
 

 
Abstract—This paper describes the design of Intellectual 

Property (IP) modules of the most widely used communication 
standard interfaces, the AMBA bus. There is described the 
design of masters and slaves interface modules for APB, AHB, 
AXI and AXI-Stream buses. The IP modules presented can be 
used in systems with a variety of design constraints (low speed 
to high speed applications, low power consumption, etc). For 
the slave APB bus interfaces and the master/slave AHB a 
development environment for design and simulation based on 
the GRLIB library is provided. 
 

Index Terms—buses, interconnection network, IP module 
design, open source hardware 
 

I. INTRODUCTION 

hen designing high performance peripherals that 
require high bandwidth data transfers, the selection of 

bus standard and the interface design is a critical step. Very 
often the designer doesn’t have the liberty of choosing a bus 
standard due to the project constrains that bind him to a 
specific system or technology. What aggravates the 
circumstances is the fact that transactions on the bus are 
influenced by the slave/master arbitration scheme, the 
chaotic behavior of peripherals and software applications. 
Even if the designer uses high performance bus architecture, 
this does not guarantee that the entire system will be fast. In 
general designing bus interfaces for peripherals is a 
challenging and time consuming task that plays a major role 
in obtaining a good system performance. 

Every electronic device contains heterogeneous hardware 
elements, such as processors, graphic and sound cards, 
input-output (I/O) interfaces, memory, hard drives and 
custom hardware performing specialized tasks, which are 
interconnected using buses. From an electronic perspective 
a bus is an abstract concept that attaches to normal signal 
lines or wires the convention that they represent the 
communication channel through which information flows 
from one component to another. 

Depending on the system requirements a bus can be 
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formed by one up to several thousand signal lines in more 
complex systems, e.g. the interconnect between Processing 
System (PS) and Programmable Logic (PL) in Xilinx Zynq 
[1] and reaching ten thousand connections between Super 
Logical Regions (SLR) in Virtex-7 FPGA’s [2]. The 
technological advances in deep submicron (DSM) 
technologies have given birth to multimillion transistor 
chips, generically referred as system on chip (SoC), that 
integrate various electronic circuits and computer 
components onto a single, integrated circuit (IC). A SoC can 
contain processors, memory controllers, cache and on-chip 
memory, timers, digital signal processing units, analog to 
digital converters, digital to analog converter, encryption 
cores, wireless and optical communication interfaces, 
programmable logic, universal serial bus (USB), Ethernet, 
general purpose I/O interfaces and all these components, 
varying in numbers from tens to hundreds, are connected via 
an on-chip communication fabric that is referred to as on-
chip bus. SoC’s are broadly deployed in embedded systems 
where the design engineers need to optimize power 
consumption, size, reliability, performance and cost.  

Due to the technology particulates of an IC, the system 
communication architectures, which were having their 
physical layout on Printed Circuit Boards (PCBs), were 
considered inappropriate for an IC layout. New on-chip, or 
intra-die, standards and communication architectures 
emerged and took advantage of new processing paradigms, 
increasing frequency speed and die size for CMOS IC 
technology (see Fig. 1). 

The continuing advances in DSM technology have 
enabled the integration of more functionality, but in the 
same time it drastically increased the complexity and 
difficulty of the design-verification cycle. The International 
Technology Roadmap for Semiconductors [3] noticed that 
the technology progress will surpass by far the engineer 
ability to integrate and verify a design containing huge 
amount of transistors. Rapid technology change shortens 
product life cycles and makes time-to-market a critical issue 
for semiconductor customers. 

The aim of this paper is to present a communication 
interface library included in SHORES (Software and 
Hardware Open Repository for Embedded Systems), under 
GNU GPL [4] license, providing support for the design 
community in standard IP connection modules. For the most 
used communication standard, i.e. AMBA, we designed 
masters and slave interfaces, for the APB, AHB, AXI, AXI-
Stream protocols, that can be employed in a large variety of  
systems with different constraints (i.e. for low power, low 
speed up to high speed streaming applications). For the APB 
slave and AHB master/slave interfaces also a test 
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framework, based on GRLIB library [5], is provided. 
 

