more appropriate for our pur-
poses. So, on that basis we first design an algorithm
solving #SAT for 1-outerplanar formulas which then is
generalized to the case of arbitrary fixed value k yielding a
time complexity that is upper bounded by O(n1.7(2k+1)),
i.e., O(n5.13) for k = 1. Finally, nested formulas defined
in [10] are treated. A nested formula turns out to have
a 2-outerplanar graph structure, so counting its models
over n variables never consumes more than O(n8.5) time.

2 Notation and Preliminaries

Let CNF denote the set of duplicate-free conjunctive nor-
mal form formulas over propositional variables x ∈ {0, 1}.
A positive (negative) literal is a (negated) variable. The
complement of a literal ` is its negation ¯̀. Each formula
C ∈ CNF is considered as a clause set, and each clause
c ∈ C is represented as a literal set, so clauses are not per-
mitted to contain a literal more than once. For a formula
C, clause c, by V (C), V (c) we denote the set of variables
(neglecting negations), contained in C resp. in c. Given
a clause c and x ∈ V (c), let `(x) ∈ c denote the literal
over x in c.

The satisfiability problem (SAT) asks whether a formula
C ∈ CNF has a model, which is a truth assignment t :
V (C) → {0, 1} assigning at least one literal in each clause
of C to 1. The counting version #SAT of SAT is to
determine the number N(C) of models of a formula C ∈
CNF. Given C and x ∈ V (C) by C(x = ε) we denote the
formula resulting from C by evaluation of the assignment
x = ε. Hence C(x = ε) contains only those clauses that
are still unsatisfied by x = ε, for ε ∈ {0, 1}, and from
which the literal `(x) is removed. More generally, given
a truth assignment t, and U = {xi1 , . . . , xir

} ⊆ V (C), by
Ct(xi1 ,...,xir) we denote the formula obtained from C by

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

its evaluation according to t(xi1), . . . , t(xir
).

Moreover, an embedding of a planar graph is called 1-
outerplanar (or simply outerplanar) if all vertices lie
on the exterior face. For k ≥ 2, a planar graph G
is k-outerplanar, if G admits an embedding such that
the deletion of all vertices on the outer face yields a
(k − 1)-outerplanar graph. Given a CNF formula C =
{c1, . . . , cm} with variable set V (C) = {x1, . . . , xn} we
define its (formula) graph GC as follows: Its vertex set is
C ∪ V (C), and its edge set is {{ci, xj} : xj ∈ V (ci), 1 ≤
i ≤ m, 1 ≤ j ≤ n}. A vertex in in GC from C is called
a clause-vertex abbreviated by c-vertex, and a vertex in
GC from V (C) is called a variable-vertex throughout ab-
breviated by v-vertex. We call a formula k-outerplanar
if its graph is k-outerplanar, for fixed positive integer
k ≥ 1. Clearly the correspondence between formulas and
formula graphs is uniquely determined by the definition
above. Therefore having a graph G we often write N(G)
for the number of models of the underlying formula. Sim-
ilarly, given C we denote by GC(x = ε) the formula graph
of C(x = ε) as defined above, where ε ∈ {0, 1}. A model
of a formula graph always means the model of the under-
lying formula.

3 #SAT for Outerplanar Formulas

First we aim at a polynomial-time algorithm for count-
ing all models of an outerplanar formula. The basis is
a devide-and-conquer approach resting on the separator
theorem for planar graphs due to [13]. This result states
that the vertex set of a planar graph of n vertices can be
partitioned into three parts V1, V2, S such that no edge
joins a vertex in V1 with a vertex in V2; neither V1 nor
V2 contains more than 2n/3 vertices, and the separator
set S contains no more than 2

√
2
√

n separator vertices.
Throughout this section we use a nice variant of the sep-
arator theorem above [14] for the special case of outer-
planar graphs stating that the separator set then has at
most two vertices. It is well known that a separator set
for outerplanar graphs can be computed in linear time
[3].

