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Abstract—We evaluate performance of parallel computing
of revised BiCGSafe and BiCGStar-plus method. Through
several numerical experiments, we will make clear that the
revised single synchronized BiCGSafe method outperforms
other methods from the view points of elapsed time and speed-
up on parallel computer with distributed memory.

Index Terms—Krylov subspace method, Synchronization,
Parallelization

I. INTRODUCTION

We consider iterative methods for solving a linear system
of equations Ax = b where A ∈ RN×N is a given non-
symmetric matrix. Vectors x and b are a solution vector and
a right-hand side vector, respectively. Among many iterative
methods, product-type of iterative methods, e.g., BiCGStab
(Bi-Conjugate Gradient Stabilized)[6] and GPBiCG[7] are
often used for the purpose of solution for realistic prob-
lems. However, the number of synchronizations per one
iteration needs three times. BiCGSafe (with safety conver-
gence) method[2] using the strategy of associate residual
was proposed in 2005. This strategy leads to reduce the
number of synchronization from three to two times per one
iteration. BiCGStar (with stabilization of associate residual)
method using the this stratgy and three-term recurrence as
stabilized polynomial was proposed in 2013. BiCGStar[3]
has two synchronization points per one iteration. The variants
of GPBiCG method[1] improved GPBiCG itself by using
the three-term recurrence similar to the one for the Lanczos
polynomials. These variants of GPBiCG method needs two
times synchronization per one iteration. We adopted the
above formula for computation of parameters αk and βk to
reduce the number of synchronization of from two times to
single time per one iteration.

In this paper, we evaluate performance of parallel com-
puting of revised BiCGSafe and BiCGStar-plus method.
Through several numerical experiments, we make clear that
the revised single synchronized BiCGSafe method outper-
forms other methods from the view points of elapsed time
and speed-up on parallel computer with distributed memory.

This paper is organized as follows: In section 2, a short
description of BiCGSafe method. In section 3, an explanation
of two types of single synchronized BiCGSafe method.
In section 4, an explanation of BiCGStar-plus method. In
section 5, several results of parallelized iterative methods will
be shown, and it will be made clear that the revised single
synchronized BiCGSafe methods and BiCGStar-plus method
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outperform other methods from the view points of elapsed
time and speed-up on parallel computer with distributed
memory. Finally, in section 6, we have concluding remarks.

II. BICGSAFE METHOD

The Lanczos polynomial Rk(λ) and the auxiliary polyno-
mial Pk(λ) satisfy the following two-term recurrence relation
as

R0(λ) = 1, P0(λ) = 1, (1)
Rk(λ) = Rk−1(λ)− αk−1λPk−1(λ), (2)
Pk(λ) = Rk(λ) + βk−1Pk−1(λ), k = 1, 2, · · · ,(3)

according to the notation used in ref.[1]. Here, λ means
an eigenvalue of a matrix. We introduce the two recurrence
parameters ζk and ηk. The stabilized polynomial Hk(λ) and
an auxiliary polynomial Gk(λ) satisfy following coupled
two-term recurrence as

H0(λ) = 1, G0(λ) = ζ0, (4)
Hk(λ) = Hk−1(λ)− λGk−1(λ), (5)
Gk(λ) = ζkHk(λ) + ηkGk−1(λ), k = 1, 2, · · · .(6)

We introduce the residual vector rk as rk := Hk(λ)Rk(λ)r0.
Here, the vector r0 is the initial residual vector.

The coefficients αk, βk can be gained as

αk =
(r∗0 , rk)

(r∗0 , Apk)
, (7)

βk = − (r∗0 , Atk)

(r∗0 , Apk)
=

αk(r
∗
0 , rk+1)

ζk(r∗0 , rk)
(8)

by the orthogonality conditions (HkRk+1r0, r∗0) = 0 and
(AH kPk+1r0, r∗0) = 0.

