


Abstract—Requirements modeling and analysis are

important in successful software engineering projects. Class
diagrams are a useful standard for modeling static structures of
information systems. Analyzing conflicts in software
specifications is crucial when multiple stakeholder concerns
need to be addressed. This work uses ontologies to analyze
conflicts in the requirement specifications of class diagrams.
The conflict analysis process and Twenty-one rules are
proposed to detect four conflict issues: inconsistencies,
redundancies, overrides, and missing parts. The proposed
process and rules can help novices to analyze conflicts in class
diagrams. The proposed rules are also feasible to be
automatically executed by knowledge-based systems.

Index Terms—Requirements engineering, class diagram,
ontology; conflicts analysis

I. INTRODUCTION

ISTENING and modeling user requirements are important
in successful software system development (He and

King, 2008). Unified Modeling Language (UML) is a
mainstream standard for requirements modeling. Class
diagrams are commonly used for modeling the static aspects
of information systems.

Analyzing conflicts in software models is crucial when
multiple stakeholder concerns need to be addressed by
software engineers (Savolainen and Männistö, 2010). Design
inconsistencies are common in industries and often hard to be
recognized (Egyed, 2006). Using ontologies to manage
domain knowledge and support system development is
emergent in the recent years (Nomaguchi and Fujita, 2007;
Liu, 2010). However, none of the related works uses
ontologies to analyze conflicts in class diagrams.

This work proposes a conflict analysis process and a set of
rules to detect conflicts to reduce errors in class diagrams.
The conflict analysis process are a four-step circle including
modeling prior knowledge, modeling new requirements,
detecting conflicts, and resolving conflicts. These rules
handles four conflict issues: inconsistencies, redundancies,
overrides, and missing parts. Scenarios in the electronic
commerce context are also provides to preliminarily
demonstrate and validate the proposed rules.

Manuscript received July 22, 2014; revised February 13, 2015.
Chi-Lun Liu is with the Department of Multimedia and Mobile

Commerce, Kainan University, Taoyuan 33857, Taiwan (corresponding
author to provide phone: 886-3-341-2500#6070; fax: 886-3-341-2373;
e-mail: tonyliu@mail.knu.edu.tw).

Hsieh-Hong Huang is with the Department of Information Science and
Management Systems, National Taitung University, Jhiben Campus, Taitung,
369, Taiwan (e-mail: kory@nttu.edu.tw).

The advantage of the proposed process and rules are
twofold. The process and rules can help students and novice
software engineers to analyze conflicts in class diagrams by
means of semantics in the ontology. On the other hand, the
proposed rules and ontology is feasible to be stored and
executed in knowledge-based systems to detect conflicts
automatically.

The reminder of this paper is structured as follows: Section
II discusses related works about conflicts analysis. Section III
proposes the conflict analysis process. Section IV presents
the proposed 21 rules for conflict detection based on the
ontology. Scenarios are also provided for demonstrating how
these rules works appropriately in this section. Finally,
Section V discusses the conclusion.

II. RELATED WORKS

Table I summarizes the existing conflict analysis works in
requirements engineering. Maxwell, Antón, and Swire (2011)
and Roth et al. (2013) provides a taxonomy and process to
identify and resolve conflicts in software requirements.
Mohite et al. (2014) and Sapna and Mohanty (2007) analyze
inconsistencies and conflicts in UML diagrams. Kaiya and
Saeki (2005) and Liu (2010) use ontologies to analyze and
resolve conflicts in requirements. These works reveal that
conflicts occur in various requirement documentations. Two
of these works use ontologies to analyze conflicts. Two of
these works focus on UML diagrams. And no work use
ontologies to analyze conflicts in class diagrams in Table I.
Therefore conflict analysis for class diagrams is a valuable
research issue.