Let us emphasize some notions concerning cycle-free
graph patterns which can be treated as special cases in
our algorithm which is described below. A connected out-
erplanar formula graph G without cycles is called a tree.
A tree specifically is called a v-tree if each pair of inter-
secting paths is allowed to intersect in a v-vertex only. If
an arbitrary path of a v-tree is fixed it will be refered to
as its main path. Observe that a tree which is no v-tree
has a c-vertex that is adjacent to at least three v-vertices.
Let P be an arbitrary path and let α be a fixed model
over the variables x1, . . . , xn of the formula underlying P .
We write M(α(xi)) for the number of all different models
of P , in which the variables xi, . . . , xn are set according
to α and the variables x1, . . . , xi−1 can be set arbitrarily

as long as P is satisfied. Similarly, we write M(α(xi))
for the number of all different models of P , where the
variables xi+1, . . . , xn are set according to α, xi = α(xi)
and the variables x1, . . . , xi−1 can be assigned arbitrarily
as long as P is satisfied. Next we state our algorithm for
counting all models of an outerplanar formula. This al-
gorithm works recursively using subprocedures when the
graph of the input formula is a tree or a path. These
subprocedures are described below.

Algorithm 1
Input: C ∈ CNF outerplanar.
Output: N(C).

1. Compute GC .

2. As long as there is a c-vertex cj in GC , which is
adjacent to a single v-vertex xi only, then fix the
value of xi such that cj is satisfied. Then remove all
c-vertices which are satisfied by xi, remove vertex xi

and all its incident edges from GC .

3. If there is a c-vertex that is adjacent to no v-vertex
(corresponding to an empty clause), then C is unsat-
isfiable and the procedure stops with output N(C) =
0.

4. If GC is a path, then C is satisfiable and N(C) =
N(GC) is determined by Procedure Path.

5. If GC is a tree, then N(GC) is determined by
Procedure Tree.

6. (a) Fix two vertices xi and cj such that GC is par-
titioned into two subgraphs G1

C and G2
C , which

both have xi und cj in common and neither G1
C

nor G2
C contains more than 2n

3 v-vertices. In
addition, there is no edge joining a vertex from
G1

C \ {xi, cj} and a vertex from G2
C \ {xi, cj}.

For simplicity let the formula underlying Ga
C be

denoted as Ca, for a = 1, 2.

(b) Derive Ga
C(xi = 1) (a = 1, 2) by eliminating all

those c-vertices which are satisfied by xi = 1,
the v-vertex xi and all its incident edges. Anal-
ogously derive Ga

C(xi = 0) by removing from
Ga

C (a = 1, 2) all c-vertices which are satisfied
by xi = 0, moreover remove xi and all its inci-
dent edges. Further obtain Ga

C(xi = ε) \ {cj}
by removing cj and all incident edges from
Ga

C(xi = ε), for a = 1, 2 and ε ∈ {0, 1}.
(c) Compute N(Ga

C(xi = ε)), and N(Ga
C(xi = ε) \

{cj}), for a = 1, 2, and ε ∈ {0, 1}, recursively
by applying Algorithm 1 consecutively to the
following subgraphs.
G1

C(xi = 1) ,
G1

C(xi = 0),
G2

C(xi = 1),
G2

C(xi = 0),

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

G1
C(xi = 1) \ {cj},

G1
C(xi = 0) \ {cj},

G2
C(xi = 1) \ {cj},

G2
C(xi = 0) \ {cj}.

(d) Compute

N(C) = max{N(C1(xi = 1) \ {cj})·N(C2(xi = 1)),

N(C2(xi = 1) \ {cj})·N(C1(xi = 1))}
+ max{N(C1(xi = 0) \ {cj})·N(C2(xi = 0)),

N(C2(xi = 0) \ {cj})·N(C1(xi = 0))}

It remains to formulate both the subprocedures refered
to above for managing the cases where the formula graph
is a tree or more specifically is a single path. In the latter
case it only remains to treat paths with v-vertices at both
ends.

Procedure Path
Input: Path P starting/ending with a v-vertex.
Output: N(P).

1. Let {x1, . . . , xn} be the variable set of the formula
underlying P and let α : {x2, . . . , xn} −→ {0, 1} be
the following model for P : For all i = 2, . . . , n

α(xi) =

{
1, if xi ∈ ci−1

0, if xi ∈ ci−1

By definition α satisfies all clauses of P . So the value
of x1 is irrelevant for satisfying P .

