

Abstract—This paper describes the design of Intellectual

Property (IP) modules of the most widely used communication
standard interfaces, the AMBA bus. There is described the
design of masters and slaves interface modules for APB, AHB,
AXI and AXI-Stream buses. The IP modules presented can be
used in systems with a variety of design constraints (low speed
to high speed applications, low power consumption, etc). For
the slave APB bus interfaces and the master/slave AHB a
development environment for design and simulation based on
the GRLIB library is provided.

Index Terms—buses, interconnection network, IP module
design, open source hardware

I. INTRODUCTION

hen designing high performance peripherals that
require high bandwidth data transfers, the selection of

bus standard and the interface design is a critical step. Very
often the designer doesn’t have the liberty of choosing a bus
standard due to the project constrains that bind him to a
specific system or technology. What aggravates the
circumstances is the fact that transactions on the bus are
influenced by the slave/master arbitration scheme, the
chaotic behavior of peripherals and software applications.
Even if the designer uses high performance bus architecture,
this does not guarantee that the entire system will be fast. In
general designing bus interfaces for peripherals is a
challenging and time consuming task that plays a major role
in obtaining a good system performance.

Every electronic device contains heterogeneous hardware
elements, such as processors, graphic and sound cards,
input-output (I/O) interfaces, memory, hard drives and
custom hardware performing specialized tasks, which are
interconnected using buses. From an electronic perspective
a bus is an abstract concept that attaches to normal signal
lines or wires the convention that they represent the
communication channel through which information flows
from one component to another.

Depending on the system requirements a bus can be

Manuscript received March 5, 2005; revised March 11, 2005. This work

was supported in part by Spanish Ministerio de Ciencia y Tecnología under
the Project TEC2011-24319, by Ministerio de Economía y Competitividad
under the Projects IPT-2012-0695-390000, co-financed by FEDER, and
RTC-2014-2932-8.

Laurentiu Acasandrei is with the Instituto de Microelectrónica de Sevilla
(IMSE-CNM) and the University of Sevilla, Spain (e-mail: laurentiu@imse-
cnm.csic.es).

Angel Barriga is with the Instituto de Microelectrónica de Sevilla
(IMSE-CNM) and the University of Sevilla, Spain (e-mail: barriga@imse-
cnm.csic.es)

formed by one up to several thousand signal lines in more
complex systems, e.g. the interconnect between Processing
System (PS) and Programmable Logic (PL) in Xilinx Zynq
[1] and reaching ten thousand connections between Super
Logical Regions (SLR) in Virtex-7 FPGA’s [2]. The
technological advances in deep submicron (DSM)
technologies have given birth to multimillion transistor
chips, generically referred as system on chip (SoC), that
integrate various electronic circuits and computer
components onto a single, integrated circuit (IC). A SoC can
contain processors, memory controllers, cache and on-chip
memory, timers, digital signal processing units, analog to
digital converters, digital to analog converter, encryption
cores, wireless and optical communication interfaces,
programmable logic, universal serial bus (USB), Ethernet,
general purpose I/O interfaces and all these components,
varying in numbers from tens to hundreds, are connected via
an on-chip communication fabric that is referred to as on-
chip bus. SoC’s are broadly deployed in embedded systems
where the design engineers need to optimize power
consumption, size, reliability, performance and cost.

Due to the technology particulates of an IC, the system
communication architectures, which were having their
physical layout on Printed Circuit Boards (PCBs), were
considered inappropriate for an IC layout. New on-chip, or
intra-die, standards and communication architectures
emerged and took advantage of new processing paradigms,
increasing frequency speed and die size for CMOS IC
technology (see Fig. 1).

The continuing advances in DSM technology have
enabled the integration of more functionality, but in the
same time it drastically increased the complexity and
difficulty of the design-verification cycle. The International
Technology Roadmap for Semiconductors [3] noticed that
the technology progress will surpass by far the engineer
ability to integrate and verify a design containing huge
amount of transistors. Rapid technology change shortens
product life cycles and makes time-to-market a critical issue
for semiconductor customers.

