An Estimation of Single-Synchronized Krylov Subspace Methods with Hybrid Parallelization

Seiji Fujino, Kosuke Iwasato

Abstract—We evaluate performance of parallel computing of revised BiCGSafe and BiCGStar-plus method. Through several numerical experiments, we will make clear that the revised single synchronized BiCGSafe method outperforms other methods from the view points of elapsed time and speedup on parallel computer with distributed memory.

Index Terms—Krylov subspace method, Synchronization, Parallelization

I. INTRODUCTION

We consider iterative methods for solving a linear system of equations Ax = b where $A \in \mathbb{R}^{N \times N}$ is a given nonsymmetric matrix. Vectors x and b are a solution vector and a right-hand side vector, respectively. Among many iterative methods, product-type of iterative methods, e.g., BiCGStab (Bi-Conjugate Gradient Stabilized)[6] and GPBiCG[7] are often used for the purpose of solution for realistic problems. However, the number of synchronizations per one iteration needs three times. BiCGSafe (with safety convergence) method[2] using the strategy of associate residual was proposed in 2005. This strategy leads to reduce the number of synchronization from three to two times per one iteration. BiCGStar (with stabilization of associate residual) method using the this stratgy and three-term recurrence as stabilized polynomial was proposed in 2013. BiCGStar[3] has two synchronization points per one iteration. The variants of GPBiCG method[1] improved GPBiCG itself by using the three-term recurrence similar to the one for the Lanczos polynomials. These variants of GPBiCG method needs two times synchronization per one iteration. We adopted the above formula for computation of parameters α_k and β_k to reduce the number of synchronization of from two times to single time per one iteration.

In this paper, we evaluate performance of parallel computing of revised BiCGSafe and BiCGStar-plus method. Through several numerical experiments, we make clear that the revised single synchronized BiCGSafe method outperforms other methods from the view points of elapsed time and speed-up on parallel computer with distributed memory.

This paper is organized as follows: In section 2, a short description of BiCGSafe method. In section 3, an explanation of two types of single synchronized BiCGSafe method. In section 4, an explanation of BiCGStar-plus method. In section 5, several results of parallelized iterative methods will be shown, and it will be made clear that the revised single synchronized BiCGSafe methods and BiCGStar-plus method outperform other methods from the view points of elapsed time and speed-up on parallel computer with distributed memory. Finally, in section 6, we have concluding remarks.

II. BICGSAFE METHOD

The Lanczos polynomial $R_k(\lambda)$ and the auxiliary polynomial $P_k(\lambda)$ satisfy the following two-term recurrence relation as

$$R_0(\lambda) = 1, \quad P_0(\lambda) = 1, \tag{1}$$

$$R_k(\lambda) = R_{k-1}(\lambda) - \alpha_{k-1}\lambda P_{k-1}(\lambda), \qquad (2)$$

$$P_k(\lambda) = R_k(\lambda) + \beta_{k-1}P_{k-1}(\lambda), \quad k = 1, 2, \cdots, 3$$

according to the notation used in ref.[1]. Here, λ means an eigenvalue of a matrix. We introduce the two recurrence parameters ζ_k and η_k . The stabilized polynomial $H_k(\lambda)$ and an auxiliary polynomial $G_k(\lambda)$ satisfy following coupled two-term recurrence as

$$H_0(\lambda) = 1, \ G_0(\lambda) = \zeta_0, \tag{4}$$

$$H_k(\lambda) = H_{k-1}(\lambda) - \lambda G_{k-1}(\lambda), \tag{5}$$

$$G_k(\lambda) = \zeta_k H_k(\lambda) + \eta_k G_{k-1}(\lambda), \quad k = 1, 2, \cdots. (6)$$

We introduce the residual vector \mathbf{r}_k as $\mathbf{r}_k := H_k(\lambda)R_k(\lambda)\mathbf{r}_0$. Here, the vector \mathbf{r}_0 is the initial residual vector.

The coefficients α_k , β_k can be gained as

$$\alpha_k = \frac{(\boldsymbol{r}_0^*, \ \boldsymbol{r}_k)}{(\boldsymbol{r}_0^*, \ \boldsymbol{A}\boldsymbol{p}_k)},\tag{7}$$

$$\beta_k = -\frac{(\boldsymbol{r}_0^*, \ A\boldsymbol{t}_k)}{(\boldsymbol{r}_0^*, \ A\boldsymbol{p}_k)} = \frac{\alpha_k(\boldsymbol{r}_0^*, \ \boldsymbol{r}_{k+1})}{\zeta_k(\boldsymbol{r}_0^*, \ \boldsymbol{r}_k)}$$
(8)

by the orthogonality conditions $(H_k R_{k+1} \boldsymbol{r}_0, \boldsymbol{r}_0^*) = 0$ and $(A H_k P_{k+1} \boldsymbol{r}_0, \boldsymbol{r}_0^*) = 0.$

It is known that two parameters ζ_k and η_k are determined by solving the two-dimensional local minimization of the norm of product-type residual r_{k+1} in GPBiCG. However, the residual vector r_{k+1} does not involve both parameters ζ_k , η_k in the update of residual vector. Appearance of another idea needs for overcoming this issue. Therefore, the key idea is to focus on an associate residual vector defined by follow recurence. The associate residual vector a_r_k can be defined as below.

$$\boldsymbol{a}_{\boldsymbol{r}_k} := \boldsymbol{r}_k - \zeta_k A \boldsymbol{r}_k - \eta_k \boldsymbol{y}_k. \tag{9}$$

Note that the recurrence (9) is not computed in the iterative loop as it is. We utilize the recurrence (9) only for the recurrence parameters ζ_k and η_k . We call this idea strategy of associate residual.