2. Initially: M(α(x2)) = 2 and M(α(x2)) = 1.

3. For i = 3 to n do

M(α(xi)) = M(α(xi−1)) + M(α(xi−1)) and

M(α(xi))=

{
M(α(xi−1)), if `(xi−1) ∈ ci−1 ∩ ci−2

M(α(xi−1)), else.

4. N(P) = M(α(xn)) + M(α(xn)).

Procedure Tree
Input: Tree B.
Output: N(B).

1. If B is a v-tree such that there is a v-vertex xp in B
which is adjacent to at least three c-vertices. Then
proceed as follows. Let HP be the main path of B
and let xp be a v-vertex of the main path, which
is adjacent to l ≥ 1 c-vertices c1, . . . , cl that do not
lie on HP and let α be a model for HP . For ev-
ery v-vertex xp of the main path, let B1

xp
, . . . , Bl

xp

be those subtrees of B intersecting HP in xp. Re-
cursively compute them by applying Algorithm 1 to
Bi

α(xp) and to Bi

α(xp)
, for i = 1, . . . , l. Here Bi

α(xp)

denotes the tree corresponding to the formula under-
lying Bi

xp
when it is evaluated according to α(xp),

similarly for Bi

α(xp)
. By Algorithm 1 which calls

Procedure Path the main path HP is treated. As
soon as xp is reached we have

M (α(xp)) =
[
M (α(xp−1)) + M

(
α(xp−1)

)]
·N

(
B1

α(xp)

)
· . . . ·N

(
Bl

α(xp)

)
and

M(α(xp)) ={
M(α(xp−1))·Πl

i=1N(Bi

α(xp)
),if `(xp−1) ∈ cp−1 ∩ cp−2

M(α(xp−1))·Πl
i=1N(Bi

α(xp)
),else.

2. If B contains a c-vertex ci, which is adjacent to r ≥ 3
v-vertices xi1 , . . . , xir

then partition B into k sub-
trees Bxi1

. . . , Bxir
such that every subtree is con-

nected with the other r − 1 subtrees by ci only. Let
Bxij

denote the subtree including xij
, for 1 ≤ j ≤ r,

without the c-vertex ci. For every Bxij
, 1 ≤ j ≤ r,

compute N(Bxij
) as follows:

(a) If Bxij
is a path, then N(Bxij

) is determined
by Procedure Path.

(b) If Bxij
is a v-tree then it has a v-vertex xp which

is adjacent to at least three c-vertices. In this
case compute N(Bxij

) by applying Step 1.

(c) If Bxij
has a c-vertex which is adjacent to at

least three v-vertices, then compute N(Bxij
)

by applying Step 2.

(d) Compute

N(B) = Πr
j=1N(Bxij

)−Πr
j=1N(Bxij

¬ci
)

Here N(Bxij
¬ci

), for j = 1, . . . , r, denotes the
number of all models of Bxij

where the variable
xij

is set such that it does not satisfy the clause
ci.

The main result of this section is as follows:

Theorem 1 The counting problem #SAT for outerpla-
nar formulas with n variables is solvable in time O(n5,13).
For outerplanar formulas whose graph is either free of
cycles or consists of disjoint chordless cycles only #SAT
can be solved in linear time.

Proof. We establish the theorem by proving the correct-
ness and stated time complexity of Algorithm 1 starting
with analysing its time complexity. Let C ∈ CNF be
defined over n variables and admitting a connected out-
erplanar graph GC . If GC is a tree, thus free of cycles, the

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

number of models of C can be determined in linear time.
As we visit each vertex of GC as well in Procedure Tree
as also in Procedure Path only once, each of both pro-
cedures takes linear running time. The same argument
holds in case GC consists of pairwise disjoint and chord-
less cycles only, because by setting an arbitrary variable
of such a cycle yields a path.