 
Fig. 1.  Evolution of communication architectures. The evolution of the 
communication architectures from simple shared bus, to point-to-point and 
hierarchical bus, onto network on a chip topologies can be noted. Due to 
technological advances, their physical implementations have passed from 
PCB to chip-to-chip interconnects inside same package and reached deep 
sub-micron dimensions for the gate level interconnect inside a chip.   
 

II. ELEMENTS AND MECHANISMS OF COMMUNICATION 

ARCHITECTURE 

The internal components of SoC communicate with each 
other using buses. A bus can connect several components 
using communication channels represented by wires in case 
of integrated circuit or air in case of radio devices and fiber 
optics in case of optical modules. IC buses are divided in 
serial buses (i.e the information is transmitted using a single 
wire) and parallel (i.e multiple wires convey the information 
in the same time). At physical level, data transmitted by a 
component travels from its output pins through wires to the 
receiver input pins. Depending on the direction of the data 
flow the buses can be unidirectional (i.e the data is 
transmitted only from source to source to destination) and 
bidirectional (i.e the data is transmitted from source to 
destination and vice-versa). A bidirectional bus is 
electrically more complex and inherently slower than a 
unidirectional bus. The data transmission/reception between 
SoC components is governed by rules and conventions that 
combined constitute the bus or communication protocol. 
Taking into consideration the targeted technology 
limitations and performance requirements, the bus protocol 
specifies the appropriate syntax, semantics and 
synchronization of communication. To successfully 
implement the communication protocol, every IP or 
component in SoC needs a bus interface responsible for data 
transfers between that component and bus. The component 
ports that have the specific functionality of receiving and 
transmitting data are referred to as bus interface ports. The 
connection to the bus of interface input/output ports can be 
made with simple wires, but in special cases where there is a 
crucial need for performance, it is made with FIFOs, buffers 
and frequency converters.   Depending on the direction of 
data flow there are three types bus component interfaces are:  
 Master interfaces are capable of initiating and controlling 

read/write data transfers. A typical IP or SoC component 
with master interface can be a processor, DSP or video 
accelerator.  

 Slave interfaces only responds to a read/write data transfer 
previously initiated by a master. Typical IP or SoC 
component with slave interface are memories, low speed 
communication core like SPI, I2C, UART. 

 Mixed master/slave interfaces are capable of initiating and 
controlling read/write data transfers but also can respond 
to data transfer previously initiated by a different master. 
A typical IP or SoC component with master/slave interface 
is a DMA controller. 
All data transactions of the busses are supervised and 

controlled by specialized bus control circuitry. A typical bus 
controller topology consisting of two types of logical 
components (arbiter and decoder) that control the data flow 
between the master and slave interfaces using bus 
multiplexers.  

The arbiter is responsible for solving bus congestion 
issues, where multiple masters try to access the bus 
simultaneously, by granting bus access only to one master 
and signaling to the rest of the masters that the bus is busy 
and they should wait until the bus is available. The 
arbitration scheme has a direct impact on system 
performance and several arbitration algorithms and 
techniques have been developed to satisfy the performance 
requirements for bandwidth, latency, master bus acceptance 
rate and master access bus waiting time. 

Every master or slave interface connected to on-chip bus 
has assigned a range of addresses. All the master or slave 
bus addresses are organized in an address map. Before 
starting a data transfer on the bus, the master first transmits 
the destination address of slave interface. The decoder’s 
responsibility is to decode the destination address of a data 
transfer started by master and to select the corresponding 
slave to receive the data. Bus architectures can contain one 
decoder, i.e. centralized decoder, or multiple decoders 
distributed at every slave interface. The centralized 
decoding has the advantage that new bus component can be 
added to the system with little changes needed to be done, 
resulting in design ease in adding new components to the 
bus.  

In SoC’s where multiple components are connected to a 
shared bus or multiple masters request simultaneous access 
to the same slave, e.g. on chip memory or DMA controller, 
the bus arbiter selects the master that will be granted access 
to the bus. When a master is granted access, data can be 
transferred over by using one of the five most common 
transfer types: basic transfer, burst transfer, split transfer, 
out-of-order transfer and broadcast transfer. Other transfer 
types are specific to custom communication protocols that 
fulfill special purpose.  