It is known that two parameters ζk and ηk are determined
by solving the two-dimensional local minimization of the
norm of product-type residual rk+1 in GPBiCG. However,
the residual vector rk+1 does not involve both parameters ζk,
ηk in the update of residual vector. Appearance of another
idea needs for overcoming this issue. Therefore, the key idea
is to focus on an associate residual vector defined by follow
recurence. The associate residual vector a rk can be defined
as below.

a rk := rk − ζkArk − ηkyk. (9)

Note that the recurrence (9) is not computed in the iterative
loop as it is. We utilize the recurrence (9) only for the
recurrence parameters ζk and ηk. We call this idea strategy
of associate residual.
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III. TWO TYPES OF SINGLE SYNCHRONIZED BICGSAFE
METHOD

A. Single synchronized BiCGSafe version 1

For reduction of synchronization points of BiCGStar
method, we improve formulation of parameter βk as the
above mentioned equation (8). For parameter βk, we can
derive alternative expression. Hk(λ)Pk+1(λ) can be written
as

Hk(λ)Pk+1(λ) = Hk(λ)Rk+1(λ)− βkHk(λ)Pk(λ),

= Hk(λ)Rk(λ)− αkλHk(λ)Pk(λ)

−βkHk(λ)Pk(λ). (10)

With the equation (10) and the relation of (x, Ay) =
(ATx,y), we obtain

βk =
(r̃0, A(Hk(A)Rk(A)r0 − αkAHk(A)Pk(A)r0))

(r̃0, AHk(A)Pk(A)r0)
,

=
(AT r̃0, Hk(A)Rk(A)r0)− αk(A

Tr̃0, AHk(A)Pk(A)r0))

(r̃0, AHk(A)Pk(A)r0)
.

(11)

Although the equation (11) needs two extra inner products,
the coefficients αk, βk can be computed at the same place.
This means the number of global synchronization points
can be reduced. We name this method single synchronized
BiCGSafe method version 1(=abbreviated ssBiCGSafe1). We
show an algorithm of single synchronized BiCGSafe method
as below.

Algorithm 1: ssBiCGSafe1

1. Let x0 be an initial guess, Compute r0 = b−Ax0,

2. Choose r∗
0, such that (r∗

0, r0) ̸= 0,

3. Compute ATr∗
0, y0 = 0, β−1 = 0,

4. for k = 0, 1, . . . do,

5. Compute Ark,

6. vk = yk + βk−1uk−1,

7. pk = rk + βk−1(pk−1 − uk−1),

8. Apk = Ark + βk−1(Apk−1 −Auk−1),

9. if ∥rk∥/∥r0∥ ≤ ϵ stop,

10. αk =
(r∗

0, rk)

(r∗
0, Apk)

,

11. βk = − (ATr∗
0, rk)− αk(A

Tr∗
0,pk)

(r∗
0, Apk)

,

12. ζk =
(yk,yk)(Ark, rk)− (Ark,yk)(yk, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

13. ηk =
(Ark, Ark)(yk, rk)− (Ark,yk)(Ark, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

(if k = 0 then ζk =
(Ark, rk)

(Ark, Ark)
, ηk = 0)

14. uk = ζkApk + ηkvk,

15. Compute Auk,

16. zk = ζkrk + ηkzk−1 − αkuk,

17. yk+1 = ζkArk + ηkyk − αkAuk,

18. xk+1 = xk + αkpk + zk,

19. rk+1 = rk − αkApk − yk+1,

20. end do.

B. Single synchronized BiCGSafe version 2
Single synchronized BiCGSafe method version 1 uses a

transposed matrix. In parallel computing, implementation of
a transposed matrix vector multiplications is difficult work.
Thus, we propose single synchronized BiCGSafe method
version 2 without transposed matrix. In our proposed method,
the coefficient βk was computed by the equation (8). We
transform the other one coefficient αk.

In the equation (7), αk can be written by applying the
equation of line 8 in Algorithm 1 as bellow.

αk =
(r∗0, rk)

(r∗0, Apk)
=

(r∗0, rk)

(r∗0, Ark + βktk−1)
. (12)

Although the equation (12) needs two extra inner products,
the two coefficients can be computed at the same place
as with single synchronized BiCGSafe method version 1.
However, our proposed method can compute without a trans-
pose matrix. We show an algorithm of single synchronized
BiCGSafe method without a transposed matrix as below.
We name this method single synchronized BiCGSafe method
version 2(=abbreviated ssBiCGSafe2).