Manuscript received April 07, 2015

Seiji Fujino is with Research Institute for Information Technology, Kyushu University, Fukuoka, 812-8581 Japan, e-mail: fujino@cc.kyushuu.ac.jp

Kosuke Iwasato is a student of Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 812-8581 Japan, e-mail: onigili9@gmail.com

Proceedings of the World Congress on Engineering 2015 Vol I WCE 2015, July 1 - 3, 2015, London, U.K.

III. TWO TYPES OF SINGLE SYNCHRONIZED BICGSAFE METHOD

A. Single synchronized BiCGSafe version 1

For reduction of synchronization points of BiCGStar method, we improve formulation of parameter β_k as the above mentioned equation (8). For parameter β_k , we can derive alternative expression. $H_k(\lambda)P_{k+1}(\lambda)$ can be written as

$$H_{k}(\lambda)P_{k+1}(\lambda) = H_{k}(\lambda)R_{k+1}(\lambda) - \beta_{k}H_{k}(\lambda)P_{k}(\lambda),$$

$$= H_{k}(\lambda)R_{k}(\lambda) - \alpha_{k}\lambda H_{k}(\lambda)P_{k}(\lambda)$$

$$-\beta_{k}H_{k}(\lambda)P_{k}(\lambda).$$
(10)

With the equation (10) and the relation of $(x, Ay) = (A^{T}x, y)$, we obtain

$$\beta_{k} = \frac{(\tilde{\boldsymbol{r}}_{0}, A(H_{k}(A)R_{k}(A)\boldsymbol{r}_{0} - \alpha_{k}AH_{k}(A)P_{k}(A)\boldsymbol{r}_{0}))}{(\tilde{\boldsymbol{r}}_{0}, AH_{k}(A)P_{k}(A)\boldsymbol{r}_{0})}, \\ = \frac{(A^{T}\tilde{\boldsymbol{r}}_{0}, H_{k}(A)R_{k}(A)\boldsymbol{r}_{0}) - \alpha_{k}(A^{T}\tilde{\boldsymbol{r}}_{0}, AH_{k}(A)P_{k}(A)\boldsymbol{r}_{0}))}{(\tilde{\boldsymbol{r}}_{0}, AH_{k}(A)P_{k}(A)\boldsymbol{r}_{0})}.$$
(11)

Although the equation (11) needs two extra inner products, the coefficients α_k , β_k can be computed at the same place. This means the number of global synchronization points can be reduced. We name this method single synchronized BiCGSafe method version 1(=abbreviated ssBiCGSafe1). We show an algorithm of single synchronized BiCGSafe method as below.

Algorithm 1: ssBiCGSafe1

- 1. Let \boldsymbol{x}_0 be an initial guess, Compute $\boldsymbol{r}_0 = \boldsymbol{b} A\boldsymbol{x}_0$, 2. Choose \boldsymbol{r}_0^* , such that $(\boldsymbol{r}_0^*, \boldsymbol{r}_0) \neq 0$,
- 3. Compute $A^{\mathrm{T}} \boldsymbol{r}_{0}^{*}, \ \boldsymbol{y}_{0} = \boldsymbol{0}, \ \beta_{-1} = 0,$
- 4. for $k = 0, 1, \dots$ do,
- 5. Compute Ar_k ,
- 6. $\boldsymbol{v}_k = \boldsymbol{y}_k + \beta_{k-1} \boldsymbol{u}_{k-1},$
- 7. $p_k = r_k + \beta_{k-1}(p_{k-1} u_{k-1}),$
- 8. $A\boldsymbol{p}_{k} = A\boldsymbol{r}_{k} + \beta_{k-1}(A\boldsymbol{p}_{k-1} A\boldsymbol{u}_{k-1}),$
- 9. if $\|\boldsymbol{r}_k\| / \|\boldsymbol{r}_0\| \leq \epsilon$ stop,

10.
$$\alpha_k = \frac{(\boldsymbol{r}_0^*, \boldsymbol{r}_k)}{(\boldsymbol{r}^*_0, A\boldsymbol{p}_k)},$$

11.
$$\beta_k = -\frac{(A^{\mathrm{T}} \boldsymbol{r}_0^*, \boldsymbol{r}_k) - \alpha_k (A^{\mathrm{T}} \boldsymbol{r}_0^*, \boldsymbol{p}_k)}{(\boldsymbol{r}_0^*, A \boldsymbol{p}_k)},$$