The type the bus topology employed influences the 
performance, power consumption and the complexity of the 
communication architecture. Simpler bus topologies imply 
simpler bus protocols ideal for communication between a 
small numbers of components, but the bus performance is 
drastically reduced when handling many heterogeneous 
components. Complex bus topologies efficiently handle data 
transfers between a large number of components with 
arbitrary bus behavior, but they have the disadvantage of 
using complex bus protocols thus increasing overall power 
consumption and NRE (Non-Recurring Engineering ) costs.  
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III. AMBA BUS 

A SoC is basically an IP-centric complex world where 
communication between its heterogeneous components is 
challenging. ARM Holdings, a British fabless 
semiconductor and software company was first to recognize 
[6] the need for an open communication standard that 
specifies the connection and communication protocols of 
functional blocks in a SoC. As result, the Advanced 
Microcontroller Bus Architecture (AMBA) was introduced 
by ARM in 1996. The objective of AMBA specification is 
to:  
 Facilitate right-first-time development of embedded 

microcontroller products with one or more CPUs, GPUs 
or signal processors. 

 Be technology independent, to allow reuse of IP cores, 
peripheral and system macrocells across diverse IC 
processes. 

 Encourage modular system design to improve processor 
independence, and the development of reusable peripheral 
and system IP libraries. 

 Minimize silicon infrastructure while supporting high 
performance and low power on-chip communication. 
Since their first appearance, the AMBA based IPs (e.g. 

Cortex processors, DSP and graphics cores (Mali)), 
provided by ARM, have gained tremendous popularity and 
reached a market [7] penetration in 2012 of 95% for mobiles 
phones, networking 35%, digital TVs 45% and 
microcontroller of 18%. In the past years AMBA standard 
was used for an increasingly number of non-ARM 
platforms, like MIPS from Infineon and LEON3 from 
Aeroflex-Gaisler. AMBA was adopted as the 
communication standard for FPGA (i.e Altera and Xilinx) 
and PSoC (Xilinx ZynQ SoC and Cypress PSoC4 and 
PSoC5).  

Due to stringent time-to-market constrains, major 
semiconductor companies (e.g. Texas Instruments, Atmel, 
Analog Devices) are using ARM with AMBA based IPs in 
their SoCs.  Nowadays, with the strategically shift of IBM, 
from general purpose processors, to SoCs for their servers 
and cloud based services, it can be easily concluded that the 
AMBA based devices will dominate all the consumer and 
industrial markets in the near feature.  

Since the initial release of AMBA 2.0, the AMBA 
architecture has evolved and adapted to fulfill the industry 
needs, by incorporating new communication protocols: 
ACE, ACE-Lite, AXI4, AXI4-Lite, AXI4-Stream, AXI3, 
ATB, AHB-Lite and APB. The majority of the AMBA 
compliant IP cores will use separately or in combination the 
following architecture/protocols APB, AHB, AXI, AXI-Lite 
and AXI-Stream. The special purpose architecture and 
protocols, i.e. ACE, ACE-Lite and CHI are used for data 
synchronization between multiple processor and system 
memory. The ATB protocol is used for debugging and 
diagnostic.   

IV. DESIGN AND VERIFICATION METHODOLOGY FOR 

AMBA INTERFACES 

For each protocol we have designed a basic master and 
slave interface. All the designs and they respective 

testbenches have been described in VHDL and they are 
technology independent. 

In the design of every master/slave interface it was 
employed a structured “two-process” VHDL design method 
[8]. This method is applicable to synchronous single clock 
design and it purpose is to: a) Provide uniform algorithm 
encoding; b) Increase abstraction level; c) Improve 
readability; d) Clearly identify sequential logic; e) Simplify 
debugging; f) Improve simulation speed; g) Provide one 
model for both synthesis and simulation  

The “two-process” design methods uses high-level 
sequential statements for coding, two processes per entity 
and record types for signals declarations. It results in a 
uniform way of encoding any algorithm in a VHDL entity 
and improved readability. One process contains all 
combinational (asynchronous) logic, and the second process 
contains all sequential logic (registers).  