Algorithm 2: ssBiCGSafe2
1. Let x0 be an initial guess,

Compute r0 = b−Ax0,

2. Choose r∗
0 such that (r∗

0, r0) ̸= 0, β−1 = 0,

3. for k = 0, 1, . . . do,

4. Compute Ark,

5. if ∥rk∥/∥r0∥ ≤ ϵ stop,

6. βk =
αk−1

ζk−1

(r∗
0, rk)

(r∗
0, rk−1)

,

7. αk =
(r∗

0, rk)

(r∗
0, Ark) + βk(r∗

0, tk−1)
,

8. ζk =
(yk,yk)(Ark, rk)− (Ark,yk)(yk, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

9. ηk =
(Ark, Ark)(yk, rk)− (Ark,yk)(Ark, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

(if k = 0 then αk =
(r∗

0, rk)

(r∗
0, Ark)

, βk = 0,

ζk =
(Ark, rk)

(Ark, Ark)
, ηk = 0),

10. pk = rk + βk(pk−1 − uk−1),

11. Apk = Ark + βktk−1,

12. uk = ζkApk + ηk(yk + βkuk−1),

13. Compute Auk,

14. tk = Apk −Auk,

15. zk = ζkrk + ηkzk−1 − αkuk,

16. yk+1 = ζkArk + ηkyk − αkAuk,

17. xk+1 = xk + αkpk + zk,

18. rk+1 = rk − αkApk − yk+1,

19. end do.

IV. BICGSTAR-PLUS METHOD

BiCGStar-plus method use coupled two-term recurrences
of Rutishauser[4] for stabilized polynomial insted of eqations
(4)-(6).

G̃0(λ) = 0, H0(λ) = 1,

G̃k+1(λ) = ζkλHk(λ) + ηkG̃k(λ),

Hk+1(λ) = Hk(λ)− G̃k+1(λ), k = 0, 1, . . .

(13)
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Here, auxiliary polynomial G̃k(λ) is defined as

G̃k(λ) := Hk(λ)−Hk+1(λ), k = 0, 1, . . . (14)

The four coefficients αk, βk, ζk, ηk can be computed as
ssBiCGSafe2 method. Therefore, a synchronizaiton point
exists in the algorithm of BiCGStar-plus method. We show
an algorithm of BiCGStar-plus method without a transposed
matrix as below.

Algorithm 3: BiCGStar-plus
1. Let x0 be an initial guess,

Compute r0 = b−Ax0,

2. Choose r∗
0 such that (r∗

0, r0) ̸= 0, β−1 = 0,

3. for k = 0, 1, . . . do,

4. Compute Ark,

5. if ∥rk∥/∥r0∥ ≤ ϵ stop,

6. βk =
αk−1

ζk−1

(r∗
0, rk)

(r∗
0, rk−1)

,

7. αk =
(r∗

0, rk)

(r∗
0, Ark) + βk(r∗

0, tk−1)
,

8. ζk =
(yk,yk)(Ark, rk)− (Ark,yk)(yk, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

9. ηk =
(Ark, Ark)(yk, rk)− (Ark,yk)(Ark, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)
,

(if k = 0 then αk =
(r∗

0, rk)

(r∗
0, Ark)

, βk = 0,

ζk =
(Ark, rk)

(Ark, Ark)
, ηk = 0),

10. sk = yk + βkck−1,

11. pk = rk + βkwk−1,

12. Apk = Ark + βkAwk−1,

13. vk = ζkrk + ηktk,

14. zk = ζkArk + ηkyk,

15. ck = ζkApk + ηksk,

16. Compute Ack,

17. wk = pk − ck,

18. Awk = Apk −Ack,

19. tk+1 = vk − αkck,

20. yk+1 = zk − αkAck,

21. xk+1 = xk + αkwk + vk,

22. rk+1 = rk − αkAwk − zk+1,

23. end do.