TABLE I

EXISTING REQUIREMENTS CONFLICT ANALYSIS WORKS
 Document Conflict Analysis Approach
Maxwell,
Antón, and
Swire (2011)

Legal Text and
software
requirements

Use legal cross-reference
taxonomy for identify software
requirement conflicts

Roth et al.
(2013)

Enterprise
architecture
documentation

Provide a conflict resolution
process

Mohite et al.
(2014)

UML Use Graph transformation systems
to detect conflicts and
dependencies between UML
diagrams

Sapna and
Mohanty
(2007)

UML Use a set of rules to detect
inconsistencies among different
kinds of UML diagrams

Kaiya and
Saeki (2005)

X is a instance
of Y,
Subject-Verb-O
bject

Detect requirements conflicts
according to predefined conflict
relations in ontologies.

Liu (2010) Activity
Diagram

Use ontologies to automatically
detect conflicts

Ontology-Based Requirement Conflicts Analysis
in Class Diagrams

Chi-Lun Liu, Hsieh-Hong Huang

L

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

III. ONTOLOGY-BASED CONFLICT ANALYSIS PROCESS IN

REQUIREMENTS EVOLUTION

This section extends the prior work (Liu, 2010) to propose
the ontology-based conflict analysis process in requirements
evolution depicted in Fig. 1. The proposed conflict analysis
process is a circle and has four steps: modeling prior
knowledge, modeling new requirements, detecting conflicts,
and resolving conflicts. These steps are introduced as
follows.

1. Modeling Prior
Knowledge

2. Modeling New
Requirements

3. Detecting
Conflicts

4. Resolving
Conflicts

Fig. 1. Conflicts analysis process in requirements evolution

(1) Modeling prior knowledge: Users, software engineers,

and knowledge engineers model the domain knowledge,
approved existing requirements, and conflict detection
rules. The terms related to the domain should be stored in
the ontology. These terms in the ontology will be used to
represent requirements specifications, such as class
diagrams. This work proposes several conflict detection
rules. New rules can also be added in this step.

(2) Modeling new requirements: Modeling new requirements
in this step is based on the prior knowledge in step 1.
Terms in the ontology, which are established in step 1,
can be used to represent new requirements. The terms
used in new requirements should exist in the ontology. If
a new term is necessary to represent a new requirement,
step 1 is performed to add this term in the ontology.

(3) Detecting conflicts: This step uses the ontology and rules
to detect conflicts. Several rules and scenarios are
provided to explain how to detect conflict in the next
section.

(4) Resolving conflicts: Stakeholders should negotiate a
solution for the conflicts in this step. If requirements and
environments change, step 1 is performed to start these
steps again.

IV. PROPOSED CONFLICT DETECTION RULES

Twenty-one rules are proposed for conflict detection in
class diagrams. These rules detect inconsistencies,
redundancies, overrides, and missing parts. This section
introduces these rules and explain these rules with several
scenarios in the electronic commerce context.

A. Inconsistency Detection Rules

Inconsistency detection rules focus on inconsistencies
between two requirements and between requirements and the
ontology. RuleID1-11 are proposed in this section. Scenarios
are also provided to explain these rules.

RuleID1: There is a requirements generalization

inconsistency if ClassM is a superclass of ClassN in ReqE,

ClassO is a suprclass of ClassP in ReqF, an equality or a
synonym relationship exists between concept ClassN and
concept ClassO in the ontology, and an equality or a
synonym relationship exists between concept ClassM and
concept ClassP in the ontology.

Fig. 2. Requirements generalization inconsistency

RuleID2: There is a requirements composition

inconsistency if there is a composition relationship from
ClassN to ClassM in ReqE, there is a composition
relationship from ClassP to ClassO in ReqF, an equality or a
synonym relationship exists between concept ClassN and
concept ClassO in the ontology, and an equality or a
synonym relationship exists between concept ClassM and
concept ClassP in the ontology.