The aim of this paper is to present a communication
interface library included in SHORES (Software and
Hardware Open Repository for Embedded Systems), under
GNU GPL [4] license, providing support for the design
community in standard IP connection modules. For the most
used communication standard, i.e. AMBA, we designed
masters and slave interfaces, for the APB, AHB, AXI, AXI-
Stream protocols, that can be employed in a large variety of
systems with different constraints (i.e. for low power, low
speed up to high speed streaming applications). For the APB
slave and AHB master/slave interfaces also a test

Open Library of IP Module Interfaces for
AMBA Bus

Laurentiu Acasandrei, and Angel Barriga, Member, IAENG

W

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

framework, based on GRLIB library [5], is provided.

Fig. 1. Evolution of communication architectures. The evolution of the
communication architectures from simple shared bus, to point-to-point and
hierarchical bus, onto network on a chip topologies can be noted. Due to
technological advances, their physical implementations have passed from
PCB to chip-to-chip interconnects inside same package and reached deep
sub-micron dimensions for the gate level interconnect inside a chip.

II. ELEMENTS AND MECHANISMS OF COMMUNICATION

ARCHITECTURE

The internal components of SoC communicate with each
other using buses. A bus can connect several components
using communication channels represented by wires in case
of integrated circuit or air in case of radio devices and fiber
optics in case of optical modules. IC buses are divided in
serial buses (i.e the information is transmitted using a single
wire) and parallel (i.e multiple wires convey the information
in the same time). At physical level, data transmitted by a
component travels from its output pins through wires to the
receiver input pins. Depending on the direction of the data
flow the buses can be unidirectional (i.e the data is
transmitted only from source to source to destination) and
bidirectional (i.e the data is transmitted from source to
destination and vice-versa). A bidirectional bus is
electrically more complex and inherently slower than a
unidirectional bus. The data transmission/reception between
SoC components is governed by rules and conventions that
combined constitute the bus or communication protocol.
Taking into consideration the targeted technology
limitations and performance requirements, the bus protocol
specifies the appropriate syntax, semantics and
synchronization of communication. To successfully
implement the communication protocol, every IP or
component in SoC needs a bus interface responsible for data
transfers between that component and bus. The component
ports that have the specific functionality of receiving and
transmitting data are referred to as bus interface ports. The
connection to the bus of interface input/output ports can be
made with simple wires, but in special cases where there is a
crucial need for performance, it is made with FIFOs, buffers
and frequency converters. Depending on the direction of
data flow there are three types bus component interfaces are:
 Master interfaces are capable of initiating and controlling

read/write data transfers. A typical IP or SoC component
with master interface can be a processor, DSP or video
accelerator.

 Slave interfaces only responds to a read/write data transfer
previously initiated by a master. Typical IP or SoC
component with slave interface are memories, low speed
communication core like SPI, I2C, UART.

 Mixed master/slave interfaces are capable of initiating and
controlling read/write data transfers but also can respond
to data transfer previously initiated by a different master.
A typical IP or SoC component with master/slave interface
is a DMA controller.
All data transactions of the busses are supervised and

controlled by specialized bus control circuitry. A typical bus
controller topology consisting of two types of logical
components (arbiter and decoder) that control the data flow
between the master and slave interfaces using bus
multiplexers.

The arbiter is responsible for solving bus congestion
issues, where multiple masters try to access the bus
simultaneously, by granting bus access only to one master
and signaling to the rest of the masters that the bus is busy
and they should wait until the bus is available. The
arbitration scheme has a direct impact on system
performance and several arbitration algorithms and
techniques have been developed to satisfy the performance
requirements for bandwidth, latency, master bus acceptance
rate and master access bus waiting time.

Every master or slave interface connected to on-chip bus
has assigned a range of addresses. All the master or slave
bus addresses are organized in an address map. Before
starting a data transfer on the bus, the master first transmits
the destination address of slave interface. The decoder’s
responsibility is to decode the destination address of a data
transfer started by master and to select the corresponding
slave to receive the data. Bus architectures can contain one
decoder, i.e. centralized decoder, or multiple decoders
distributed at every slave interface. The centralized
decoding has the advantage that new bus component can be
added to the system with little changes needed to be done,
resulting in design ease in adding new components to the
bus.