V. NUMERICAL EXPERIMENTS

A. Parallel computational environment and conditions

All computations were done in double precision floating
point arithmetic of Fortran90, and performed on Fujitsu
PRIMERGY CX400(CPU: Intel Xeon E5-2680, memory:
128Gbytes, OS: Red Hat Linux Enterprise, total nodes: 1476
nodes, cores: 16 cores / 1 node). Fujitsu compiler optimum
option “-Kfast” were used. Process parallelization was done
by MPI library and OpneMP library. Stopping criterion of
iterative methods is less than 10−8 of the relative residual
2-norm ||rk+1||2/||b−Ax0||2. In all cases the iteration was
started with the initial guess solution x0 = (0, 0, . . . , 0)T .
The initial shadow residual r∗0 is equal to the initial residual
r0. Measurement of the elapsed time was done by system
function of gettimeofday. All test matrices as shown in Table

1 were normalized with diagonal scaling. Maximum iteration
was fixed as 10,000. Number of process varied as 1, 16,
32, 64 and 256. Measurements of the elapsed time per each
matrix were five times.

TABLE I
CHARACTERISTICS OF 12 TEST MATRICES.

matrix dimension nnz ave. nnz
air-cfl5 1,536,000 19,435,428 12.7
atmosmodd 1,270,432 8,814,880 6.9
poisson3Db 85,623 2,374,949 27.7
raefsky3 21,200 1,488,768 70.2
water tank 60,740 2,035,281 33.5
circuit5M dc 3,523,317 19,194,193 5.4
Freescale1 3,428,755 18,920,347 5.5
epb3 84,617 463,625 5.5
sme3Dc 42,930 3,148,656 73.3
thermomech dK 204,316 2,846,228 13.9
tmt unsym 917,825 4,584,801 5.0
xenon2 157,464 3,866,688 24.6

In Tables II and III, we demonstrate parallel of
Hybrid-version of iterative methods for matrices epb3
and Freescale1, respectively. TRR (True Relative Residual)
for the approximated solutions xk+1 means log10(∥b −
Axk+1∥/∥b − Ax0∥). Bold figures mean the least elapsed
time, and bold speed-ups mean the maximum speed-up.

We can observe the following facts from the results shown
in Tables II and III.

1) For matrices epb3 and Freescale1, BiCGStar-plus
methods converged fastest as for both the elapsed time
and the highest speed-up ratio on 256 processes among
the examined iterative methods.

2) For other matrices, the same tendency was gained.

VI. CONCLUSIONS

We evaluated Hybrid parallel performance of single syn-
chronized Krylov subspace methods. As a result, we saw
that our proposed iterative methods outperformed compared
with other methods from the view point of the elapsed time
and convergence rate on parallel computer with distributed
memory from many numerical examples.
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TABLE II
PARALLEL PERFORMANCE OF HYBRID-VERSION OF ITERATIVE

METHODS FOR MATRIX EPB3.

method np Mv tot.time ratio ave.time speed- TRR
[sec.] [msec.] up

GPBiCG 1 3,852 7.083 1.00 1.839 1.00 -8.0
16 4,056 0.509 1.00 0.125 14.65 -8.0
32 3,798 0.289 1.00 0.076 24.17 -8.0
64 4,178 0.211 1.00 0.051 36.41 -8.0

128 3,998 0.162 1.00 0.041 45.38 -8.0
256 4,114 0.174 1.00 0.042 43.48 -8.0

GPBiCG v4 1 3,816 7.618 1.08 1.996 1.00 -8.0
16 3,630 0.428 0.84 0.118 16.93 -8.0
32 3,854 0.275 0.95 0.071 27.98 -8.0
64 3,838 0.183 0.87 0.048 41.87 -8.0

128 3,594 0.145 0.90 0.040 49.48 -8.0
256 3,998 0.144 0.83 0.036 55.43 -8.0

BiCGSafe 1 3,764 6.172 0.87 1.640 1.00 -8.0
16 3,770 0.415 0.82 0.110 14.90 -8.0
32 3,464 0.233 0.81 0.067 24.38 -8.0
64 3,956 0.179 0.85 0.045 36.24 -8.0