If GC has cycles, then we treat GC recursively by the
separator theorem: We determine two vertices xi and cj

such that GC is partitioned in two subgraphs G1
C and G2

C

which have only the two vertices xi and cj in common and
it holds that neither G1

C nor G2
C contains more than 2n

3
v-vertices. Further there is no edge connecting a vertex
from G1

C \{xi, cj} with a vertex from G2
C \{xi, cj}. From

G1
C we get G1

C(xi = ε) by setting xi = ε in G1
C then

eliminating all clauses which are satisfied by xi = ε (ε ∈
{0, 1}) and further eliminating xi and all incident edges.
Analogously one obtains from G2

C the subgraphs G2
C(xi =

ε), for ε ∈ {0, 1}. Then from Ga
C(xi = ε) build Ga

C(xi =
ε) \ {cj}, by eliminating vertex cj , for a = 1, 2 and ε ∈
{0, 1}. Then apply Algorithm 1 to the following eight
subgraphs:
G1

C(xi = 1),
G1

C(xi = 0),
G2

C(xi = 1),
G2

C(xi = 0),
G1

C(xi = 1) \ {cj},
G1

C(xi = 0) \ {cj},
G2

C(xi = 1) \ {cj} and
G2

C(xi = 0) \ {cj}.

As soon as a subgraph is free of cycles, we can com-
pute the number of all its models in linear time by
Procedure Tree or by Procedure Path.

Let T (n) be the running time to compute the number
of all models of an outerplanar formula with n variables.
Then we obtain the following recurrence for the running
time

T (n) = 8·T
(

2
3
n

)
+ O(n) + O(1), n ≥ 2.

where T (1) = O(1). The separator set for an outerplanar
graph can be computed in O(n) time. In every step of
the recursion eight new subgraphs are obtained, to each
of which Algorithm 1 is applied. Since with every sep-
aration step the variable set has diminished to at most
2/3 of the variable set of the previous graph the recursion
tree has maximal depth l satisfying (2/3)ln = 1. There-
fore l = log3/2(n) = log2(n)/ log2(3/2). Combining the
solutions of the different subgraphs obviously consumes
constant time. Thus the solution of the recurrence is
T (n) = O(nlog3/2 8) = O(n5.13) proving the claimed time
complexity.

Regarding the correctness of Algorithm 1, first consider
Procedure Path which is applied to P . Here the following

holds true. For every i ∈ {2, . . . , n}, M(α(xi)) is the
number of all models assigning the variables xi, . . . , xn

according to α. Moreover M(α(xi)) is the number of all
models assigning the variables xi−1, . . . , xn according to
α, but xi = α(xi). Hence

N(P) = M(α(xn)) + M(α(xn)

provides the number of all models for the path P . Simi-
larly, regarding Procedure Tree one obtains the following.
If B is a v-tree then Algorithm 1 using Procedure Path
is applied to the main path HP . For every variable xp

of the main path which is adjacent to l > 2 c-vertices
c1, . . . , cl the following invariant is valid:

M(α(xp)) = (M(α(xp−1))+M(α(xp−1)))Πl
i=1N(Bi

α(xp))

and

M(α(xp)) ={
M(α(xp−1))·Πl

i=1N(Bi

α(xp)
),if `(xp−1) ∈ cp−1 ∩ cp−2

M(α(xp−1))·Πl
i=1N(Bi

α(xp)
),else.

That means B is partitioned into paths such that one only
needs to treat recursively each single path by Algorithm 1
and finally one has to combine the number of the solutions
at the common variables.

If B is a tree with a c-vertex c which is adjacent to at
least three v-vertices then we partition B into r subtrees,
where r is the number of the v-vertices which are adjacent
to c, such that every two of the r subtrees have only vertex
c in common. Then remove c from every subtree and
compute for every subtree the number of all its models
separately. Next multiply all these numbers and subtract
the number of all truth assignments not satisfying c.

If GC is neither a path nor a tree then GC must have
a cycle. Then we treat GC by the divide and conquer
strategy using the separator theorem. 2

4 The Case of k-Outerplanar Formulas

Here we extend the concepts of the previous section in or-
der to treat #SAT for CNF formulas with k-outerplanar
graphs, for k ≥ 2. A k-outerplanar graph can easily be
partitioned into two subgraphs with at most 2k common
separator vertices by the separator theorem [2]: Let G be
any n-vertex k-outerplanar graph. The vertex set of G
can be partitioned into three parts V1, V2, S such that
no edge joins a vertex in V1 with a vertex in V2, with
|Vi| ≤ 2n/3, i = 1, 2, |S| ≤ 2k, and separator set S can
be computed in linear time.

