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Abstract—Brain tumor modeling has been a challenging
research subject over the past decades. Incorporation of brain’s
tissue heterogeneity (gray-white matter) in the models, has
been realized by the introduction of a discontinuous diffusion
coefficient in the core PDE, as tumor cells migrate with
different rates in brain’s white and gray matter. For the
numerical treatment of these models, recently, a fourth order
Discontinuous Hermite Collocation (DHC) method coupled with
high order semi implicit and strongly stable Runge-Kutta (RK)
time discretization schemes, has been successfully developed.
And as, at each time step, large linear systems has to be
solved, significant computational cost emerges. For their ef-
ficient solution the incomplete LU factorization preconditioned
BiCG stabilized iterative method, suggested by the eigenvalue
topology, is adopted. The implementation of the numerical
method in Matlab environment takes place in a multicore CPU-
only computational architecture. Here, we present the design
and development of a CPU-GPU parallel algorithm to carry
out the whole computation. Its mapping and implementation
on a GPU-CPU architecture necessitates the use of CUDA
development tools. Several numerical experiments are presented
to demonstrate the efficiency of the parallel algorithm.

Index Terms—Discontinuous Hermite Collocation, DIRK
methods, Matlab, CUDA, CPU-GPU computations.

I. THE NUMERICAL BRAIN TUMOR MODEL

Simulations of the progress of untreated diffusive brain
tumors are based on classical reaction-diffusion mathemat-
ical models, such as in [1],[2] and [3]. Recently, Swanson
([4],[5]) introduced an appropriately discontinuous diffusion
coefficient and generalized these models incorporating the
heterogeneity of the brain tissue (white-grey matter). The
basic linear version of the model is then expressed with the
following reaction-diffusion equation:

Fig. 1. Discontinuous coefficient D for a two-value problem.
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∂c̄

∂t̄
= ∇ ·

(
D̄(x̄)∇c̄

)
+ ρc̄ , (1)

where c̄(x̄, t̄) denotes the tumour cell density, ρ denotes the
net proliferation rate, and D̄(x̄) is the diffusion coefficient
representing the active motility of malignant cells satisfying

D̄(x̄) =

{
Dg , x̄ in Grey Matter
Dw , x̄ in White Matter , (2)

with Dg and Dw scalars and Dw > Dg . Using the dimen-
sionless variables :

x =

√
ρ

Dw
x̄ , t = ρt̄ , f(x) = f̄

(√
ρ

Dw
x̄
)
,

and c(x, t) = c̄

(√
ρ

Dw
x̄, ρt̄

)
Dw

ρN0

with N0 =
∫
f(x)dx to denote the initial number of tumour

cells in the brain at t = 0, as well as the transformation

c(x, t) = etu(x, t) ,

the model in 2 + 1 dimensions reduces to

 ut = (Dux)x + (Duy)y , (x, y, t) ∈ [a, b]2 × R+

∂u
∂η = 0, u(x, y, 0) = f(x, y), D =

{
γ, x /∈ [w1, w2)
1, x ∈ [w1, w2)

(3)
where the diffusion coefficient D is discontinuous along two
interface lines x = w1 and x = w2, as it is depicted in
Fig. 1. The discontinuous diffusion coefficient D, directly
implies discontinuity of ux, hence continuity of Dux, across
each interface line. In fact, the linear parabolic nature of the
initial-boundary value problem implies continuity of u across
each interface, that is

[u] := lim
x→w+

k

u(x, y0)− lim
x→w−

k

u(x, y0) = 0 (4)

and

[Dux] := lim
x→w+

k

Dux(x, y0)− lim
x→w−

k

Dux(x, y0) = 0 (5)

where k = 1, 2 and y = y0 is a fixed point in [a, b]. Taking,
now, into consideration the above two continuity constrains
an alternative way to state the model can be described by

ut = Duxx +Duyy , (x, y) ∈ R`
∂u
∂η = 0 , u(x, y, 0) = f(x, y)

[u] = 0 , [Dux] = 0 at x = w1,2

(6)

where R1 := [a,w1)× [a, b] , R2 := [w1, w2)× [a, b] and
R3 := [w1, b)× [a, b].