128 3,822 0.134 0.83 0.035 46.77 -8.0
256 3,684 0.130 0.75 0.035 46.47 -8.0

ssBiCGSafe1 1 3,910 6.632 0.94 1.696 1.00 -8.0
16 3,870 0.427 0.84 0.110 15.37 -8.0
32 3,746 0.259 0.90 0.069 24.53 -8.0
64 3,858 0.163 0.77 0.042 40.15 -8.0

128 3,616 0.112 0.69 0.031 54.76 -8.0
256 3,844 0.106 0.61 0.028 61.51 -8.0

ssBiCGSafe2 1 3,716 6.320 0.89 1.701 1.00 -8.0
16 3,708 0.410 0.81 0.111 15.38 -8.0
32 3,706 0.241 0.83 0.065 26.15 -8.0
64 3,518 0.143 0.68 0.041 41.84 -8.0

128 3,950 0.118 0.73 0.030 56.93 -8.0
256 3,722 0.101 0.58 0.027 62.68 -8.0

BiCGStar- 1 3,548 6.706 0.95 1.890 1.00 -8.0
plus 16 4,132 0.453 0.89 0.110 17.24 -8.0

32 3,872 0.257 0.89 0.066 28.48 -8.0
64 3,836 0.164 0.78 0.043 44.21 -8.0

128 3,726 0.116 0.72 0.031 60.71 -8.1
256 3,754 0.101 0.58 0.027 70.25 -8.0

TABLE III
PARALLEL PERFORMANCE OF HYBRID-VERSION OF ITERATIVE

METHODS FOR MATRIX FREESCALE1.

method np Mv tot.time ratio ave.time speed TRR
[sec.] [msec.] up

GPBiCG 1 9,534 914.699 1.00 95.941 1.00 -8.0
16 9,328 265.123 1.00 28.422 3.38 -8.0
32 9,370 168.007 1.00 17.930 5.35 -8.0
64 9,604 97.763 1.00 10.179 9.42 -8.0

128 9,536 54.012 1.00 5.664 16.94 -8.0
256 9,120 27.708 1.00 3.038 31.58 -8.0

GPBiCG v4 1 9,682 1005.108 1.10 103.812 1.00 -8.0
16 9,772 274.881 1.04 28.129 3.69 -8.0
32 9,474 161.168 0.96 17.012 6.10 -8.0
64 9,754 93.241 0.95 9.559 10.86 -8.0

128 9,468 52.103 0.96 5.503 18.86 -8.0
256 9,042 26.029 0.94 2.879 36.06 -8.0

BiCGSafe 1 9,558 862.245 0.94 90.212 1.00 -8.0
16 9,634 247.121 0.93 25.651 3.52 -8.0
32 10,342 168.452 1.00 16.288 5.54 -8.0
64 9,152 85.350 0.87 9.326 9.67 -8.0

128 9,364 50.858 0.94 5.431 16.61 -8.0
256 9,198 26.757 0.97 2.909 31.01 -8.0

ssBiCGSafe1 1 9,380 854.881 0.93 91.139 1.00 -8.0
16 9,386 243.198 0.92 25.911 3.52 -8.0
32 9,360 148.453 0.88 15.860 5.75 -8.0
64 8,926 82.751 0.85 9.271 9.83 -8.0

128 8,962 45.679 0.85 5.097 17.88 -8.0
256 9,202 25.594 0.92 2.781 32.77 -8.0

ssBiCGSafe2 1 9,618 846.817 0.93 88.045 1.00 -8.0
16 9,070 233.475 0.88 25.741 3.42 -8.0
32 10,662 168.890 1.01 15.840 5.56 -8.0
64 9,986 91.949 0.94 9.208 9.56 -8.0

128 10,058 50.498 0.93 5.021 17.54 -8.0
256 9,562 25.959 0.94 2.715 32.43 -8.0

BiCGStar- 1 9,066 925.135 1.01 102.044 1.00 -8.0
plus 16 9,488 248.236 0.94 26.163 3.90 -8.0

32 9,088 144.791 0.86 15.932 6.40 -8.0
64 9,548 88.443 0.90 9.263 11.02 -8.0

128 10,156 51.498 0.95 5.071 20.12 -8.0
256 9,264 25.295 0.91 2.730 37.37 -8.0
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