12.
$$\zeta_k = \frac{(\boldsymbol{y}_k, \boldsymbol{y}_k)(A\boldsymbol{r}_k, \boldsymbol{r}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, \boldsymbol{x}_k)}$$

13.
$$\eta_k = \frac{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{r}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(A\boldsymbol{r}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, A\boldsymbol{r}_k)},$$

(if $k = 0$ then $\zeta_k = \frac{(A\boldsymbol{r}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, \boldsymbol{r}_k)}, \quad \eta_k = 0$)

$$(\Pi \ \kappa = 0 \ \text{then} \ \zeta_k = \frac{1}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)}, \ \eta_k = 0$$

- 14. $\boldsymbol{u}_k = \zeta_k A \boldsymbol{p}_k + \eta_k \boldsymbol{v}_k,$
- 15. Compute Au_k ,
- 16. $\boldsymbol{z}_k = \zeta_k \boldsymbol{r}_k + \eta_k \boldsymbol{z}_{k-1} \alpha_k \boldsymbol{u}_k,$

17.
$$\boldsymbol{y}_{k+1} = \zeta_k A \boldsymbol{r}_k + \eta_k y_k - \alpha_k A \boldsymbol{u}_k,$$

18.
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k + \boldsymbol{z}_k,$$

19.
$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k A \boldsymbol{p}_k - \boldsymbol{y}_{k+1},$$

$$20.$$
 end do.

B. Single synchronized BiCGSafe version 2

Single synchronized BiCGSafe method version 1 uses a transposed matrix. In parallel computing, implementation of a transposed matrix vector multiplications is difficult work. Thus, we propose single synchronized BiCGSafe method version 2 without transposed matrix. In our proposed method, the coefficient β_k was computed by the equation (8). We transform the other one coefficient α_k .

In the equation (7), α_k can be written by applying the equation of line 8 in Algorithm 1 as bellow.

$$\alpha_{k} = \frac{(\boldsymbol{r}_{0}^{*}, \boldsymbol{r}_{k})}{(\boldsymbol{r}_{0}^{*}, A\boldsymbol{p}_{k})} = \frac{(\boldsymbol{r}_{0}^{*}, \boldsymbol{r}_{k})}{(\boldsymbol{r}_{0}^{*}, A\boldsymbol{r}_{k} + \beta_{k}\boldsymbol{t}_{k-1})}.$$
 (12)

Although the equation (12) needs two extra inner products, the two coefficients can be computed at the same place as with single synchronized BiCGSafe method version 1. However, our proposed method can compute without a transpose matrix. We show an algorithm of single synchronized BiCGSafe method without a transposed matrix as below. We name this method single synchronized BiCGSafe method version 2(=abbreviated ssBiCGSafe2).

Algorithm 2: ssBiCGSafe2

1.	Let \boldsymbol{x}_0 be an initial guess,
	Compute $\boldsymbol{r}_0 = \boldsymbol{b} - A \boldsymbol{x}_0$,
2.	Choose \boldsymbol{r}_0^* such that $(\boldsymbol{r}_0^*, \boldsymbol{r}_0) \neq 0, \ \beta_{-1} = 0,$
3.	for $k = 0, 1,$ do,
4.	Compute $A\boldsymbol{r}_k$,
5.	$ \text{ if } \ \boldsymbol{r}_k \ / \ \boldsymbol{r}_0 \ \leq \epsilon \operatorname{ stop}, \\$
6.	$eta_k = rac{lpha_{k-1}}{\zeta_{k-1}} rac{(m{r}_0^*,m{r}_k)}{(m{r}_0^*,m{r}_{k-1})},$
7.	$lpha_k = rac{(m{r}_0^*,m{r}_k)}{(m{r}_0^*,Am{r}_k)+eta_k(m{r}_0^*,m{t}_{k-1})},$
8.	$\zeta_k = \frac{(\boldsymbol{y}_k, \boldsymbol{y}_k)(A\boldsymbol{r}_k, \boldsymbol{r}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, A\boldsymbol{r}_k)},$
9.	$\eta_k = \frac{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{r}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(A\boldsymbol{r}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, A\boldsymbol{r}_k)},$
	(if $k = 0$ then $\alpha_k = \frac{(\boldsymbol{r}_0^*, \boldsymbol{r}_k)}{(\boldsymbol{r}_0^*, A\boldsymbol{r}_k)}, \ \beta_k = 0,$
	$\zeta_k = rac{(Am{r}_k,m{r}_k)}{(Am{r}_k,Am{r}_k)}, \ \eta_k = 0),$
10.	$oldsymbol{p}_k = oldsymbol{r}_k + eta_k (oldsymbol{p}_{k-1} - oldsymbol{u}_{k-1}),$
11.	$A\boldsymbol{p}_k = A\boldsymbol{r}_k + \beta_k \boldsymbol{t}_{k-1},$
12.	$oldsymbol{u}_k = \zeta_k A oldsymbol{p}_k + \eta_k (oldsymbol{y}_k + eta_k oldsymbol{u}_{k-1}),$
13.	Compute $A\boldsymbol{u}_k$,
14.	$\boldsymbol{t}_k = A \boldsymbol{p}_k - A \boldsymbol{u}_k,$
15.	$oldsymbol{z}_k = \zeta_k oldsymbol{r}_k + \eta_k oldsymbol{z}_{k-1} - lpha_k oldsymbol{u}_k,$
16.	$oldsymbol{y}_{k+1} = \zeta_k A oldsymbol{r}_k + \eta_k oldsymbol{y}_k - lpha_k A oldsymbol{u}_k,$
17.	$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + lpha_k \boldsymbol{p}_k + \boldsymbol{z}_k,$
18.	$oldsymbol{r}_{k+1} = oldsymbol{r}_k - lpha_k A oldsymbol{p}_k - oldsymbol{y}_{k+1},$
19.	end do.