In SoC’s where multiple components are connected to a
shared bus or multiple masters request simultaneous access
to the same slave, e.g. on chip memory or DMA controller,
the bus arbiter selects the master that will be granted access
to the bus. When a master is granted access, data can be
transferred over by using one of the five most common
transfer types: basic transfer, burst transfer, split transfer,
out-of-order transfer and broadcast transfer. Other transfer
types are specific to custom communication protocols that
fulfill special purpose.

The type the bus topology employed influences the
performance, power consumption and the complexity of the
communication architecture. Simpler bus topologies imply
simpler bus protocols ideal for communication between a
small numbers of components, but the bus performance is
drastically reduced when handling many heterogeneous
components. Complex bus topologies efficiently handle data
transfers between a large number of components with
arbitrary bus behavior, but they have the disadvantage of
using complex bus protocols thus increasing overall power
consumption and NRE (Non-Recurring Engineering) costs.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

III. AMBA BUS

A SoC is basically an IP-centric complex world where
communication between its heterogeneous components is
challenging. ARM Holdings, a British fabless
semiconductor and software company was first to recognize
[6] the need for an open communication standard that
specifies the connection and communication protocols of
functional blocks in a SoC. As result, the Advanced
Microcontroller Bus Architecture (AMBA) was introduced
by ARM in 1996. The objective of AMBA specification is
to:
 Facilitate right-first-time development of embedded

microcontroller products with one or more CPUs, GPUs
or signal processors.

 Be technology independent, to allow reuse of IP cores,
peripheral and system macrocells across diverse IC
processes.

 Encourage modular system design to improve processor
independence, and the development of reusable peripheral
and system IP libraries.

 Minimize silicon infrastructure while supporting high
performance and low power on-chip communication.
Since their first appearance, the AMBA based IPs (e.g.

Cortex processors, DSP and graphics cores (Mali)),
provided by ARM, have gained tremendous popularity and
reached a market [7] penetration in 2012 of 95% for mobiles
phones, networking 35%, digital TVs 45% and
microcontroller of 18%. In the past years AMBA standard
was used for an increasingly number of non-ARM
platforms, like MIPS from Infineon and LEON3 from
Aeroflex-Gaisler. AMBA was adopted as the
communication standard for FPGA (i.e Altera and Xilinx)
and PSoC (Xilinx ZynQ SoC and Cypress PSoC4 and
PSoC5).

Due to stringent time-to-market constrains, major
semiconductor companies (e.g. Texas Instruments, Atmel,
Analog Devices) are using ARM with AMBA based IPs in
their SoCs. Nowadays, with the strategically shift of IBM,
from general purpose processors, to SoCs for their servers
and cloud based services, it can be easily concluded that the
AMBA based devices will dominate all the consumer and
industrial markets in the near feature.

Since the initial release of AMBA 2.0, the AMBA
architecture has evolved and adapted to fulfill the industry
needs, by incorporating new communication protocols:
ACE, ACE-Lite, AXI4, AXI4-Lite, AXI4-Stream, AXI3,
ATB, AHB-Lite and APB. The majority of the AMBA
compliant IP cores will use separately or in combination the
following architecture/protocols APB, AHB, AXI, AXI-Lite
and AXI-Stream. The special purpose architecture and
protocols, i.e. ACE, ACE-Lite and CHI are used for data
synchronization between multiple processor and system
memory. The ATB protocol is used for debugging and
diagnostic.

IV. DESIGN AND VERIFICATION METHODOLOGY FOR

AMBA INTERFACES

For each protocol we have designed a basic master and
slave interface. All the designs and they respective

testbenches have been described in VHDL and they are
technology independent.

In the design of every master/slave interface it was
employed a structured “two-process” VHDL design method
[8]. This method is applicable to synchronous single clock
design and it purpose is to: a) Provide uniform algorithm
encoding; b) Increase abstraction level; c) Improve
readability; d) Clearly identify sequential logic; e) Simplify
debugging; f) Improve simulation speed; g) Provide one
model for both synthesis and simulation

The “two-process” design methods uses high-level
sequential statements for coding, two processes per entity
and record types for signals declarations. It results in a
uniform way of encoding any algorithm in a VHDL entity
and improved readability. One process contains all
combinational (asynchronous) logic, and the second process
contains all sequential logic (registers).

