Prefilter Bandwidth Effects in Asynchronous Sequential Symbol Synchronizers based on Pulse Comparison by Both Transitions at Quarter Bit Rate

Antonio D. Reis, Jose F. Rocha, Atilio S. Gameiro and Jose P. Carvalho

Abstract—This work studies the prefilter bandwidth effects in four asynchronous sequential symbol synchronizers. We consider three prefilter bandwidths namely $B_1=\infty$, $B_2=2tx$ and $B_3=1tx$, where tx is the bit rate. The synchronizer has two variants one asynchronous by both transitions at bit rate and other asynchronous by both transitions at quarter bit rate. Each variant has two versions namely the manual and the automatic. The objective is to study the prefilter with the four synchronizers and to evaluate their output jitter UIRMS (Unit Interval Root Mean Square) versus input SNR (Signal Noise Ratio).

Index Terms—Prefilter, Digital Communication Systems

I. INTRODUCTION

This work studies the prefilter bandwidth effects on the jitter-SNR behavior of four sequential symbol synchronizers.

The prefilter, applied before the synchronizer, switches its bandwidth between three values namely first $B_1=\infty$, after $B_2=2tx$ and next $B_3=1tx$, where tx is the bit rate [1, 2, 3, 4]. The synchronizer has four versions supported in two variants, one asynchronous by both transitions at bit rate with versions manual (ab-m) and automatic (ab-a) and other asynchronous by both transitions at quarter bit rate with versions manual (ab-m/4) and automatic (ab-a/4) [5, 6, 7, 8].

The difference between the four synchronizers is in the phase comparator. The clock is the VCO (Voltage Controlled Oscillator) that samples appropriately and retimes correctly the input data, guarantying good quality [9, 10, 11, 12, 13].

Fig.1 shows the prefilter followed of the synchronizer.

II. PREFILTER BANDWIDTH EFFECTS

We apply a prefilter before the synchronizer, we switches its bandwidth B between three values (B1=\infty, B2=2tx, B3=1tx), then we study the effects on the four jitter-SNR curves. Fig.2 shows the three prefilter bandwidths.

![Fig.2 Three prefilter bandwidths: a) B1=\infty; b) B2=2tx; c) B3=1tx](image)

Following, we describe the prefilter with its three bandwidths (B1=\infty, B2=2tx, B3=1tx).

A. Prefilter with Bandwidth equal infinite (B1=\infty)

This prefilter (Fig.2a) has a bandwidth equal infinite ($B=\infty$). We will see its effects on the four synchronizers.

B. Prefilter with Bandwidth equal two tx (B2=2tx)

This prefilter (Fig.2b) has a bandwidth equal two times the bit rate ($B=2tx$). We will see its effects on the four synchronizers.

C. Prefilter with Bandwidth equal one tx (B3=1tx)

This prefilter (Fig.2c) has a bandwidth equal one time the bit rate ($B=1tx$). We will see its effects on the four synchronizers.

Manuscript received March 15, 2015; Supports from UBI (University of Beira Interior) and FCT (Foundation for Science and Technology).

A. D. Reis is with the University of Beira Interior Covilha and Remote Detection Unit, Portugal (e-mail: adreis@ubi.pt).

J. F. Rocha is with the University of Aveiro and Institute of Telecommunications, Portugal (e-mail: frocha@ua.pt).

A. S. Gameiro is with the University of Aveiro and Institute of Telecommunications, Portugal (e-mail: amg@ua.pt).

J. P. Carvalho is with the University of Beira Interior Covilha and Remote Detection Unit, Portugal (e-mail: pacheco@ubi.pt).
III. REFERENCE BY BOTH AT BIT RATE

The standard comparison reference, asynchronous sequential symbol synchronizers based on pulse comparison operating by both transitions at bit rate has two versions which are the manual (ab-m) and the automatic (ab-a) [1, 2]. The versions difference is in the phase comparator, the variable pulse Pv is common but the fixed Pf is different.

A. Reference by both at rate manual (ab-m)

The block Pv, shown below, produces a variable pulse Pv between the input bits and VCO. The manual adjustment delay with Exor produces a manual fixed pulse Pf (Fig.3).

The comparison between the pulses Pv and Pf provides the error pulse Pe that forces the VCO to synchronize the input. The block Pv is an asynchronous circuit (Fig.4).

The error pulse Pe diminishes during the synchronization time and disappear at the equilibrium point.