A new fourth order tensor product Discontinuous Hermite
Collocation (DHC) method has been successfully developed
in [6] (see also [7] for the 1D analog model) and coupled with
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high order Runge-Kutta schemes for the effective solution
of the model problem described above. The approximate
solution, DHC method seeks, is in the form

U(x, y, t) =

2Ny+2∑
i=1

2Nx+2∑
j=1

[αi,j(t)φi(x)φj(y)] (7)

where Ny = Nx = Nx1
+Nx2

+Nx3
denotes the number of

subintervals of R` and φ the Hermite cubic basis functions.
For the determination of the αi,j unknowns in (7), the DHC
leads to the system of ODEs (cf. [6]):(

C0
x ⊗ C0

y

)
ȧ =

(
DxC

2
x ⊗ C0

y

)
a +

(
DxC

0
x ⊗ C2

y

)
a (8)

where C∗x and C∗y denote the 1d Discontinuous and Continu-
ous Collocation matrices respectively (cf. [7]), Dx is the di-
agonal matrix Dx = diag(γ, . . . , γ, 1, . . . , 1, γ, . . . , γ), and
⊗ denotes the Kronecker (tensor) matrix product. Setting,
now, A0 := C0

x ⊗ C0
y and B := DxC

2
x ⊗ C0

y +DxC
0
x ⊗ C2

y

of order N = 4NxNy equation (8) can be written as:

A0ȧ = Ba or ȧ = C(t, a) for C(t, a) = A−10 Ba. (9)

Finally, the DHC method is coupled (cf. [7],[6]) with an
optimal two-step and third-order Diagonally implicit Runge-
Kutta scheme [8] for the time discretization, yielding the
system of linear equations:

a(n,1) = a(n) + τ λ C(tn,1, a(n,1))

a(n,2) = a(n) + τ
[
(1− 2λ)C(tn,1, a(n,1)) + λC(tn,2, a(n,2))

]
a(n+1) = a(n) +

τ

2

[
C(tn,1, a(n,1)) + C(tn,2, a(n,2))

]
(10)

or, equivalently,

A a(n,1) = A0 a(n)

A a(n,2) = A0 a(n) + τ(1− 2λ)B a(n,1) .

A0 a(n+1) = A0 a(n) +
τ

2
[B a(n,1) +B a(n,2)]

(11)

where A := A0−τλB, τ is the time spacing and λ = 1
2+
√
3
2 .

The solution, now, of the above system of linear equations
is computationally described by means of the following
algorithm:

Create matrices A,Ab, A0, B and aold

for t = dt to tmax with time step dt

Compute a0 = A0aold

if t = dt then

Solve Abanew = a0

else
Solve A0 a1 = a0

Compute a0 = a0 − dt
√
3
3 Ba1

Solve A a2 = a0

Compute a2 = a0 + dt
2 B(a1 + a2)

Solve A0 anew = a2

endif
Compute aold = anew

endfor

Fig. 2. Eigenvalue charts of matrices Ab, A0 and A, respctively.
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Fig. 3. Eigenvalue charts of matrices Ab, A0 and A, respctively,
with the application of the preconditioning technique.

We remark that the first step of the algorithm utilizes the
matrix Ab, where Ab := A0 − τB. The use of this matrix
refers to the application of Backward Euler method to avoid
possible oscillations. For every other step from there on,
matrices A,A0 and B involved in the calculations, arise
from the DIRK scheme. And as all of them are large and
sparse, iterative methods are preferable for the solution of the
corresponding linear systems. The iterative method could be
a stationary one or a Krylov subspace method. A stationary
method would demand a matrix splitting in the form of

A = D − L − U , but the nature and the properties of the
matrices indicate that would not be an appropriate approach.
On the other hand, Krylov subspace methods, where matrix-
vector products are the dominant operations, are well suited
for parallel execution. Therefore, the BiCGSTAB method [9]
is preferred for the solution of the three linear systems in each
step of the algorithm. The selection of this particular method
is justified by the eigenvalue properties of the matrices
involved in the linear systems described above, as well as
effective preconditioning techniques.

To be more specific, calculation of the eigenvalues (see
Fig. 2) indicates that a suitable preconditioning technique
would have a positive effect on the convergence rate of
the Krylov iterative method. Since the matrices are stored
in a sparse format, the incomplete LU factorization of
each matrix Ab, A0 and A, that is MAb

:=iLU(Ab),
MA0 :=iLU(A0) and MA :=iLU(A), is a very convenient
choice as a preconditioner. An essential fact we should
emphasize on, is that all three matrices are time independent,
therefore their iLU factorization computation is performed
once before the time stepping process.