To verify the correct behavior of the APB slave a
modified version of GRLIB AMBA Test Framework [5]
was used. This framework contains packages (AHB master,
AHB slave and AHB arbiter/controller core) that help in the
verification of new AMBA cores. The AHB master and
slave cores have debug interfaces that can be controlled
using external stimuli. Based on the GRLIB AMBA Test
Framework, we have designed a portable, self-contained
and small size AMBA interface design and test framework.
This new framework contains basic APB, AHB,,
master/slave interfaces.

V. AMBA INTERFACES DESIGN

A. APB Protocol

The Advanced Peripheral Bus (APB) [9] defines a low-
cost interface that is optimized for minimal power
consumption and reduced interface complexity. The APB
protocol is not pipelined and is used to connect to low-
bandwidth peripherals that do not require the high
performance of the AXI protocol. Typical usage of APB
interface is to access the programmable control registers of
peripheral devices.

The APB protocol relates a signal transition to the rising
edge of the clock, to simplify the integration of APB
peripherals into any design flow. Every transfer takes at
least two cycles. The APB can interface with: AHB, AHB-
Lite, AXI and AXI-Lite.

The APB protocol has two independent data buses, one
for read data and one for write data. The data buses can be
up to 32 bits wide. Because the buses do not have their own
individual handshake signals, it is not possible for data
transfers to occur on both buses at the same time.

In a typical AMBA based microcontroller system (see
Fig. 2) the high performance components, i.e. processors or
on-chip memories, are connected to a high speed bus (i.e
AHB or AXI) while the lower bandwidth peripheral are
connected to the low speed, low power APB bus.

The APB is connected to the AHB bus via an AHB/APB
bridge. In the APB bus there is usually only one master, i.e.
the APB bridge, and the rest of the APB peripherals are
slaves.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

Fig. 2. APB connection in an AMBA system [10]

Fig. 3. Schematic of the APB slave interface with N wait states.

The AMBA APB protocol specification defines
write/read transfers where the APB bridge receives slaves
responses on the next clock cycle or it has to wait several
clock cycle for the data. We have designed two basic APB
compatible slave interfaces: an APB interface with no wait
states and a slave interface that responds after several clock
cycles (Fig. 3).

B. AHB Protocol

The AMBA AHB (Advanced High-performance Bus)
[11] is for high-performance, high clock frequency system
modules. The AHB acts as the high-performance system
backbone bus. AHB supports the efficient connection of
processors, on-chip memories and off-chip external memory
interfaces with low-power peripheral macrocell functions.
AHB is also specified to ensure ease of use in an efficient
design flow using synthesis and automated test techniques.
AMBA AHB has the following features: burst transfers,
split transactions, single cycle bus master handover, single
clock edge operation, non-tristate implementation, wider
data bus configurations (64/128 bits).

The AMBA AHB bus protocol is designed to be used
with a central multiplexor interconnection scheme. Using
this scheme all bus masters drive out the address and control
signals indicating the transfer they wish to perform and the
arbiter determines which master has its address and control
signals routed to all of the slaves. A central decoder is also
required to control the read data and switch multiplexer,
which selects the appropriate signals from the slave that is
involved in the transfer. A typical AMBA AHB system
design contains the following components:
 AHB master. A bus master is able to initiate read and

write operations.
 AHB slave. A bus slave responds to a read or a write

operation initiates by the master.
 AHB arbiter. The bus arbiter ensures that only one bus

master at a time is allowed to initiate data transfers. Even
though the arbitration protocol is fixed, any arbitration
algorithm, such as highest priority or fair access can be
implemented depending on the application requirements.

An AHB would include only one arbiter, although this
would be trivial in single bus master systems.

 AHB decoder. The AHB decoder is used to decode the
address of each transfer and provide a select signal for the
slave that is involved in the transfer. A single centralized
decoder is required in all AHB implementations.
The AHB protocol has two independent data buses, one

for read data and one for write data. Data transfer can be
single or burst transfers where the address phase only last
one cycle while data phase can last one (zero wait state) or
several clock cycles(multiple wait states) .