Algorithm 2
Input: C k-outerplanar, |V (C)| = n.
Output: N(C).

1. If GC is outerplanar, then compute N(C) by Algo-
rithm 1.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

2. As long as there is a c-vertex cj in GC which is ad-
jacent to one v-vertex xi only, we set xi such that
it satisfies cj and simplify the formula. That means
we remove all c-vertices satisfied by xi. Further we
remove xi and all its incident edges.

3. If there is an isolated c-vertex (empty clause) then
the formula is unsatisfiable and the procedure termi-
nates with output N(C) = 0.

4. • Determine the separator set S = {x1, . . . , xl}
of GC , l ≤ 2k, and V1, V2 such that there is no
edge joining a vertex of V1 with a vertex of V2

and |V1|, |V2| ≤ 2n
3 .

• Next consider the induced subgraphs G1 :=
G[V1 ∪ {x1, . . . , xl})] and G2 := G[V2 ∪
{x1, . . . , xl}] of GC and let Ci denote the sub-
formula of C underlying Gi, for i = 1, 2.

• Let t1, . . . , t2l be the distinct truth assignments
over the variables x1, . . . , xl. For each fixed
tj , 1 ≤ j ≤ 2l, the value N(Ci

tj(x1,...,xl)
), for

i = 1, 2, is computed by Algorithm 2. Re-
call that Ci

tj(x1,...,xl)
denotes the evaluation of

Ci according to tj : All satisfied clauses in Ci

have to be removed from Ci, and the literals
`(x1), . . . , `(xl) have to be removed from all re-
maining clauses accordingly, i = 1, 2.

• Compute

N(C) =
2l∑

j=1

(
N(C1

tj(x1,...,xl)
)·N(C2

tj(x1,...,xl)
)
)

Theorem 2 Algorithm 2 needs O(n1.7(2k+1)) time to
compute the number of all models for a k-outerplanar for-
mula C with n variables, where k ≥ 1 is a fixed integer.

Proof. Let T (n) denote be the number of iterations
for determining N(C) with C an arbitrary k-outerplanar
formula of n variables. So, Tk(1) = O(1) and for
n ≥ 2, Tk(n) = 22k+1Tk

(
2
3n

)
+ O(n) + O(22k+1).

For fixed values of k, the last equation simplifies to
Tk(n) = 22k+1Tk(2

3n) + O(n) whose solution is Tk(n) =
O(n1.7(2k+1)) finishing the proof. 2

Next, nested formulas are discussed for which SAT can be
decided in linear time [10]. We aim at showing that the
number of models of a nested formula can be determined
in O(n8.5) polynomial-time. For our purposes the follow-
ing characterization turns out to be useful [11]: A formula
C = {c1, . . . , cm} is nested, if there is an ordering V (C) =
{x1, . . . , xn} such that the graph GV

C := (V (C) ∪ C,E)
with E = E(GC) ∪ {{xi, xi+1} : 1 ≤ i ≤ n} admits a
planar embedding where the boundary of the outer face
coincides with the cycle x1 · · ·xm.

Obviously the graph GC of a nested formula C which
is obtained from GV

C by eliminating the edges between
all v-vertices is at most 2-outerplanar. This can easily
be seen by removing all vertices from the outer face of
GC : Removing all vertices of the outer face particularly
means removing all the v-vertices and hence there are
left only c-vertices. Since there is no edge between two c-
vertices the remaining graph consists of isolated vertices
only and thus is outerplanar. Therefore a nested formula
is 2-outerplanar and according to Theorem 2 we obtain
the following result.

Theorem 3 #SAT for nested formulas can be solved in
time O(n8.5).

5 Conclusions and Problems

We have discussed the class of k-outerplanar CNF for-
mulas, for arbitrary fixed integer k ≥ 1 and as the main
result we proved that #SAT for formulas over n vari-
ables can be solved in O(n1.7(2k+1)) time. Results for
more specific so-called level-planar formulas can be found
in [17]. It is an open problem whether #SAT for the
class of nested formulas can be solved faster than in
time O(n8.5). Then it would be interesting to investi-
gate whether #SAT for the class of 2-outerplanar formu-
las can be solved faster than in O(n8.5) running time.
As mentioned earlier a k-outerplanar graph has a type-2
1
2 (n − (3k − 1))-separator of size at most 3k [3]. So it
would be interesting to find out, whether this approach
can be used to obtain a better running time for #SAT
on k-outerplanar formulas. Clearly, there also is an indi-
rect approach for classifying the complexity in principle
based on monadic second order logic [5, 17], however in
this paper we preferred an explicit approach. Finally,
one could ask for fixed-parameter complexity [6] results
in this context regarding the parameter k.