Fig. 3. Requirements composition inconsistency

RuleID3: There is a requirements aggregation

inconsistency if there is an aggregation relationship from
ClassN to ClassM in ReqE, there is an aggregation
relationship from ClassP to ClassO in ReqF, an equality or
synonym relationship exists between concept ClassN and
concept ClassO in the ontology, and an equality or a
synonym relationship exists between concept ClassM and
concept ClassP in the ontology.

Fig. 4. Requirements aggregation inconsistency

Requirements generalization inconsistency detected by

RuleID1 means that a class is not only a superclass but also a

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

subclass of another class in a wrong class diagram. Fig. 2
depicts RuleID1. Requirements composition inconsistency
detected by RuleID2 and aggregation requirements
inconsistency detected by RuleID3 mean a class is a part and a
whole of another class. Fig. 3 and 4 depicts RuleID2 and
RuleID3. For example, Payment service (ClassM) is a
superclass of Near Field Communication (ClassN) in ReqE in
the payment system. NFC (ClassO) is a supserclass of
Payment service (ClassP) in ReqF. ClassM equals ClassP.
ClassN is a synonym of ClassO because NFC is the
abbreviation of Near Field Communication. According to
RuleID1, requirements generalization inconsistency occurs.
The structures of RuleID1-3 are similar.

RuleID4: There is a method exclusion inconsistency if

AttributeX is added in ClassM in ReqE, MethodI is not
allowed in ClassN in ReqF, there is an equality, kind, part, or
synonym relationship between MethodI and MethodJ, and
there is an equality, kind, part, or synonym relationship
between ClassM and ClassN.

Fig. 5. Method exclusion inconsistency

Some behaviors in information systems are regulated by

government laws and corporation policies. Method exclusion
inconsistency detected by RuleID4 and illustrated in Fig. 5
means an undesirable method is added. For example, storing
credit_card_number() (MethodI()) is added in credit card
(ClassM). Credit card numbers cannot be stored in the
database is a the corporation policy because stored credit card
numbers has a security risk about hacking. Therefore
Storing_credit_card_number() (MethodJ) cannot included in
Any class (ClassN) in ReqF in the payment system. MethodI()
equals MethodJ(). ClassM is a kind of ClassN. According to
RuleID4, method exclusion inconsistency occurs.

RuleID5: There is a multiple inheritance inhibition

inconsistency if a generalization relationship from ClassO to
ClassN is added in ReqE, there is a generalization
relathionship from ClassO to ClassM in the existing
requirements, and multiple inheritance is not allowed in
ReqF.

Fig. 6. Multiple inheritance inhibition inconsistency.

Some programming languages inhibit multiple inheritance,
such as Java. RuleID5 detecting multiple inheritance
inhibition inconsistency indicates that more than one
superclass exists in a class diagram. Fig. 6 depicts RuleID5

RuleID6: There is a generalization and alternative
inconsistency if a generalization relationship from ClassN to
ClassM is added in ReqE and there is a equality, part,
antonym, or synonym relationship between concept ClassM
and concept ClassN in the ontology.

Fig. 7. Generalization and alternative inconsistency

RuleID6 detecting generalization and alternative
inconsistency means there is an alternative semantic
relationship other than a generalization relationship between
two classes in the ontology. Fig. 7, 9, 11 depict RuleID6,
RuleID8 and RuleID10. The structures of RuleID6, RuleID8 and
RuleID10 are similar. For example, the ontology indicates that
Payment service (ClassN) is a part of Electronic commerce
website (ClassM). According to RuleID6, adding a
generalization relationship from Payment service (ClassN) to
Electronic commerce website(ClassM) causes a
generalization and alternative inconsistency.

RuleID7: There is an inverse generalization inconsistency
if a generalization relationship from ClassN to ClassM is
added in ReqE and concept ClassN is a kind of concept
ClassM in the ontology.

Fig. 8. Inverse generalization inconsistency.

