
 

 
Abstract—Composite steel-concrete members offer the 

advantages of the best properties of each material. Different 
structural design codes have appeared around the world, but 
Eurocode 4 and AISC360 are the reference guides. In this 
paper, an experimental database on Steel Reinforced Concrete 
columns has been compiled and accuracy on predictions from 
both codes has been checked. Based on Artificial Neural 
Networks, new expressions for predicting the ultimate load of 
compact and slender Steel Reinforced Concrete columns have 
been developed. 

 
Index Terms—AISC360, Composite Columns, Eurocode 4, 

Neural Networks, SRC, Steel Reinforced Concrete. 
 

I. INTRODUCTION 

OMPOSITE steel-concrete members can be made by a 
wide variety of cross-sections, but the most commonly 

used are concrete-encased I-shape steel (also called Steel 
Reinforced Concrete column, SRC) and concrete-filled steel 
tubes.  

Although composite steel-concrete constructions have 
been used for more than a century, all their advantages were 
not fully understood at first; in the early twentieth century 
concrete was used as a fire protection material for the steel 
profile, but the performance improvement produced by the 
encasement was not yet considered. Nowadays, it is well 
known that these structural members exploit the synergistic 
action of both materials; steel provides strength, ductility, 
light weight and fast erection, whereas concrete provides 
stiffness, good performance at high temperatures and it is an 
economical material. 

In recent years, this type of composite members is being 
increasingly used in a wide range of applications, such as 
high-rise buildings, bridge piers and earthquake-resistant 
construction. 

Many codes have been developed from experimental tests 
results and later numerical analysis in order to stablish the 
design criteria of composite elements. Two of the guidance 
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documents are Eurocode 4 [1] and AISC360 [2] (to be 
referred as EC4 and AISC in this paper). The former is the 
European unified design standard for composite structures 
and the latter is the American code for steel structures. 

The objectives of this paper are threefold: firstly, a 
historical review of experimental tests of concentrically 
loaded SRC columns is shown; secondly, an assessment of 
the ability of EC4 and AISC to predict the behavior of such 
columns, and finally a proposal of a neural-network-based 
method to improve the prediction of the ultimate load is 
given. 

II. REVIEW OF EC4 AND AISC PROVISIONS 

In this section, the way in which EC4 and AISC predict 
the ultimate load is exposed. It should be noted that both 
codes methods are based in Euler’s critical buckling load. 
Also, they are only applicable within a enclosed range of 
parameters, such as material strengths and geometrical 
considerations, which in some cases are overpassed by 
available test specimens. 

When comparing design calculations with the result of 
experimental tests, the material safety factors specified in all 
the design codes were set to unity. 

A. Eurocode 4 

The simplified method offered by EC4 will be taken into 
account in the analysis of this standard, since all specimens 
in the database have doubly symmetrical and uniform cross-
section. 

 
Resistance of cross-sections 

The plastic resistance to compression of a composite 
cross-section is 

 
 .···85.0·, ssccyaRkpl fAfAfAN   (1) 

 
Where: 

- Aa, Ac and As are the cross-sectional area of structural 
steel shape, concrete and reinforcement, respectively. 

- fy, fc and fs are the nominal value of the yield strength 
of structural steel, the characteristic value of the 150x300 
mm cylinder compressive strength of concrete at 28 days 
and the characteristic value of the yield strength of 
reinforcing steel, respectively. 

The slenderness ratio used in EC4 to evaluate instability 
effects due to compression (buckling) is called relative 
slenderness (λ). 
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Where: 
- Ncr is the elastic critical normal force. 

 

 22 /)·( LIEN effcr   (3)
 

 
- L is the effective buckling length of the column. 
- (E·I)eff is the effective flexural stiffness. 

 
 ssccmaaeff IEIEIEIE ···6.0·)·(   (4) 

 
- Ia, Ic and Is are the second moment of inertia of the 

structural steel section, the un-cracked concrete section and 
the steel reinforcement, respectively. 