IV. BICGSTAR-PLUS METHOD

BiCGStar-plus method use coupled two-term recurrences of Rutishauser[4] for stabilized polynomial insted of equations (4)-(6).

$$\begin{cases}
G_0(\lambda) = 0, \quad H_0(\lambda) = 1, \\
\tilde{G}_{k+1}(\lambda) = \zeta_k \lambda H_k(\lambda) + \eta_k \tilde{G}_k(\lambda), \\
H_{k+1}(\lambda) = H_k(\lambda) - \tilde{G}_{k+1}(\lambda), \quad k = 0, 1, \dots
\end{cases}$$
(13)

Proceedings of the World Congress on Engineering 2015 Vol I WCE 2015, July 1 - 3, 2015, London, U.K.

Here, auxiliary polynomial $\tilde{G}_k(\lambda)$ is defined as

$$\tilde{G}_k(\lambda) := H_k(\lambda) - H_{k+1}(\lambda), \quad k = 0, 1, \dots$$
 (14)

The four coefficients α_k , β_k , ζ_k , η_k can be computed as ssBiCGSafe2 method. Therefore, a synchronizaiton point exists in the algorithm of BiCGStar-plus method. We show an algorithm of BiCGStar-plus method without a transposed matrix as below.

Algorithm 3: BiCGStar-plus

- Let \boldsymbol{x}_0 be an initial guess, 1.
- Compute $\boldsymbol{r}_0 = \boldsymbol{b} A\boldsymbol{x}_0$,
- 2.Choose \boldsymbol{r}_0^* such that $(\boldsymbol{r}_0^*, \boldsymbol{r}_0) \neq 0, \ \beta_{-1} = 0,$
- 3. for k = 0, 1, ..., do,

4. Compute $A\mathbf{r}_k$,

6.
$$\beta_k = \frac{\alpha_{k-1}}{\zeta_{k-1}} \frac{(\boldsymbol{r}_0^*, \boldsymbol{r}_k)}{(\boldsymbol{r}_0^*, \boldsymbol{r}_{k-1})},$$
$$(\boldsymbol{r}_0^*, \boldsymbol{r}_k)$$

$$\zeta_{k-1} \ (r_0, r_{k-1})$$

7.
$$\alpha_k = \frac{(\mathbf{v}_0, \mathbf{v}_k)}{(\mathbf{r}_0^*, A\mathbf{r}_k) + \beta_k(\mathbf{r}_0^*, \mathbf{t}_{k-1})},$$
$$(\mathbf{y}_k, \mathbf{y}_k)(A\mathbf{r}_k, \mathbf{r}_k) - (A\mathbf{r}_k, \mathbf{y}_k)(\mathbf{y}_k, \mathbf{r}_k)$$

8.
$$\zeta_k = \frac{(\boldsymbol{y}_k, \boldsymbol{y}_k)(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{v}) - (\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{y}_k)(\boldsymbol{y}_k, \boldsymbol{v})}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, A\boldsymbol{r}_k)}$$

9.
$$\eta_k = \frac{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{r}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(A\boldsymbol{r}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)(\boldsymbol{y}_k, \boldsymbol{y}_k) - (A\boldsymbol{r}_k, \boldsymbol{y}_k)(\boldsymbol{y}_k, A\boldsymbol{r}_k)}$$

(if
$$k = 0$$
 then $\alpha_k = \frac{(\boldsymbol{r}_0^*, \boldsymbol{r}_k)}{(\boldsymbol{r}_0^*, \boldsymbol{A}\boldsymbol{r}_k)}, \ \beta_k = 0,$

$$\zeta_k = \frac{(A\boldsymbol{r}_k, \boldsymbol{r}_k)}{(A\boldsymbol{r}_k, A\boldsymbol{r}_k)}, \ \eta_k = 0),$$