RuleID7 detecting inverse generalization inconsistency
means the direction of generalization relationship between
two classes in a class diagram is inverse comparing to the
ontology. Fig. 8, 10, 12 depict RuleID7, RuleID9 and RuleID11.
The structures of RuleID7, RuleID9 and RuleID11 are similar.
For example, the ontology shows NFC (ClassM) is a kind of
Wireless connectivity (ClassN). According to RuleID7,
adding a generalization relationship from Wireless
connectivity (ClassN) to NFC (ClassM) which means
wireless is a kind of NFC causes inverse generalization
inconsistency.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

RuleID8: There is an aggregation and alternative
inconsistency if an aggregation relationship from ClassN to
ClassM is added in ReqE and there is a equality, part,
antonym, or synonym relationship between concept ClassM
and concept ClassN in the ontology.

Fig. 9. Aggregation and alternative inconsistency.

RuleID9: There is an inverse aggregation inconsistency if
an aggregation relationship from ClassN to ClassM is added
in ReqE and concept ClassN is a kind of concept ClassM in
the ontology.

Fig. 10. Inverse aggregation inconsistency

RuleID10: There is a composition and alternative
inconsistency if a composition relationship from ClassN to
ClassM is added in ReqE and there is a equality, part,
antonym, or synonym relationship between concept ClassM
and concept ClassN in the ontology.

ClassM

ClassN

1
ReqE
Add a composition relationship
from ClassN to ClassM.

Equality,
Kind,Antonym,
or Synonym

Fig. 11. Composition and alternative inconsistency.

RuleID11: There is an inverse composition inconsistency if
a composition relationship from ClassN to ClassM is added
in ReqE and concept ClassN is a kind of concept ClassM in
the ontology.

ClassM

ClassN

is a part of
1

ReqE
Add a composition relationship
from ClassN to ClassM.

Fig. 12. Inverse composition inconsistency.

B. Redundancy Detection Rules

The ontology provides the domain knowledge to detect
redundancies about classes, attributes, and methods in
redundancy detection rules. RuleRD1-6 are proposed and
explained as follows.

RuleRD1: There is an attribute redundancy if AttributeY is

added in ClassM in ReqE and there is an equality, kind, part,
or synonym relationship between concept AttributeX and
concept AttributeY in the ontology.

Fig. 13. Attribute redundancy.

Attribute redundancy in RuleRD1 means two attributes are
the same, similar, or overlap. Method redundancy in RuleRD2
means two methods are the same, similar, or overlap. The
structures of RuleRD1 and RuleRD2 are similar. Fig. 13 depicts
RuleRD1 and Fig. 14 depicts RuleRD2. For example, Expired
date (AttributeX) exists in Credit card (ClassM). According
to RuleRD1, adding Date (AttributeY) causes attribute
redundancy because Expired date (AttributeX) is a kind of
Date (AttributeY). The name of AttributeY is inappropriate
and needs to be modified.

RuleRD2: There is a method redundancy if MethodJ() is
added in ClassM in ReqE and there is an equality, kind, part,
or synonym relationship between concept MethodI() and
concept MethodJ() in the ontology.

Fig. 14. Method redundancy.

RuleRD3: There is a generalization relationship
redundancy if a generalization relationship from ClassN to
ClassM is added in ReqE and concept ClassN is not a kind of
ClassM in the ontology.

ClassM

ClassN

is not a kind ofReqE
Add a generalization relationship
from ClassN to ClassM.

Fig. 15. Generalization relationship redundancy.

Generalization relationship redundancy in RuleRD3 means
the meaning of generalization relationship between two
classes in a class diagram does not appear in the ontology.
Aggregation relationship redundancy in RuleRD4 means the

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

meaning of aggregation relationship between two classes in a
class diagram does not appear in the ontology. Composition
relationship redundancy in RuleRD5 means the meaning of
composition relationship between two classes in a class
diagram does not appear in the ontology. The structures of
RuleRD3, RuleRD4, and RuleRD5 are similar. Fig. 15-17 depict
RuleRD3-5. For example, stakeholders propose ReqE: "Debit
card (ClassN) is a subclass of Payment service (ClassM)".
The domain knowledge which is "Debit card is a kind of
Payment service" cannot be found in the ontology. According
to RuleRD3, generalization relationship redundancy occurs
and the domain knowledge should be updated in this case.