B. Reference by both at rate automatic (ab-a)

The block Pv, common with anterior, produces the variable pulse Pv between input and VCO. The block Pf, shown below, produces the comparison fixed pulse Pf (Fig.5).

The comparison between the pulses Pv and Pf provides the error pulse Pe that forces the VCO to follow the input. The block Pf is an asynchronous circuit (Fig.6).

Fig.6 Intern aspect of the block Pf

IV. PROPOSAL BY BOTH AT QUARTER BIT RATE

The new proposal, asynchronous sequential symbol synchronizers based on pulse comparison operating by both transitions at half rate has also two versions namely the manual (ab-m/2) and the automatic (ab-a/2) [3, 4]. The versions difference is in the phase comparator, the variable pulse Pv is common but the fixed Pf is different.

A. Proposal by both at quarter manual (ab-m/4)

The block Pv produces the variable pulse Pv between input transitions and VCO. The manual adjustment delay T/2 with Exor produces a fixed pulse Pf (Fig.7).

The comparison between pulses Pvp and Pfp provides the error pulse Pe that forces the VCO to synchronize the input. The block Pv is an asynchronous circuit (Fig.8).

The error pulse Pe don't disappear, but the variable area Pv is equal to the fixed Pf at the equilibrium point.

B. Proposal by both at quarter automatic (ab-a/4)

The block Pv, common, produces the variable pulse Pv between input and VCO. The block Pf, shown below, produces the comparison fixed pulse Pf (Fig.9).

The comparison between pulses Pvp and Pfp provides the error pulse Pe that forces the VCO to synchronize the input. The block Pf is an asynchronous circuit (Fig.10).

The error pulse Pe diminishes during the synchronization time and disappear at the equilibrium point.
The comparison between the pulses P_v and P_f provides the error pulse P_e that forces the VCO to follow the input. The block P_f is an asynchronous circuit (Fig.10).

The error pulse P_e doesn’t disappear at the equilibrium point, but the variable area P_v becomes equal to the fixed P_f.

IV. DESIGN, TESTS AND RESULTS

We present the design, tests and results of the various synchronizers [5].

A. Design

To get guaranteed results, it is necessary to dimension all the synchronizers with equal conditions. Then, the loop gain $K_l = K_d K_o = K_a K_f K_o$ must be equal in all the synchronizers. The phase detector gain K_f and the VCO gain K_o are fixed. Then, the loop gain amplification K_a controls the root locus and consequently the loop characteristics.

For analysis facilities, we use normalized values for the bit rate $t_x = 1$ baud, clock frequency $f_C K = 1$ Hz, external noise bandwidth $B_n = 5$ Hz and loop noise bandwidth $B_l = 0.02$ Hz. Then, we apply a signal power $P_s = A^2$ and a noise power $P_n = N_0 = 2 \sigma_n^2$, where σ_n is the noise standard deviation and $\Delta t = 1 / f_{Samp}$ is the sampling period. The relation between SNR and noise variance σ_n^2 is

$$\text{SNR} = \frac{A^2}{2 \sigma_n^2} \cdot 10^{\frac{1}{3}} \cdot 25 = \frac{25}{\sigma_n^2}$$

Now, for each synchronizer, it is necessary to measure the output jitter U_{IRMS} versus input SNR.

1st order loop:

The used cutoff loop filter $F(s) = 0.5$ Hz is 25 times greater than $B_l = 0.02$ Hz, what eliminates the high frequency but maintains the loop characteristics. The transfer function is

$$H(s) = \frac{G(s)}{1 + G(s)} = \frac{K_d K_o F(s)}{s + K_d K_o F(s)}$$

the loop noise bandwidth is

$$B_l = \frac{K_d K_o}{4} = \frac{K_a K_f K_o}{4} = 0.02$$ Hz (3)

So, with $(K_m = 1, A = 1/2, B = 1/2, K_o = 2\pi)$ and loop bandwidth $B_l = 0.02$, we obtain respectively the K_a for analog, hybrid, combinational and sequential synchronizers, then

$$B_l = (K_a K_f K_o) / 4 = (K_a K_m A B K_o) / 4 \rightarrow K_a = 0.08 * 2/\pi$$ (4)

$$B_l = (K_a K_f K_o) / 4 = (K_a K_m A B K_o) / 4 \rightarrow K_a = 0.08 * 2.2/\pi$$ (5)

$$B_l = (K_a K_f K_o) / 4 = (K_a K_m A B K_o) / 4 \rightarrow K_a = 0.04$$ (6)

$$B_l = (K_a K_f K_o) / 4 = (K_a K_m A B K_o) / 4 \rightarrow K_a = 0.08$$ (7)

For the analog PLL, the jitter is

$$\sigma_j^2 = B_l N_0 / A^2 = 0.02 * 10^{-3} * 2 \sigma_n^2 / 0.5^2 = 16 * 10^{-5} \cdot \sigma_n^2$$ (8)

For the others PLLs, the jitter formula is more complicated.