Following, now, iLU(A) preconditioning, it becomes
clear (inspect Fig. 3) that the eigenvalues of each one of
the matrices are clustered around unity and notably close
to the real semi-axis, indicating the proper selection of the
preconditioning technique and encouraging the use of the
BiCGSTAB method instead of GMRES [10].

II. THE PARALLEL ALGORITHM

During each time step, the proposed numerical scheme
requires the solution of three linear systems, with time-
independent coefficient matrices, by an iterative method
(BiCGSTAB) in which basic linear algebra operations dom-
inate. The decoding of this sentence indicates the develop-
ment of an application that will utilize both the CPU and the
GPU; sequential parts, like backward and forward substitu-
tions, will be executed on the CPU, while the demanding
floating-point operations of the compute-intensive parts will
be transferred and performed on the GPU. It should be
recalled that a Graphics Processing Unit possesses a great
number of cores which are heavily multithreaded, working
in a single instruction-multiple data mode. That makes it
an excellent numeric computing engine, in case of matrix-
vector multiplication operations (see for instance [11] and
[12]). Therefore, in the parallel algorithm the creation of
the matrices Ab, A0, A, B and vector aold along with the
computation of the iLU factorization of each matrix take
place on the CPU. The data are being copied to the GPU’s
memory before the beginning of the time stepping process
and from there on the vast majority of the floating-point
operations is performed on the GPU. The communication
cost is related to the length of the vectors needed to be
transferred between CPU and GPU for the execution of the
preconditioned system’s backward and forward substitutions
with coefficient matrices MAb

, MA0 and MA.
The primary algorithm is being described hereupon. As the

time procedure is in progress, the BiCGSTAB solver takes
place three times in each iterative step in a CPU-GPU fashion
way, therefore this particular part of the parallel algorithm is
being described apart.

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



Create matrices on CPU Ab, A0, A,B and aold

Compute on CPU iLU factorizations for matrices Ab, A0 and A

Send from CPU to GPU matrices Ab, A0, A,B and aold

for t = dt to tmax with time step dt

Compute in parallel on GPU a0 = A0aold

if t = dt then

Solve in parallel on GPU with BiCGSTAB Abanew = a0

else
Solve in parallel on GPU with BiCGSTAB Aa1 = a0

Compute in parallel on GPU a0 = a0 − dt
√
3
3
Ba1

Solve in parallel on GPU with BiCGSTAB Aa2 = a0

Compute in parallel on GPU a2 = a0 + dt
2
B(a1 + a2)

Solve in parallel on GPU with BiCGSTAB A0anew = a2

endif

Compute in parallel on GPU aold = anew

endfor

Send from GPU to CPU solution vector anew

The iLU preconditioned GPU - BiCGSTAB iterative method
is described with the following parallel algorithm in case of
solving the Ax = b linear system, with LU been the incomplete
factorization of matrix A :

Choose initial approximation x(0) of the solution x

Compute on GPU r(0) = b−Ax(0)

Choose r̂ (usually r̂ = r(0))
for i = 1, 2, ...

Compute on GPU ρi−1 = r̂T r(i−1)

if ρi−1 = 0 method fails
if i = 1

Compute on GPU p(1) = r(0)

else
βi−1 =

ρi−1

ρi−2

αi−1

ωi−1

Compute on GPU p(i) = r(i−1) + βi−1(p
(i−1)−
ωi−1v

(i−1))

endif
Send from GPU to CPU p(i)

Solve on CPU L y = p(i)

Solve on CPU U p̂ = y

Send from CPU to GPU p̂

Compute on GPU v(i) = A p̂

Compute on GPU αi =
ρi−1

r̂T v(i)

Compute on GPU s = r(i−1) − αi v
(i)

if ‖ s ‖ is small enough then

Compute on GPU x(i) = x(i−1) + αi p̂ stop

Send from GPU to CPU s

Solve on CPU L y = s

Solve on CPU U z = y

Send from CPU to GPU z

Compute on GPU t = A z
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Fig. 4. Model problem’s approximate solutions for 2D DHC-DIRK
numerical scheme at time steps t = 1, 2, 3 and 4 respectively.