10.
$$\boldsymbol{s}_k = \boldsymbol{y}_k + \beta_k \boldsymbol{c}_{k-1},$$

11.
$$\boldsymbol{p}_k = \boldsymbol{r}_k + \beta_k \boldsymbol{w}_{k-1},$$

- 12. $A\boldsymbol{p}_k = A\boldsymbol{r}_k + \beta_k A\boldsymbol{w}_{k-1},$
- 13 $\boldsymbol{v}_k = \zeta_k \boldsymbol{r}_k + \eta_k \boldsymbol{t}_k,$
- 14. $\boldsymbol{z}_k = \zeta_k A \boldsymbol{r}_k + \eta_k \boldsymbol{y}_k,$
- 15. $\boldsymbol{c}_k = \zeta_k A \boldsymbol{p}_k + \eta_k \boldsymbol{s}_k,$
- 16. Compute Ac_k ,
- $w_{l} = n_{l} c_{l}$ 17

$$\begin{array}{cccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

$$Aw_k = Ap_k - Ac_k,$$

19.
$$\boldsymbol{t}_{k+1} = \boldsymbol{v}_k - \alpha_k \boldsymbol{c}_k,$$

20.
$$\boldsymbol{y}_{k+1} = \boldsymbol{z}_k - \alpha_k A \boldsymbol{c}_k,$$

21.
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{w}_k + \boldsymbol{v}_k,$$

- 22. $\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k A \boldsymbol{w}_k - \boldsymbol{z}_{k+1},$
- end do. 23.

V. NUMERICAL EXPERIMENTS

A. Parallel computational environment and conditions

All computations were done in double precision floating point arithmetic of Fortran90, and performed on Fujitsu PRIMERGY CX400(CPU: Intel Xeon E5-2680, memory: 128Gbytes, OS: Red Hat Linux Enterprise, total nodes: 1476 nodes, cores: 16 cores / 1 node). Fujitsu compiler optimum option "-Kfast" were used. Process parallelization was done by MPI library and OpneMP library. Stopping criterion of iterative methods is less than 10^{-8} of the relative residual 2-norm $||\boldsymbol{r}_{k+1}||_2/||\boldsymbol{b}-A\boldsymbol{x}_0||_2$. In all cases the iteration was started with the initial guess solution $\boldsymbol{x}_0 = (0, 0, \dots, 0)^T$. The initial shadow residual r_0^* is equal to the initial residual r_0 . Measurement of the elapsed time was done by system function of gettimeofday. All test matrices as shown in Table

1 were normalized with diagonal scaling. Maximum iteration was fixed as 10,000. Number of process varied as 1, 16, 32, 64 and 256. Measurements of the elapsed time per each matrix were five times.

TABLE I CHARACTERISTICS OF 12 TEST MATRICES.

matrix	dimension	nnz	ave. nnz	
air-cfl5	1,536,000	19,435,428	12.7	
atmosmodd	1,270,432	8,814,880	6.9	
poisson3Db	85,623	2,374,949	27.7	
raefsky3	21,200	1,488,768	70.2	
water_tank	60,740	2,035,281	33.5	
circuit5M_dc	3,523,317	19,194,193	5.4	
Freescale1	3,428,755	18,920,347	5.5	
epb3	84,617	463,625	5.5	
sme3Dc	42,930	3,148,656	73.3	
thermomech_dK	204,316	2,846,228	13.9	
tmt_unsym	917,825	4,584,801	5.0	
xenon2	157,464	3,866,688	24.6	

In Tables II and III, we demonstrate parallel of Hybrid-version of iterative methods for matrices epb3 and Freescale1, respectively. TRR (True Relative Residual) for the approximated solutions x_{k+1} means $\log_{10}(\|b - b\|)$ $A \boldsymbol{x}_{k+1} \| / \| \boldsymbol{b} - A \boldsymbol{x}_0 \|$). Bold figures mean the least elapsed time, and bold speed-ups mean the maximum speed-up.

We can observe the following facts from the results shown in Tables II and III.

- 1) For matrices epb3 and Freescale1, BiCGStar-plus methods converged fastest as for both the elapsed time and the highest speed-up ratio on 256 processes among the examined iterative methods.
- 2) For other matrices, the same tendency was gained.

VI. CONCLUSIONS

We evaluated Hybrid parallel performance of single synchronized Krylov subspace methods. As a result, we saw that our proposed iterative methods outperformed compared with other methods from the view point of the elapsed time and convergence rate on parallel computer with distributed memory from many numerical examples.

REFERENCES

- [1] Abe, K., Sleijpen, Gerard L.G.: Solving linear equations with a stabilized GPBiCG method, Appl. Numer. Math., Vol.67, pp.4-16, 2013.
- Fujino, S., Fujiwara, M., Yoshida, M.: A proposal of preconditioned [2] BiCGSafe method with safe convergence, Proc. of The 17th IMACS World Congress on Scientific Computation, Appl. Math. Simul., CD-ROM, Paris, 2005.
- [3] Murakami, K., Fujino, S., A proposal of a product type iterative method using associate residual for parallel computer, Proc. of International workshop on HPC, Krylov Subspace method and its applications, pp.23-26, 2013.
- [4] Rutishauser, H.: Theory of gradient method, in: Refined iterative methods for computation of the solution and the eigenvalues of selfadjoint value problems, in: Mitt. Inst. Angew. Math. ETH Zürich, Birkhäuser, pp.24-49, 1959.
- [5] University of Florida Sparse Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices/index.html.
- [6] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., vol.13, pp.631-644, 1992.
- [7] Zhang, S.-L.: GPBi-CG: Generalized product-type methods preconditionings based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput., vol.18, pp.537-551, 1997.