References

[1] Aspvall, B., Plass, M.R., Tarjan, R.E., “A linear-
time algorithm for testing the truth of certain quan-
tified Boolean formulas,” Inform. Process. Lett. pp.
121-123, 8/1979.

[2] Baker, B.S., “Approximation algorithms for NP-
complete problems on planar graphs,” J. Assoc.
Comput. Mach., pp. 153-180, 41/1994.

[3] Bodlaender, H.L., “A partial k-arboretum of graphs
with bounded treewidth,” Theoret. Comp. Sci., pp.
46-52, 209/1998.

[4] Cook, S.A., “The Complexity of Theorem Proving
Procedures,” 3rd ACM Symposium on Theory of
Computing, pp. 151-158, 1971.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

[5] Courcelle, B., Makowsky, J.A., Rotics, U., “On the
Fixed Parameter Complexity of Graph Enumera-
tion Problems Definable in Monadic Second Order
Logic,” Discr. Appl. Math., pp. 23-52, 108/2001.

[6] Downey, R.G., Fellows, M.R., Parameterized Com-
plexity, Springer-Verlag, New York, 1999.

[7] Golumbic, M.C., Algorithmic Graph Theory and
Perfect Graphs, Academic Press, New York, 1980.

[8] Gu, J., Purdom, P.W., Franco, J., Wah, B.W., “Al-
gorithms for the Satisfiability (SAT) Problem: A
Survey,” in: D. Du, J. Gu, P. M. Pardalos (Eds.),
Satisfiability Problem: Theory and Applications,
DIMACS Workshop, March 11-13, 1996, DIMACS
Series, V35, pp. 19-151, American Mathematical
Society, Providence, Rhode Island, 1997.

[9] Karp, R.M., “Reducibility Among Combinatorial
Problems,” in: Proc. Sympos. IBM Thomas J.
Watson Res. Center, Yorktown Heights, N.Y., New
York: Plenum, pp. 85-103, 1972.

[10] Knuth, D.E., “Nested satisfiability,” Acta Infor-
matica, pp. 1-6, 28/1990.

[11] Kratochvil, J., Krivanek, M., “Satisfiability of co-
nested formulas,” Acta Informatica, pp. 397-403,
30/1993.

[12] Le Berre, D., Simon, L., “The Essentials of the SAT
2003 Competition,” Lecture Notes Comp. Ssi., pp.
172-187, 2919/2004.

[13] Lipton, R.J., Tarjan, R.E., “A separator theorem
for planar graphs,” SIAM J. Appl. Math., pp. 177-
189, 36/1979.

[14] Maheshwari, A., Zeh, N., “External Algorithms for
Outerplanar Graphs,” Lecture Notes Comp. Ssi.,
pp. 307-316, 1741/1999.

[15] Minoux, M., “LTUR: A Simplified Linear-Time
Unit Resolution Algorithm for Horn Formulae and
Computer Implementation,” Inform. Process. Lett.,
pp. 1-12, 29/1988.

[16] Schaefer, T.J., “The complexity of satisfiability
problems,” Conference Record of the Tenth Annual
ACM Symposium on Theory of Computing, San
Diego, California, pp. 216-226, 1978.

[17] Schmidt, T., Computational complexity of SAT,
XSAT and NAE-SAT for linear and mixed Horn
CNF formulas, dissertation, Univ. Köln, 2010.

[18] Speckenmeyer, E., Min Li, C., Manquinho V., Tac-
chella, A., (Eds.), “Special Issue on the 2007 Com-
petitions,” J. Satisf. Boolean Modeling, Comp.,
4/2008.

[19] Valiant, L., “The complexity of enumeration and
reliability problems,” SIAM J. Comput., pp. 410-
421, 9/1979.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