The AHB bus master has the most complex bus interface
when compared with the other components of AMBA bus.
The AHB bus master is responsible for initiating and
controlling read/write requests on the AHB bus. The AHB
bus master controls the data transfer on the AHB bus but in
return the master interface is controlled by custom IP’s (e.g.
processor, DMA, etc.). The IP controls and communicate
with the AHB bus master using intellectual property
interface (IPIF). An IPIF heavily depends on IP
communication requirements and on the type of master
(AHB, AXI or AXI stream). A custom IPIF for AMBA
AHB master is presented in Fig. 4. The IPIF was designed
to be simple and resembles the on-chip ram memory
interface. The transfer_type signal indicates to the AHB
master the type of the transfer (i.e. single, burst
incremented, fixed burst, wrapped fixed burst). The size
signal indicates the transfer data width (i.e. byte, half-word,
word). When asserted the start signal forces the AHB
master to start a transfer. The addro signal represents initial
start address. The dwrite signal indicates a write or read
operation. The dataw signal carries the data from the IP to
the AHB master. The datar signal is used to carry the data
received by the AHB master, during read transfers, to the
IP.

Fig. 4. Custom interface between an IP and an AHB master.

A. AXI Protocol

The AMBA AXI (Advanced Extensible Interface)
protocol [12] supports high-performance, high-frequency
system designs. The AMBA 4 AXI protocol is an update to
AMBA 3 AXI that enhances the performance and utilization
of interconnect when used by multiple masters. It includes
the following enhancements: support for burst lengths up to
256 elements, quality of service signaling, support for
multiple region interfaces. AMBA AXI 4 is recommended
for new designs.

The bus AXI is backward compatible with existing AHB

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

and APB interfaces. The AXI protocol includes the AXI4-
Lite specification, a subset of AXI4 for communication with
simpler control register style interfaces within components.

Figure 5 shows that a write transaction uses the write
address, write data, and write response channels. The data
bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.
The read data channel carries both the read data and the read
response information from the slave to the master. The write
data channel carries the write data from the master to the
slave and includes a byte lane strobe signal for every eight
data bits, indicating which bytes of the data are valid.

Fig. 5. AXI Channel architecture of writes [12]

The starting point, in the design of the AXI slave

interfaces, is the previously designed AHB slave interface.
The AXI slaves have similar behaviors to the AHB slaves,
but because the AXI standard permits separate channel for
read and write operations, the AXI slaves have simpler logic
structure.

Similar to the design of AXI slave, the starting point in
designing an AXI master is the actual AMBA AHB master
(Fig. 6). Only a little logic has been added to ensure
compatibility for the HREADY, HRDATA and HGRANT.
Advanced features like separate read and write data
channels, issuing multiple outstanding addresses, out-of-
order transaction completion, access permission, transaction
buffering, atomic accesses, low power states and quality of
service signaling are not supported.

B. AXI-Stream Protocol

The AXI4-Stream protocol [13] is used as a standard
interface to connect components that wish to exchange
streaming data. The interface can be used to connect a single
master that generates data, to a single slave, that receives
data. The protocol can also be used when connecting larger
numbers of master and slave components. The protocol
supports multiple data streams using the same set of shared
wires, allowing a generic interconnect to be constructed that
can perform data upsizing, downsizing and routing
operations.

The AXI Stream protocol was design with the purpose of
reducing signal routing between a master and slave. This
protocol is ideal for FPGA implementation. Data streaming
interfaces are needed in DMA transfers and DSP
applications, especially in video and image processing
where the transfer speed and bandwidth is a critical
performance factor.

Fig. 6. AXI master interface

From a point of view on how the data flows from the
input to output ports of an IP, two types of IP’s can be
distinguished (see Fig 7):
 Direct data transfer. For these types of IP’s, the output is a

function only of the current input data. The most known
IP’s are DMA controllers and binary image thresholding
circuits.

 Feedback data transfer. For this type of IP’s the output is a
function of current input data and internal intermediate
data. This is a vast category that includes image filters
(Sobel, Median, Gaussian, FIR, IIR), image scaling, object
detectors, etc.
The AXI stream master or slave interface for direct data

transfer is simple and consists only of delaying the interface
signal with N cycles. On the other hand, the AXI stream
master or slave interface for feedback data transfers is more
complex and must use input FIFOs for data synchronization.
Also the handshake signals are delayed with (M+N) cycles.