- The modulus of elasticity for structural and reinforced 
steel is: Ea=Es=210 GPa. For concrete, there is a reference 
to Eurocode 2 [3], table 3.1, where the secant modulus of 
elasticity is defined as: 

 

 )()10/(22 3.0 GPafE ccm   (5) 

 
For member verification, a second order lineal analysis is 

used. The design value for effective flexural stiffness 
(E·I)eff,II is determined from the following expression: 

 
 )···5.0··(9.0)·( , ssccmaaIIeff IEIEIEIE   (6) 

 
The influence of geometrical imperfections is taken into 

account by an equivalent geometrical imperfection of 
e0=L/200 for the strong axis and e0=L/150 for the weak axis. 

Second order effects are evaluated by multiplying the 
greatest first order bending moment MEd by a factor k. 

 
 )···( 00 kekeNM EdEd   (7) 

 
Where: 
- e is the eccentricity related to the considered axis. 
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- Ncr,eff is the critical nominal force for the relevant axis 

and corresponding to the effective flexural stiffness given in 
(6), with the effective length taken as the column length. 

- β is an equivalent moment factor. 
- r is the ratio between the end moments. According to 

the way in which the forces are applied, this equals a ratio 
between eccentricities at both ends. 

- k0 has the same expression as (8), assuming β=1. 
 
Resistance of members in axial compression 

The simplified method is used for members in axial 
compression. The predicted axial force (NEC4) is calculated 
according to  

 
 .· ,4 RkplEC NN   (10) 

 

Where: 
- χ is the reduction factor for the relevant buckling mode 

given in EN 1993-1-1, 6.3.1.2 [4] in terms of the relevant 
relative slenderness . 
 

  22
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Where: 
-  is an imperfection factor which depends on the 

buckling axis. For strong axis buckling, =0.34 (curve b) 
and for weak axis buckling, =0.49 (curve c). 

B. AISC 

The compressive strength (NAISC) of doubly symmetric 
axially loaded SRC members is determined for the limit 
state of flexural buckling based on member slenderness as 
follows: 

 

 25.2/]658.0·[ )/(  eno
PP

noAISC PPifPN eno   (13) 

 25.2/·877.0  enoeAISC PPifPN  (14) 

 
Where: 
- Pno has the same meaning as Npl,Rk defined in (1). 
- Pe is the elastic critical buckling load and has the same 

expression that (3). Although the expression is the Euler’s 
formula, there is a difference in the definition of the 
effective stiffness of composite section: 
 
 ssccmaaeff IEIECIEIE ··5.0···)·( 1   (15) 

   3.0/·21.01  scs AAAC  (16) 

 
In this code, the slenderness ratio can be assumed to be  
 

 .)/( 5.0
enoAISC PP  (17) 

III. REVIEW OF HISTORICAL EXPERIMENTAL TESTS 

This section briefly explains the history of use and 
research of SRC-based composite constructions and presents 
an up-to-date database of experimental tests made with 
steel-encased composite columns 

A. Early times 

Composite elements appeared because of the need to 
protect steel members against fire, but the increase of 
resistance was not considered. For that reason, no 
reinforcement bars were used in those first applications. In 
some cases, only a small amount of steel reinforcement was 
employed to avoid concrete spalling due to fire. 

After the big Kanto (Japan) earthquake in 1910, the 
excellent behavior of composite columns in seismic 
conditions was reported and some studies were carried out 
to better understand the joint performance of steel and 
concrete. 

For several decades, neither usage nor investigations were 
focused on composite construction. In 1965, Stevens [5] was 
one of the firsts authors who carried on with investigations. 
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He tested a series of encased wide flange steel columns, 
concentrically loaded and with eccentricity on the minor 
axis. Stevens reported that the reinforcement did not provide 
further additional strength to the columns tested. 

B. Historical efforts 

Several researchers have made compilations of 
experimental tests on composite columns. The first 
experimental database was carried by SSRC Task Group, in 
1979 [6] where 30 concentrically loaded and 44 
eccentrically loaded SRC were reported. Some other authors 
[7], [8], [9] and [10] have completed and expanded the 
database. 

C. Database review 

The last database was elaborated in 2001, so there was a 
need to review and complete it with the latest researches. A 
new compilation of a significant amount of SRC columns 
has been carried out, and is presented in this paper. The 
starting point for it was those mentioned above. The original 
sources were checked, some tests were removed due to the 
lack of information and some recent tests were included. 