2nd order loop:

Is not used here, but provides similar results.

B. Tests

We used the following setup to test synchronizers (Fig.11)

The receiver recovered clock with jitter is compared with the emitter original clock, the difference is the jitter.

C. Results

We will present the results, in terms of jitter - SNR, for each prefilter bandwidth with the four synchronizers. Fig.12 shows the jitter-SNR curves for the prefilter bandwidth $B_1 = \infty$ with the four synchronizers (ab-m, ab-a, ab-m/4, ab-a/4).

Fig.12 Jitter-SNR curves of B_1 synchro. (ab-m, ab-a, ab-m/4, ab-a/4)
For prefilter $B_1=\infty$, we verify that, for high SNR, the four synchronizer jitter-SNR curves tend to be similar. However, for low SNR, the variant asynchronous by both at bit rate with versions manual (ab-m) and automatic (ab-a) are better than the variant asynchronous by both at quarter bit rate with versions manual (ab-m/4) and automatic (ab-a/4).

Fig. 13 shows the jitter-SNR curves for the prefilter bandwidth $B_2=2.tx$ with the four synchronizers (ab-m, ab-a, ab-m/4, ab-a/4).

For prefilter $B_2=2.tx$, we verify that, it becomes the jitter-SNR curves more similar between themselves. For high SNR, it degrades slightly the jitter-SNR curves. However, for low SNR it benefits significantly the jitter - SNR curves.

Fig. 14 shows the jitter-SNR curves for the prefilter bandwidth $B_3=1.tx$ with the four synchronizers (ab-m, ab-a, ab-m/4, ab-a/4).

For prefilter $B_3=1.tx$, we verify that, it becomes the jitter-SNR curves still more similar between themselves. For high SNR, it degrades more the jitter-SNR curves. However, for low SNR, it benefits less the jitter-SNR curves.

V. CONCLUSIONS

We studied three prefilter bandwidths ($B_1=\infty$, $B_2=2.tx$, $B_3=1.tx$) with four synchronizers, one variant asynchronous by both transitions at bit rate with versions manual (ab-m) and automatic (ab-a) and other variant asynchronous by both at quarter bit rate with versions manual (ab-m/4) and automatic (ab-a/4). Then, we measured the jitter-SNR curves.

We observed that, in general, the output jitter curves decreases gradually with the input SNR increasing.

For prefilter $B_1=\infty$ (greater), we verified that, for high SNR, the four synchronizers jitter curves tend to be similar. This is comprehensible since all the synchronizers are digital and have similar noise margin. However, for low SNR, the variant asynchronous by both at bit rate with its versions manual (ab-m) and automatic (ab-a) is better than the variant asynchronous by both at quarter bit rate with its versions manual (ab-m/4) and automatic (ab-a/4), this is comprehensible since the variant by both transitions at bit rate has minus states than the variant by both at quarter rate and then, the time to pass from the error state to the correct state is lesser in the 1st case.

For prefilter $B_2=2.tx$ (medium), we verified that, it becomes the jitter-SNR curves more similar between themselves. For high SNR, it degrades slightly the jitter-SNR curves. However, for low SNR, it benefits significantly the jitter-SNR curves.

For prefilter $B_3=1.tx$ (lesser), we verify that, it becomes the jitter-SNR curves still more similar between themselves. For high SNR, it degrades more the jitter-SNR curves. Also, for low SNR, it benefits less the jitter-SNR curves.

So, the prefilter, for high SNR, distorts the signal what is prejudicial, for low SNR, attenuates noise what is beneficial.

The asynchronous automatic types at subrates have no jitter resonance zones.

In the future, we are planning to extend the present study to other types of synchronizers.

ACKNOWLEDGMENTS

The authors are grateful to the program FCT (Foundation for Science and Technology).

REFERENCES