TABLE II Parallel performance of Hybrid-version of iterative methods for matrix epb3.

TABLE III
PARALLEL PERFORMANCE OF HYBRID-VERSION OF ITERATIVE
METHODS FOR MATRIX FREESCALE1.

method	np	$M \boldsymbol{v}$	tot.time	ratio	ave.time	speed-	TRR
	-		[sec.]		[msec.]	up	
GPBiCG	1	3,852	7.083	1.00	1.839	1.00	-8.0
	16	4,056	0.509	1.00	0.125	14.65	-8.0
	32	3,798	0.289	1.00	0.076	24.17	-8.0
	64	4,178	0.211	1.00	0.051	36.41	-8.0
	128	3,998	0.162	1.00	0.041	45.38	-8.0
	256	4,114	0.174	1.00	0.042	43.48	-8.0
GPBiCG_v4	1	3,816	7.618	1.08	1.996	1.00	-8.0
	16	3,630	0.428	0.84	0.118	16.93	-8.0
	32	3,854	0.275	0.95	0.071	27.98	-8.0
	64	3,838	0.183	0.87	0.048	41.87	-8.0
	128	3,594	0.145	0.90	0.040	49.48	-8.0
	256	3,998	0.144	0.83	0.036	55.43	-8.0
BiCGSafe	1	3,764	6.172	0.87	1.640	1.00	-8.0
	16	3,770	0.415	0.82	0.110	14.90	-8.0
	32	3,464	0.233	0.81	0.067	24.38	-8.0
	64	3,956	0.179	0.85	0.045	36.24	-8.0
	128	3,822	0.134	0.83	0.035	46.77	-8.0
	256	3,684	0.130	0.75	0.035	46.47	-8.0
ssBiCGSafe1	1	3,910	6.632	0.94	1.696	1.00	-8.0
	16	3,870	0.427	0.84	0.110	15.37	-8.0
	32	3,746	0.259	0.90	0.069	24.53	-8.0
	64	3,858	0.163	0.77	0.042	40.15	-8.0
	128	3,616	0.112	0.69	0.031	54.76	-8.0
	256	3,844	0.106	0.61	0.028	61.51	-8.0
ssBiCGSafe2	1	3,716	6.320	0.89	1.701	1.00	-8.0
	16	3,708	0.410	0.81	0.111	15.38	-8.0
	32	3,706	0.241	0.83	0.065	26.15	-8.0
	64	3,518	0.143	0.68	0.041	41.84	-8.0
	128	3,950	0.118	0.73	0.030	56.93	-8.0
	256	3,722	0.101	0.58	0.027	62.68	-8.0
BiCGStar-	1	3,548	6.706	0.95	1.890	1.00	-8.0
plus	16	4,132	0.453	0.89	0.110	17.24	-8.0
	32	3,872	0.257	0.89	0.066	28.48	-8.0
	64	3,836	0.164	0.78	0.043	44.21	-8.0
	128	3,726	0.116	0.72	0.031	60.71	-8.1
	256	3,754	0.101	0.58	0.027	70.25	-8.0