A total of 164 tests were compiled, 48 with plain concrete 
and 116 with steel reinforcement bars. Although modern 
applications always include reinforcement, plain concrete 
tests have also been included in this analysis. 
 
Materials 

The main materials in SRC columns are the steel used in 
profiles and the concrete in covers. Steel is classified by the 
yield strength (fy) and concrete is classified by the 
compressive strength resistance that is measured in 
cylindrical tests of 150 x 300 mm (fc). High strength 
concrete is considered when fc>50 MPa and high strength 
steel when fy>360 MPa. Normal strength materials are 
considered when fc50 MPa and fy360 MPa. 

 
Slenderness 

Columns have been divided into compact and slender 
columns. The slenderness ratio used in this paper is the 
relative slenderness (λ), defined in (2). 

The relative slenderness range considered in this study is 
between 0.1 and 2.12. As stated in EC4, columns with 
λ ≤ 0.2 are classified as compact, and its behavior is 
governed by its cross-section strength; columns with λ > 0.2 
are assumed to be slender. These columns are governed by 
stability and fail by either elastic or inelastic column 
buckling. 

The amount of available tests according to their 
slenderness and the strength of the materials is shown in Fig. 
1. As can be seen in this figure, high strength materials have 
scarcely been used in research tests. Only 7.93% of 
available tests were built with both high strength materials, 
whereas 69.51% of tests have both normal materials. 

In order to compare test results with code predictions, in 
Fig. 2, experimental reduction factor (χEXP) has been plotted 
against the relative slenderness, calculated as defined in 
EC4: 
 RkplEXPEXP NN ,/  (18) 

 
Where NEXP is the experimental failure load of the column 

during the tests. 
 

Fig. 1.  Number of available tests of SRC columns subjected to concentric 
axial load according to the strength of the materials and the presence of 
reinforcement.  

 
In Fig. 2, curve c from EC4 and AISC buckling curve 

have also been plotted, assuming that columns should fail 
about their weak axis. The EC4 prediction is plotted using 
(11) and (12) equations. The AISC curve is defined as: 

 
 noAISCAISC PN / , (19) 

 
using (13) and (14) for calculating NAISC, with relative 

slenderness according to AISC (17). In Fig. 2, relative 
slenderness according to EC4 has been used in x-axis for 
both curves. 
 

Fig. 2.  Experimental ratio of the tests according to material strengths and 
buckling curves for EC4 and AISC.  

 
Both codes show a conservative prediction for most of 

normal strength material columns, as points lay well above 
both curves. In columns with normal strength concrete and 
high strength steel, some points are close to the EC4 curve, 
which means an accurate prediction, but others are above or 
below the curve. Analyzing high strength concrete columns, 
both columns with normal and high strength steel show a 
behavior that differs from that predicted by EC4 and AISC. 
Due to the small amount of available tests for these 
combinations, it would be advisable to conduct newer 
experimental tests with high strength materials and evaluate 
the convenience of a new buckling curve. 

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



 

IV. ANALYSIS WITH ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) are arranged 
collections of simple processing units or nodes which are 
able to solve highly nonlinear problems by learning from 
previous experience. 

The basic unit of an ANN is called artificial neuron and 
processes several weighted inputs through a given function 
to provide an output (Fig. 3).  

 

Fig. 3.  Basic structure of an Artificial Neuron. 

 
Neurons are arranged in layers and connected to other 

neurons so every neuron’s output becomes another neuron’s 
input. Connections are set between neurons in different 
layers. There are no connections within the same layer. In a 
feedforward multilayer perceptron there are three kinds of 
layers, namely one input layer, one or more hidden layers 
and one output layer (Fig. 4). 
 

Fig. 4.  Basic structure of a feedforward multilayer perceptron. 

 
The input and output layers have as many neurons as the 

number of parameters considered to be the inputs and 
outputs of the problem. In this research, the inputs are 
assumed to be the axial capacity of each material acting 
separately (Aa·fy, Ac·fc, As·fs) and the relative slenderness (λ). 
The output is the failure load of the column. Thus, four 
inputs and one output have been considered. 