To verify the correct behavior of the APB slave a 
modified version of GRLIB AMBA Test Framework [5] 
was used. This framework contains packages (AHB master, 
AHB slave and AHB arbiter/controller core) that help in the 
verification of new AMBA cores. The AHB master and 
slave cores have debug interfaces that can be controlled 
using external stimuli. Based on the GRLIB AMBA Test 
Framework, we have designed a portable, self-contained 
and small size AMBA interface design and test framework. 
This new framework contains basic APB, AHB,, 
master/slave interfaces. 

V. AMBA INTERFACES DESIGN 

A. APB Protocol 

The Advanced Peripheral Bus (APB) [9] defines a low-
cost interface that is optimized for minimal power 
consumption and reduced interface complexity. The APB 
protocol is not pipelined and is used to connect to low-
bandwidth peripherals that do not require the high 
performance of the AXI protocol. Typical usage of APB 
interface is to access the programmable control registers of 
peripheral devices. 

The APB protocol relates a signal transition to the rising 
edge of the clock, to simplify the integration of APB 
peripherals into any design flow. Every transfer takes at 
least two cycles. The APB can interface with: AHB, AHB-
Lite, AXI and AXI-Lite. 

The APB protocol has two independent data buses, one 
for read data and one for write data. The data buses can be 
up to 32 bits wide. Because the buses do not have their own 
individual handshake signals, it is not possible for data 
transfers to occur on both buses at the same time.  

In a typical AMBA based microcontroller system (see 
Fig. 2) the high performance components, i.e. processors or 
on-chip memories, are connected to a high speed bus (i.e 
AHB or AXI) while the lower bandwidth peripheral are 
connected to the low speed, low power APB bus. 

The APB is connected to the AHB bus via an AHB/APB 
bridge. In the APB bus there is usually only one master, i.e. 
the APB bridge, and the rest of the APB peripherals are 
slaves. 
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Fig. 2.  APB connection in an AMBA system [10] 

 
Fig. 3.  Schematic of the APB slave interface with N wait states. 
 

The AMBA APB protocol specification defines 
write/read transfers where the APB bridge receives slaves 
responses on the next clock cycle or it has to wait several 
clock cycle for the data. We have designed two basic APB 
compatible slave interfaces: an APB interface with no wait 
states and a slave interface that responds after several clock 
cycles (Fig. 3).  

B. AHB Protocol 

The AMBA AHB (Advanced High-performance Bus) 
[11] is for high-performance, high clock frequency system 
modules. The AHB acts as the high-performance system 
backbone bus. AHB supports the efficient connection of 
processors, on-chip memories and off-chip external memory 
interfaces with low-power peripheral macrocell functions. 
AHB is also specified to ensure ease of use in an efficient 
design flow using synthesis and automated test techniques. 
AMBA AHB has the following features: burst transfers, 
split transactions, single cycle bus master handover, single 
clock edge operation, non-tristate implementation, wider 
data bus configurations (64/128 bits). 

The AMBA AHB bus protocol is designed to be used 
with a central multiplexor interconnection scheme. Using 
this scheme all bus masters drive out the address and control 
signals indicating the transfer they wish to perform and the 
arbiter determines which master has its address and control 
signals routed to all of the slaves. A central decoder is also 
required to control the read data and switch multiplexer, 
which selects the appropriate signals from the slave that is 
involved in the transfer. A typical AMBA AHB system 
design contains the following components: 
 AHB master. A bus master is able to initiate read and 

write operations. 
 AHB slave. A bus slave responds to a read or a write 

operation initiates by the master. 
 AHB arbiter. The bus arbiter ensures that only one bus 

master at a time is allowed to initiate data transfers. Even 
though the arbitration protocol is fixed, any arbitration 
algorithm, such as highest priority or fair access can be 
implemented depending on the application requirements. 

An AHB would include only one arbiter, although this 
would be trivial in single bus master systems. 