Fig. 7. Data flow in IP's : a) direct data transfers, b) feedback data transfers

VI. IP MODULES VERIFICATION

To verify the correct behavior of the designed interfaces a
modified version of GRLIB AMBA Test Framework [5]
was used. This framework contains packages (AHB master,
AHB slave and AHB arbiter/controller core) that help in the

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

verification of new AMBA cores. The AHB master and
slave cores have debug interfaces that can be controlled
using external stimuli. Based on the GRLIB AMBA Test
Framework, we have designed a portable, self-contained
and small size AMBA interface design and test framework.
This new framework contains basic APB, AHB, AXI,
master/slave interfaces and corresponding testbenches.

The APB testbench architecture used for verification is
presented in Fig. 8. The AT_AHB master and slave
components are non-synthesizable and contain a debug
interface that can be controlled by the stimulus generated by
the testbench. The AHB arbiter/controller and AHB/APB
bridge are synthesizable cores instantiated from the GRLIB
library. The AHB/APB bridge is connected to the APB bus
and two units under test. The APB slave0 handles zero wait
state data transfers while the APB slave1 has transfer
latency of 5 wait states. The APB slaves units are
synthesizable.

Fig. 8. AMBA testbench setup for APB slaves

To verify the correct behavior of the AHB master, the

AMBA testbench from Fig. 9 was used for verification. The
testbench contains three non-synthesizable AT_AHB master
and three non-synthesizable AT_AHB slave with different
wait states. The testbench also contains a synthesizable
AHB arbiter/decoder and one AHB custom master.

Fig. 9. AMBA testbench setup for AHB masters

VII. CONCLUSIONS

The interface design of the AMBA bus (APB, AHB, AXI
and AXI-Stream) has been described. These interfaces can
be used in systems with different restrictions (low-power,
low speed up to high-speed transmission applications). For
the APB slave and AHB master/slave has developed a
design and testing environment based on the library GRLIB.
Unfortunately, due to the limitation imposed by the license
of all functional models AXI and AXI-Stream no test

framework is provided for these master/slave interfaces. The
AMBA architecture, being an open standard, has the
advantage of having many bridges to other communication
architectures (Core Connect, Wishbone, Avalon, etc). This
means that the interfaces presented in this communication
can be integrated with minimal effort in embedded systems
based on different bus architectures.

The VHDL source codes of the interfaces described in
this communication are included in the Software and
Hardware Open Repository for Embedded Systems
(SHORES) [4]. Its main goal is to make available to the
public, in an open-source style, the designs and results from
academia/research community. SHORES hosts the source
code of various software and hardware design projects that
combined with the newest algorithms proposed by academia
give birth to embedded solutions to the most challenging
obstacles in the fields of vision, bio-cryptography, signal
processing, etc. The IP modules can be used and modified
by the user to implement their own specific application. The
repository aim is to give support to the embedded system
community during the design process in order to increase
productivity and help the development of complex systems.

REFERENCES

[1] Zynq-7000 All Programmable SoC Overview (Xilinx DS190),
http://www.xilinx.com/support/documentation/data_sheets/ds190-
Zynq-7000-Overview.pdf

[2] 7 Series FPGAs Overview (Xilinx DS180),
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Se
ries_Overview.pdf

[3] Design, International Technology Roadmap for Semiconductors
(2012), http://www.itrs.net

[4] SHORES, Software and Hardware Open Repository for Embedded
Systems, http://www.imse-cnm.csic.es/shores/

[5] LEON/GRLIB Configuration and Development Guide, pp. 21-27,
www.gaisler.com/products/grlib/guide.pdf, 2012.

[6] AMBA Open Specifications (2013),
http://www.arm.com/products/system-ip/amba/amba-open-
specifications.php

[7] ARM annual report 2012, pages 16-17, http://www.arm.com
[8] Gaisler, J.: A structured VHDL design method. Fault-tolerant

microprocessors for space applications (white paper), pp. 41-50
(2010).

[9] AMBA APB Protocol Version: 2.0 (2010), http://www.arm.com
[10] ARM AMBA Specification (Rev 2.0), pp. 46-48, 69-70, 161-180,

http://www.arm.com
[11] AMBA 2 Specifications (1999), http://www.arm.com
[12] AMBA AXI and ACE Protocol Specification (2013),

http://www.arm.com
[13] AMBA 4 AXI4-Stream Protocol Specification (2011),

http://www.arm.com

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