When designing an ANN, the number of hidden layers 
and the number of neurons per layer must be set in advance. 
There is no specific rule about how to determine the number 
of hidden layers and neurons. In practical engineering 
problems, a single hidden layer is considered to be sufficient 
[11]. In this paper, one hidden layer has been used in every 
analysis, with a different number of neurons, as appropriate. 

The output of every hidden layer neuron (Oj;1	≤	j	≤	N) is 
the result of applying a transfer function f to the result of the 
input function (Ej), a linear combination of the inputs 
(yi;1	≤	i	≤	n) affected by previously defined weights (wi

j) and 
an independent coefficient known as bias (θj) used to model 
the threshold. The transfer function has been chosen 
differently for compact and slender columns. 

 

  


n

i j
j

iij wyE
1

·   (20) 

  jj EfO   (21) 

The output layer neurons receive these outputs affected 
by another weights (wi

S) and a bias (θSሻ and applies a 
transfer function φ, which can be the same or different than 
that used before.  
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Purelin transfer function has been chosen as output 

transfer function in every analysis. This function provides an 
output proportional to the input. 
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The process through which the network becomes able to 

provide an accurate output is known as training. Back-
propagation is a supervised learning algorithm that is used 
for training the net. The ANN is presented a set of training 
data with known output values called targets. The initial 
weights are randomly set and the network output is 
compared with the targets for every data in the training set. 
Subsequently the weights are adjusted. There is a number of 
variations on the basic algorithm that are based on other 
standard optimization techniques. In this study, the 
Levenberg-Marquardt algorithm is employed. The method 
calculates the gradient of a performance function and adjusts 
the weights in the steepest descent direction, in an attempt to 
minimize this function. Every time performance has been 
evaluated, an epoch is completed. This is an iterative 
process that finishes when certain convergence criteria is 
reached. 

The performance function used in this study is the mean 
square error (mse), calculated for each item (k) of the 
training data as: 

 

  


P

k kk tskmse
1

2)(·5.0)(  (24) 

 
Where sk is each output value of the network and tk is the 

target value for every item. P is the number of data in the 
pattern. 

A. Compact columns 

According to EC4, compact columns (λ≤0.2) are assumed 
to have a sectional behavior, independent of the slenderness 
ratio. However, AISC takes into consideration slenderness 
for every column. 

For stub columns, where both EC4 and AISC curves are 
substantially horizontal, a linear behavior can be assumed 
for the ultimate load. When this occurs, a purelin transfer 
function with a single neuron in the hidden layer is the better 
option. 

A total of 34 columns were presented to the net for the 
training process. The ANN has been trained several times, 
and the network with the highest performance has been 
chosen. The performance is evaluated by the regression 
coefficient (R). When comparing the real (NEXP) with the 
predicted (NANN) ultimate loads, the best regression 
coefficient achieved was R = 0.988. 
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A design equation can be derived from the predictions of 
the trained network. For our best results of ANN, the 
predicting equation (NANN) is: 

 

 
1228677+8856804-

·709.1·036.1·095.1


ssccyaANN fAfAfAN 

 (25) 

 
Where the cross-sectional area is expressed in mm2, the 

material strengths in MPa and the load is obtained in N. 

B. Slender columns 

Slender columns (λ > 0.2) have a non-linear behavior. In 
this case, one of the most widely used transfer functions is 
chosen: the log-sigmoid transfer function. Thus, (21) 
becomes 
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For training the ANN, 130 columns have been used, with 

relative slenderness ranging between 0.21 and 2.12. 
Different numbers of neurons in the hidden layer have 

been used to train the network, but no improvement has 
been found when more than two neurons were implemented. 
The best ANN found has R = 0.979, and as above, an 
equation is derived: 
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Where: 
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As before, when the cross-sectional area is expressed in 

mm2 and the material strengths are in MPa, the load is 
obtained in N. 

V. COMPARISON BETWEEN ANN AND CODES PREDICTIONS 

In this section, the accuracy of the ANN predicting the 
ultimate load is compared with EC4 and AISC standards. 
For that purpose, strength ratios are defined as 

 
 Ratio = NEXP / NPRED, (30) 

 
where NPRED is the predicted load by ANN, EC4 and 

AISC. 
In order to better reflect the deviations of the predictions 

from the experimental results, the -10% and +10% error 
bounds are provided in Fig. 5 and Fig. 6. 