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



 

 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.01

0.02

0.03

0.04

0.05

0.06

 

 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 5. Model problem’s contour plots of approximate solutions at
time steps t = 1, 2, 3 and 4 respectively.

.

Compute on GPU ωi = sT t
tT t

Compute on GPU x(i) = x(i−1) + αi p̂ + ωi z

Check for Convergence
if ωi = 0 stop
Compute on GPU r(i) = s − ωi t

endfor

III. CPU-GPU IMPLEMENTATION

The implementations of the developed algorithm were carried
out on a shared memory HP SL390s G7, consisting of two 6-core
Xeon X5600@2.8 GHz type processors with 12 MB Level 3 cache
memory each. The total memory is 24 GB and the operating system
is Oracle’s Linux version 6.2. The machine is also equipped with a
Fermi edition Tesla M2070 GPU, with 6 GB of memory and 448
cores on 14 multiprocessors. The time measurements comparison
is between 2 different applications that were developed. The first
one was developed in Matlab R2014b [13] and runs on a multicore
CPU-only environment, while the second one was developed in
Matlab R2014b and in PGI’s 15.3 CUDA Fortran [14] and runs
on a CPU-GPU environment. In the development of the CPU-GPU
application, subroutines from cuBLAS and cuSPARSE libraries [15]
(in GPU operations) and from SparseKit (in CPU operations) were
used for CUDA 6.0 compiler suite [16]. We have to mention that
Matlab software does not support yet GPU computations for sparse
matrices. This is the main reason that the CPU-GPU part of the
algorithm is implemented in CUDA Fortran. The Matlab Compiler
toolbox from 2014b software version is used for the compilation
of the standalone multicore Matlab application for the CPU-only
implementations.

Time evolution of the brain’s tumor model numerical solution
is depicted in Figures Fig. 4 and 5, for the case of tmax = 4
and dt = 0.05, and the numerical scheme’s successful treatment
of the problem is being demonstrated. The regions (stripes) with
different rates of cell motility as well as the discontinuity interfaces
are visible and handled effectively by the numerical scheme.

In the following Table I the time measurements (in seconds) are
presented, comparing the Matlab multithread CPU implementation
and the CUDA Fortran CPU-GPU implementation, in different
cases of discretization, namely n = 400, 1600, 6400 and 25600
finite elements. The size of the linear systems involved in each
test case is equal to the number of unknowns N = 4n to be
evaluated. Also the total degrees of freedom (dof) are mentioned
for every finite element problem size. The observed acceleration
is graphically presented in Fig. 6 for all test cases between the
multicore CPU Matlab and the CPU-GPU Matlab-CUDA Fortran
realization of the parallel algorithm.

Table I : Execution time measurements for Matlab multithread
CPU and Matlab-CUDA Fortran CPU-GPU implementations
Number of Number of CPU Matlab CPU - GPU
elements unknowns dof Time Time

400 1600 6400 0.83 0.31
1600 6400 25600 2.35 0.94
6400 25600 102400 11.5 4.55
25600 102400 409600 202 81.8

Beside the time results comparing the two applications, there are
also a few comments to be made about the implementations using
the GPU. Regarding the communication cost between the CPU and
the GPU memories, the duration of the transfers when copying from
the GPU to the CPU and backwards was the same for the same
amount of data, in case of 25600 finite elements, and was less
than 1 second. The same behavior was noticed in cases with less
finite elements. In addition, when having a closer look at the GPU’s
computations, it was confirmed that the matrix-vector multiplication
procedure is the most time consuming one. For instance, in case of
25600 finite elements, the matrix-vector operation was performed
5008 times and consumed nearly 64% of the GPU implementation
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Fig. 6. Speedup measurements for CPU Matlab and CPU-GPU Matlab-
CUDA Fortran implementations.

time, while the vector addition operation which was performed
13450 times consumed 11%.

Fig. 7. NVIDIA’s Visual Profiler graphical performance application tool.

The above observations were made using the NVIDIA’s Visual
Profiler as shown in Fig. 7.

IV. CONCLUSIONS

A new parallel algorithm for computing architectures with ac-
celerators, implementing the Discontinuous Hermite Collocation
method, has been developed. The algorithm was realized on ma-
chines with Graphics Processing Units and the time measurements
were compared to Matlab multicore implementations. The results
reveal the highest efficiency of the CPU-GPU implementation since
the performance acceleration that was observed reached 2.5x.
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