Internet Int o [sec.] [msc.] up GPBiCG 1 9,534 914.699 1.00 95.941 1.00 -8.0 32 9,370 168.007 1.00 17.930 5.35 -8.0 32 9,370 168.007 1.00 17.930 5.35 -8.0 64 9,604 97.763 1.00 10.179 9.42 -8.0 256 9,120 27.708 1.00 3.038 31.58 -8.0 GPBiCG_v4 1 9,682 1005.108 1.10 103.812 1.00 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 5.503 18.86 -8.0 128 9,468 52.103 0.96 5.503 18.86 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 32 10,342 168.452 <t< th=""><th>method</th><th>nn</th><th>Mn,</th><th>tot time</th><th>ratio</th><th>ave time</th><th>speed</th><th>TRR</th></t<>	method	nn	Mn,	tot time	ratio	ave time	speed	TRR
GPBiCG 1 9,534 914.699 1.00 95.941 1.00 -8.0 32 9,370 168.007 1.00 17.930 5.35 -8.0 32 9,370 168.007 1.00 17.930 5.35 -8.0 128 9,536 54.012 1.00 5.664 16.94 -8.0 256 9,120 27.708 1.00 3.038 31.58 -8.0 GPBiCG_v4 1 9,682 1005.108 1.10 103.812 1.00 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 5.503 18.86 -8.0 32 9,474 161.168 0.96 5.503 18.86 -8.0 32 9,474 161.168 0.96 5.503 18.86 -8.0 32 9,474 26.029 0.94 2.879 36.06 -8.0 32 9.042<	method	np	1010	[sec]	iuno	[msec]	un	inter
Gr bico 1 9,334 944.05 1.00 28.9422 3.38 -8.0 32 9,370 168.007 1.00 17.930 5.35 -8.0 64 9,604 97.763 1.00 10.179 9.42 -8.0 256 9,120 27.708 1.00 3.038 31.58 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 5.503 18.86 -8.0 128 9,468 52.103 0.96 5.503 18.86 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 128 9,644 247.121 </td <td>GPBiCG</td> <td>1</td> <td>9 5 3 4</td> <td>914 699</td> <td>1.00</td> <td>95 941</td> <td>1.00</td> <td>-8.0</td>	GPBiCG	1	9 5 3 4	914 699	1.00	95 941	1.00	-8.0
16 9,320 1205,125 1300 17,920 5,35 -8,0 32 9,370 168,007 1.00 17,930 5,35 -8,0 64 9,604 97,763 1.00 10,179 9,42 -8,0 128 9,536 54,012 1.00 5,664 16,94 -8,0 256 9,120 27,708 1.00 3.038 31,58 -8,0 GPBiCG_v4 1 9,682 1005,108 1.10 103,812 1.00 -8,0 32 9,474 161,168 0.96 17,012 6,10 -8,0 32 9,474 161,168 0.96 5,503 18,86 -8,0 128 9,468 52,103 0.96 5,503 18,86 -8,0 256 9,042 26,029 0.94 2,879 36,06 -8,0 32 10,342 168,452 1.00 16,288 5,54 -8,0 32 10,342 168	OI DICO	16	9 3 2 8	265 123	1.00	28 422	3 38	-8.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		32	9 370	168 007	1.00	17 930	5 35	-8.0
128 9,536 54,012 1.00 5,664 16,179 1.72 8.00 256 9,120 27,708 1.00 3.038 31,58 -8.0 GPBiCG_v4 1 9,682 1005,108 1.10 103,812 1.00 -8.0 32 9,474 161,168 0.96 17,012 6.10 -8.0 32 9,474 161,168 0.96 17,012 6.10 -8.0 64 9,754 93,241 0.95 9,559 10.86 -8.0 128 9,468 52,103 0.96 5.503 18.86 -8.0 256 9,042 26,029 0.94 2.879 36.06 -8.0 32 10,342 168,452 1.00 16.288 5.54 -8.0 32 10,342 168,452 1.00 16.288 5.54 -8.0 32 10,342 168,452 1.00 16.288 5.4 -8.0 526 9,1		64	9 604	97 763	1.00	10 179	9.42	-8.0
256 9,120 27.708 1.00 3.038 31.58 -8.0 GPBiCG_v4 1 9,682 1005.108 1.10 103.812 1.00 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 128 9,468 52.103 0.96 5.503 18.86 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 32 10,342 168.452 1.00 16.288 5.4 -8.0 32 10,342 168.452 1.00 16.288 5.4 -8.0 32 9,364 50.858 0.94 5.431 16.61 -8.0 3256 9,198 26.		128	9.536	54.012	1.00	5.664	16.94	-8.0
GPBiCG_v4 1 9,682 1005.108 1.10 103.812 1.00 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 64 9,754 93.241 0.95 9.559 10.86 -8.0 128 9,468 52.103 0.96 5.503 18.86 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 BiCGSafe 1 9,558 862.245 0.94 90.212 1.00 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 32 9,364 50.858 0.94 5.431 16.61 -8.0 256 9		256	9,120	27.708	1.00	3.038	31.58	-8.0
16 9,772 274.881 1.04 28.129 3.69 -8.0 32 9,474 161.168 0.96 17.012 6.10 -8.0 64 9,754 93.241 0.95 9.559 10.86 -8.0 128 9,468 52.103 0.96 5.503 18.86 -8.0 256 9,042 26.029 0.94 2.879 36.06 -8.0 BiCGSafe 1 9,558 862.245 0.94 90.212 1.00 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 32 10,342 168.452 1.00 16.288 5.4 -8.0 32 9,364 50.858 0.94 5.431 16.61 -8.0 256 9,198 26.757 0.97 2.909 31.01 -8.0 ssBiCGSafe1 1 9,380 854.881 0.93 91.139 1.00 -8.0 32 9,36	GPBiCG_v4	1	9,682	1005.108	1.10	103.812	1.00	-8.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	16	9,772	274.881	1.04	28.129	3.69	-8.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		32	9,474	161.168	0.96	17.012	6.10	-8.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		64	9,754	93.241	0.95	9.559	10.86	-8.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		128	9,468	52.103	0.96	5.503	18.86	-8.0