RuleRD4: There is an aggregation relationship redundancy
if an aggregation relationship from ClassN to ClassM is
added in ReqE and concept ClassN is not a part of ClassM in
the ontology.

ClassM

ClassN

is not a part of
1

ReqE
Add a composition relationship
from ClassN to ClassM.

Fig. 16. Aggregation relationship redundancy.

RuleRD5: There is a composition relationship redundancy
if a composition relationship from ClassN to ClassM is added
in ReqE and concept ClassN is not a part of ClassM in the
ontology.

ClassM

ClassN

is not a part of
1

ReqE
Add a aggregation relationship
from ClassN to ClassM.

Fig. 17. Composition relationship redundancy.

RuleRD6: There is a class redundancy if ClassN is added in
ReqE and there is an equality or synonym relationship
between concept ClassM and ClassM in the ontology.

Fig. 18. Class redundancy.

Class redundancy in RuleRD6 indicates two classes are the
same. Fig. 18 illustrates RuleRD6. For example, Debit card
(ClassM) is already in the class diagram. According to
RuleRD6, adding a Check card (ClassN) causes class
redundancy because check card is a synonym of debit card.

C. Override Detection Rules

Override is an essential characteristic in Object-Oriented
Programming. The appropriateness of override should be
concerned in software engineering processes. The two
proposed rules for override detection remind software
engineers about potential overrides. RuleOD1-2 are proposed
and discussed as follows.

RuleOD1: There is a possible override during
generalization relationship addition if a generalization
relationship from ClassN to ClassM is added in ReqE and
there is an equality, kind, composition, or synonym
relationship between concept MethodI() in ClassM and
MethodJ() in ClassN in the ontology.

Fig. 19. Possible override during generalization relationship
addition

RuleOD1 and RuleOD2 shows possible overrides to remind
software engineers about overrides of methods in class
diagrams. Fig. 19-20 depicts RuleOD1-2. In RuleOD1, adding a
generalization relationship reminds software engineers about
possible override. In RuleOD2, adding a method reminds
software engineers about possible override. For example,
VIP_member (ClassN) is a subclass of Member (ClassM) in
Fig. 20. Storing_membership_application_form()
(MethodI()) is in Member (ClassM). Stakeholders need a
new method in VIP_member to store VIP members'
membership application data. Therefore
Storing_vip_membership_application_form() (MethodJ()) is
added in VIP_member (ClassN). Obviously,
Storing_vip_membership_application_form() (MethodJ()) is
a kind of Storing_membership_application_form()
(MethodI()). According to RuleOD2, MethodJ()
(Storing_vip_membership_application_form()) in ClassN
can be renamed as Storing_membership_application_form()
to override MethodI() in ClassM.

RuleOD2: There is a possible override during attribute
addition if MethodJ() is added in ReqE, ClassM is a
superclass of ClassN, and there is an equality, kind,
composition, or synonym relationship between concept
MethodI() in ClassM and MethodJ() in ClassN in the
ontology.

Fig. 20. Possible override during attribute addition

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

D. Missing Part Detection Rule

The proposed missing part detection rules use the ontology
to find the classes that have been omitted. RuleMPD1-2 are
introduced and discussed as follows.

RuleMPD1: There is a possible missing class if ClassN is

added in ReqE, Concept i in the ontology equals ClassN, and
Concept i has precise (child and part), general (parent and
whole), or sibling concepts.

Fig. 21. Possible missing class.