A. Compact columns 

Table I shows some statistical data about Ratios obtained 
from the three predictions.  

EC4 and AISC predictions are rather conservative: all of 
the Ratios are above 0.9, and in both cases, more than half 

of predictions are over 1.1. In contrast, mean value for the 
Ratio obtained from the ANN is near to the unit and the 
standard deviation is smaller than those obtained from the 
codes. 

Nevertheless, ANN predictions lay on both sides of the 
1:1 line, which could mean that some tests have been 
underpredicted.  

 
TABLE I 

STATISTICAL VALUES FOR COMPACT COLUMNS 

Ratio-EC4 Ratio-AISC Ratio-ANN 
Mean value 1.132 1.169 1.001 

Standard deviation 0.134 0.136 0.096 
Ratio > 1.1 58.82% 70.59% 11.76% 

1 < Ratio ≤ 1.1 23.53% 20.59% 41.18% 
0.9 < Ratio ≤ 1 17.65% 8.82% 29.41% 

Ratio ≤ 0.9 0.00% 0.00% 17.65% 

 
Fig. 5 shows a plot of strength ratios for both codes and 

the neural network. It can be seen that more accuracy and 
less scatter is achieved by ANN, since most of the points 
(70.59%) are within the 10% strip, in front of EC4 
predictions, that have 41.18% in this strip and AISC 
predictions, with a 29.41% in it. 

 

Fig. 5.  Strength ratios for compact columns. 

 

B. Slender columns 

Table II is equivalent to Table I, but related to slender 
columns. It shows a bigger scatter of code predictions, 
especially AISC predictions, with a high standard deviation.  

 
TABLE II 

STATISTICAL VALUES FOR SLENDER COLUMNS 

EC4 AISC ANN 
Mean value 1.243 1.656 1.006 

Standard deviation 0.299 0.909 0.170 
Ratio > 1.1 64.62% 81.54% 31.54% 

1 < Ratio ≤ 1.1 16.15% 6.15% 18.46% 
0.9 < Ratio ≤ 1 12.31% 7.69% 27.69% 

Ratio ≤ 0.9 6.92% 4.62% 22.31% 

 
Both codes are still conservative, but some of predictions 
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are below Ratio 0.9. ANN predictions are nearly 50% on 
each side of Ratio=1, although more dispersion is found. 

Fig. 6 a) shows that the higher the slenderness, the more 
conservative the predictions are. In particular, AISC 
predictions are several times higher than experimental tests 
for high slenderness. With regard to the results obtained 
with the network, some of them lay in the unsafe zone 
(22.31%). 

Fig. 6 b) is a zoom view of the dashed line square 
highlighted in Fig. 6 a). In this area the most ANN 
predictions are found around 1:1 line. The ANN prediction 
fall on this line more than the standards predictions. It can 
be seen that in general, AISC remains more conservative in 
this zone too. 

Current regulations for composite construction are based 
on those developed for steel or concrete. Even when some 
modifications to the original methods have been made, 
based on experimental studies, results differ markedly from 
those obtained by tests. 

 

Fig. 6.  Strength ratios for slender columns. 

VI. CONCLUSION 

In this paper, a database for experimental tests of SRC 
columns subjected to axial load has been compiled and 
analyzed. Available tests have been divided into two groups; 

tests with compact and slender columns. 
Main design codes for composite construction, EC4 and 

AISC have been analyzed. Predictions from these standards 
for SRC columns subjected to concentric axial load are 
compared with experimental ultimate loads obtained from 
tests. It has been found that both codes are rather 
conservative.  

Subsequently, a new approach to predict ultimate loads 
for concentrically loaded SRC columns is developed, based 
on artificial neuron networks. 

An artificial neuron network has been trained for each 
type. From these networks, two equations have been derived 
after the training. The first one is a linear expression, since 
the behavior of compact columns is assumed to be linear. 
The second one is based on log-sigmoid transfer functions, 
due to the non-linear behavior of slender columns. 

Performance of these networks and its associated 
expressions has been tested. Mean values for strength ratios 
are very close to the unit and the standard deviation is 
smaller than that obtained from the codes. 

Future research will be aimed to improve design methods, 
using artificial intelligence tools and to try to incorporate 
them to the current codes. 
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