 AHB decoder. The AHB decoder is used to decode the 
address of each transfer and provide a select signal for the 
slave that is involved in the transfer. A single centralized 
decoder is required in all AHB implementations. 
The AHB protocol has two independent data buses, one 

for read data and one for write data. Data transfer can be 
single or burst  transfers where the address phase only last 
one cycle while data phase can last one (zero wait state) or 
several clock cycles(multiple wait states) .  

The AHB bus master has the most complex bus interface 
when compared with the other components of AMBA bus. 
The AHB bus master is responsible for initiating and 
controlling read/write requests on the AHB bus. The AHB 
bus master controls the data transfer on the AHB bus but in 
return the master interface is controlled by custom IP’s (e.g. 
processor, DMA, etc.). The IP controls and communicate 
with the AHB bus master using intellectual property 
interface (IPIF). An IPIF heavily depends on IP 
communication requirements and on the type of master 
(AHB, AXI or AXI stream). A custom IPIF for AMBA 
AHB master is presented in Fig. 4. The IPIF was designed 
to be simple and resembles the on-chip ram memory 
interface. The transfer_type signal indicates to the AHB 
master the type of the transfer (i.e. single, burst 
incremented, fixed burst, wrapped fixed burst). The size 
signal indicates the transfer data width (i.e. byte, half-word, 
word). When asserted the start signal forces the AHB 
master to start a transfer. The addro signal represents initial 
start address. The dwrite signal indicates a write or read 
operation. The dataw signal carries the data from the IP to 
the AHB master. The datar signal is used to carry the data 
received by the AHB master, during read transfers, to the 
IP.  

 

 
Fig. 4.  Custom interface between an IP and an AHB master. 

A. AXI Protocol 

The AMBA AXI (Advanced Extensible Interface) 
protocol [12] supports high-performance, high-frequency 
system designs. The AMBA 4 AXI protocol is an update to 
AMBA 3 AXI that enhances the performance and utilization 
of interconnect when used by multiple masters. It includes 
the following enhancements: support for burst lengths up to 
256 elements, quality of service signaling, support for 
multiple region interfaces. AMBA AXI 4 is recommended 
for new designs. 

The bus AXI is backward compatible with existing AHB 
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and APB interfaces. The AXI protocol includes the AXI4-
Lite specification, a subset of AXI4 for communication with 
simpler control register style interfaces within components. 

Figure 5 shows that a write transaction uses the write 
address, write data, and write response channels. The data 
bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide. 
The read data channel carries both the read data and the read 
response information from the slave to the master. The write 
data channel carries the write data from the master to the 
slave and includes a byte lane strobe signal for every eight 
data bits, indicating which bytes of the data are valid. 

 
Fig. 5.  AXI Channel architecture of writes [12] 

 
The starting point, in the design of the AXI slave 

interfaces, is the previously designed AHB slave interface. 
The AXI slaves have similar behaviors to the AHB slaves, 
but because the AXI standard permits separate channel for 
read and write operations, the AXI slaves have simpler logic 
structure. 

Similar to the design of AXI slave, the starting point in 
designing an AXI master is the actual AMBA AHB master 
(Fig. 6). Only a little logic has been added to ensure 
compatibility for the HREADY, HRDATA and HGRANT. 
Advanced features like separate read and write data 
channels, issuing multiple outstanding addresses, out-of-
order transaction completion, access permission, transaction 
buffering, atomic accesses, low power states and quality of 
service signaling are not supported.  

B. AXI-Stream Protocol 

The AXI4-Stream protocol [13] is used as a standard 
interface to connect components that wish to exchange 
streaming data. The interface can be used to connect a single 
master that generates data, to a single slave, that receives 
data. The protocol can also be used when connecting larger 
numbers of master and slave components. The protocol 
supports multiple data streams using the same set of shared 
wires, allowing a generic interconnect to be constructed that 
can perform data upsizing, downsizing and routing 
operations. 

The AXI Stream protocol was design with the purpose of 
reducing signal routing between a master and slave. This 
protocol is ideal for FPGA implementation. Data streaming 
interfaces are needed in DMA transfers and DSP 
applications, especially in video and image processing 
where the transfer speed and bandwidth is a critical 
performance factor.  