RuleMPD1 indicates a possible missing class in a class

diagram. Possible missing class means a class is added in a
class diagram and this class has parent, child, whole, part, or
sibling concept in the ontology. The structures of RuleMPD1
and RuleMPD2 are similar. Fig. 21-22 depicts RuleMPD1-2. For
example, Monthly installment is a kind of Installment in the
ontology. The electronic commerce website wants to offer
new installment service and adds Installment (ClassN) in the
class diagram. According to RuleMPD1, Monthly installment
(ClassM) is suggested because Monthly installment is a
precise concept of Installment in the ontology.

RuleMPD2: There is a possible missing attribute if

AttributeX is added in ClassM in ReqE, Concept i in the
ontology equals AttributeX, and Concept i has precise (child
and part), general (parent and whole), or sibling concepts.

 Fig. 21. Possible missing attribute.

V. CONCLUSION

This work proposes a process and a set of rules for conflict
analysis in class diagrams to help software engineers to
reinforce requirements analysis tasks. Several figures and
scenarios are also provided to explain and validate the
proposed rules in the preliminary stage.

This work has two advantages and a main limitation. In the
first advantage, clear rules in this work can help novices to
design class diagrams more easily. The second advantage is
that structured domain knowledge can be stored in the
ontology. Structured domain knowledge and rules can
facilitate automatic conflict detection by means of
knowledge-based systems. The main limitation is the
ontology maintenance effort. Stakeholders should maintain
the shared domain knowledge in the ontology together.

REFERENCES
[1] J. He and W.R. King, "The Role of User Participation in Information

Systems Development: Implications from a Meta-analysis," Journal of
Management Information Systems, vol. 25, no. 1, pp. 301–331, summer
2008.

[2] J. Savolainen and T. Männistö, "Conflict-Centric Software
Architectural Views: Exposing Trade-Offs in Quality Requirements,"
IEEE Software, vol. 27, no. 6, pp. 33-37, Nov./Dec. 2010.

[3] A. Egyed, "Instant Consistency Checking for the UML," In Proc. of
28th International Conference on Software Engineering, New York,
2006, pp. 381–390.

[4] Y. Nomaguchi and K. Fujita, "DRIFT: A Framework for
Ontology-based Design Support Systems," In: Proc. of Semantic Web
and Web 2.0 in Architectural, Product, Engineering Design Workshop,
Aachen, 2007, pp. 1-10.

[5] C.-L. Liu, "CDADE: Conflict Detector in Activity Diagram Evolution
Based on Speech Act and Ontology", Knowledge-Based Systems, vol.
23, no. 6, pp. 536-546, Aug. 2010.

[6] J. C. Maxwell, A. I. Antón, and P. S. Swire, "A Legal Cross-References
Taxonomy for Identifying Conflicting Software Requirements," In
Proc. of IEEE 19th International Requirements Engineering
Conference, New York, 2011, pp. 197-206.

[7] Roth, S., Hauder, M, Michel, F., Münch, D., Matthes, F., "Facilitating
Conflict Resolution of Models for Automated Enterprise Architecture
Documentation", In Proc. of the 19th Americas Conference on
Information Systems, Chicago, Berkeley, 2013, pp. 1-11.

[8] S. Mohite, R. Phalnikar, M. Joshi, S. D. Joshi, S. Jadhav,
"Requirement and Interaction Analysis Using Aspect-Oriented
Modeling," In Proc. of IEEE International Advance Computing
Conference, New York, 2014, pp. 1448 - 1453.

[9] P. G. Sapna, H. Mohanty, "Ensuring Consistency in Relational
Repository of UML Models," In Proc. of 10th International
Conference on Information Technology, New York, 2007, pp.
217–222.

[10] H. Kaiya, M. Saeki, "Ontology based Requirements Analysis:
Lightweight Semantic Processing Approach," In Proc. of 5th
International Conference on Quality Software, New York, 2005, pp.
223–230.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