BiCGSafe 1 9,558 862.245 0.94 90.212 1.00 -8.0 16 9,634 247.121 0.93 25.651 3.52 -8.0 32 10,342 168.452 1.00 16.288 5.54 -8.0 64 9,152 85.350 0.87 9.326 9.67 -8.0 128 9,364 50.858 0.94 5.431 16.61 -8.0 256 9,198 26.757 0.97 2.909 31.01 -8.0 32 9,360 854.881 0.93 91.139 1.00 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 526 9,202 25.594 </td <td></td> <td>256</td> <td>9,042</td> <td>26.029</td> <td>0.94</td> <td>2.879</td> <td>36.06</td> <td>-8.0</td>		256	9,042	26.029	0.94	2.879	36.06	-8.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BiCGSafe	1	9,558	862.245	0.94	90.212	1.00	-8.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		16	9,634	247.121	0.93	25.651	3.52	-8.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		32	10,342	168.452	1.00	16.288	5.54	-8.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		64	9,152	85.350	0.87	9.326	9.67	-8.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		128	9,364	50.858	0.94	5.431	16.61	-8.0
ssBiCGSafe1 1 9,380 854.881 0.93 91.139 1.00 -8.0 16 9,386 243.198 0.92 25.911 3.52 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 64 8,926 82.751 0.85 9.271 9.83 -8.0 128 8,962 45.679 0.85 5.097 17.88 -8.0 256 9,202 25.594 0.92 2.781 32.77 -8.0 ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 44 9,986 91.949 0.94 9.208 9.56 -8.0 128		256	9,198	26.757	0.97	2.909	31.01	-8.0
16 9,386 243.198 0.92 25.911 3.52 -8.0 32 9,360 148.453 0.88 15.860 5.75 -8.0 64 8,926 82.751 0.85 9.271 9.83 -8.0 128 8,962 45.679 0.85 5.097 17.88 -8.0 256 9,202 25.594 0.92 2.781 32.77 -8.0 ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 256 9,562 25.95	ssBiCGSafe1	1	9,380	854.881	0.93	91.139	1.00	-8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	9,386	243.198	0.92	25.911	3.52	-8.0
64 8,926 82.751 0.85 9.271 9.83 -8.0 128 8,962 45.679 0.85 5.097 17.88 -8.0 256 9,202 25.594 0.92 2.781 32.77 -8.0 ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26163 3.90 -8.0		32	9,360	148.453	0.88	15.860	5.75	-8.0
128 8,962 45.679 0.85 5.097 17.88 -8.0 256 9,202 25.594 0.92 2.781 32.77 -8.0 ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 16 9,070 233.475 0.88 25.741 3.42 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26163 3.90 -8.0		64	8,926	82.751	0.85	9.271	9.83	-8.0
256 9,202 25.594 0.92 2.781 32.77 -8.0 ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 16 9,070 233.475 0.88 25.741 3.42 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26 163 3.90 -8.0		128	8,962	45.679	0.85	5.097	17.88	-8.0
ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0 16 9,070 233.475 0.88 25.741 3.42 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26 163 3.90 -8.0		256	9,202	25.594	0.92	2.781	32.77	-8.0
16 9,070 233.475 0.88 25.741 3.42 -8.0 32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26.163 3.90 -8.0	ssBiCGSafe2	1	9,618	846.817	0.93	88.045	1.00	-8.0
32 10,662 168.890 1.01 15.840 5.56 -8.0 64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26.163 3.90 -8.0		16	9,070	233.475	0.88	25.741	3.42	-8.0
64 9,986 91.949 0.94 9.208 9.56 -8.0 128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26 163 3.90 -8.0		32	10,662	168.890	1.01	15.840	5.56	-8.0
128 10,058 50.498 0.93 5.021 17.54 -8.0 256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26.163 3.90 -8.0		64	9,986	91.949	0.94	9.208	9.56	-8.0
256 9,562 25.959 0.94 2.715 32.43 -8.0 BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9.488 248 236 0.94 26 163 3.90 -8.0		128	10,058	50.498	0.93	5.021	17.54	-8.0
BiCGStar- plus 16 9,066 925.135 1.01 102.044 1.00 -8.0 plus 16 9,488 248 236 0 94 26 163 3 90 -8 0		256	9,562	25.959	0.94	2.715	32.43	-8.0
plus 16 9 488 248 236 0 94 26 163 3 90 -8 0	BiCGStar-	1	9,066	925.135	1.01	102.044	1.00	-8.0
plus 10 9,100 210.250 0.91 20.105 5.90 0.0	plus	16	9,488	248.236	0.94	26.163	3.90	-8.0
32 9,088 144.791 0.86 15.932 6.40 -8.0		32	9,088	144.791	0.86	15.932	6.40	-8.0
64 9,548 88.443 0.90 9.263 11.02 -8.0		64	9,548	88.443	0.90	9.263	11.02	-8.0
128 10,156 51.498 0.95 5.071 20.12 -8.0		128	10,156	51.498	0.95	5.071	20.12	-8.0
256 9,264 25.295 0.91 2.730 37.37 -8.0		256	9,264	25.295	0.91	2.730	37.37	-8.0