 

 

 
Fig. 6.  AXI master interface 

From a point of view on how the data flows from the 
input to output ports of an IP, two types of IP’s can be 
distinguished (see Fig 7): 
 Direct data transfer. For these types of IP’s, the output is a 

function only of the current input data. The most known 
IP’s are DMA controllers and binary image thresholding 
circuits.   

 Feedback data transfer. For this type of IP’s the output is a 
function of current input data and internal intermediate 
data. This is a vast category that includes image filters 
(Sobel, Median, Gaussian, FIR, IIR), image scaling, object 
detectors, etc. 
The AXI stream master or slave interface for direct data 

transfer is simple and consists only of delaying the interface 
signal with N cycles. On the other hand, the AXI stream 
master or slave interface for feedback data transfers is more 
complex and must use input FIFOs for data synchronization. 
Also the handshake signals are delayed with (M+N) cycles.   

 

 
Fig. 7.  Data flow in IP's : a) direct data transfers, b) feedback data transfers 

VI. IP MODULES VERIFICATION 

To verify the correct behavior of the designed interfaces a 
modified version of GRLIB AMBA Test Framework [5] 
was used. This framework contains packages (AHB master, 
AHB slave and AHB arbiter/controller core) that help in the 
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verification of new AMBA cores. The AHB master and 
slave cores have debug interfaces that can be controlled 
using external stimuli. Based on the GRLIB AMBA Test 
Framework, we have designed a portable, self-contained 
and small size AMBA interface design and test framework. 
This new framework contains basic APB, AHB, AXI, 
master/slave interfaces and corresponding testbenches. 

The APB testbench architecture used for verification is 
presented in Fig. 8. The AT_AHB master and slave 
components are non-synthesizable and contain a debug 
interface that can be controlled by the stimulus generated by 
the testbench. The AHB arbiter/controller and AHB/APB 
bridge are synthesizable cores instantiated from the GRLIB 
library. The AHB/APB bridge is connected to the APB bus 
and two units under test. The APB slave0 handles zero wait 
state data transfers while the APB slave1 has transfer 
latency of 5 wait states. The APB slaves units are 
synthesizable.   

 

 
Fig. 8.  AMBA testbench setup for APB slaves 

 
To verify the correct behavior of the AHB master, the 

AMBA testbench from Fig. 9 was used for verification. The 
testbench contains three non-synthesizable AT_AHB master 
and three non-synthesizable AT_AHB slave with different 
wait states. The testbench also contains a synthesizable 
AHB arbiter/decoder and one AHB custom master. 

 

 
Fig. 9.  AMBA testbench setup for AHB masters 

VII. CONCLUSIONS 

The interface design of the AMBA bus (APB, AHB, AXI 
and AXI-Stream) has been described. These interfaces can 
be used in systems with different restrictions (low-power, 
low speed up to high-speed transmission applications). For 
the APB slave and AHB master/slave has developed a 
design and testing environment based on the library GRLIB. 
Unfortunately, due to the limitation imposed by the license 
of all functional models AXI and AXI-Stream no test 

framework is provided for these master/slave interfaces. The 
AMBA architecture, being an open standard, has the 
advantage of having many bridges to other communication 
architectures (Core Connect, Wishbone, Avalon, etc). This 
means that the interfaces presented in this communication 
can be integrated with minimal effort in embedded systems 
based on different bus architectures. 

The VHDL source codes of the interfaces described in 
this communication are included in the Software and 
Hardware Open Repository for Embedded Systems 
(SHORES) [4]. Its main goal is to make available to the 
public, in an open-source style, the designs and results from 
academia/research community. SHORES hosts the source 
code of various software and hardware design projects that 
combined with the newest algorithms proposed by academia 
give birth to embedded solutions to the most challenging 
obstacles in the fields of vision, bio-cryptography, signal 
processing, etc. The IP modules can be used and modified 
by the user to implement their own specific application. The 
repository aim is to give support to the embedded system 
community during the design process in order to increase 
productivity and help the development of complex systems.  
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