

Abstract—The solution of composite Partial Differential

Equations is an indispensable step in numerous scientific

applications. However, this is a computationally and memory

demanding process for large-scale differential equations. This

is especially true for multidomain/multiphysics problems,

which require application of an interface relaxation (IR)

methodology on the common boundaries between domains. In

this paper, we present IRaaS, a cloud-based environment for

the solution of multidomain/multiphysics problems. IRaaS

efficiently exploits the inherent parallelism found in the

solution step for the individual subdomains, thus significantly

reducing computational and memory requirements. At the

same time, its efficient allocation and management mechanism

allocates the optimal number of resources (virtual machines),

based on the total number of resources available, as well as the

size of the problems for solution.

Index Terms—cloud computing applications, interface

relaxation, multidomain/multiphysics problems, PDEs

I. INTRODUCTION

HE solution of large and composite Partial Differential

Equations (PDE)s is a problem primarily faced with

domain decomposition techniques [1], [2]. This approach

involves decomposing at the linear algebra level after

discretizing the domain and the equation with the desired

method, i.e., Finite Differences (FD) or Finite Elements

(FE). The main characteristic of these methods is the non-

flexibility on the selection of different method for each

subdomain of the initial problem. Interface Relaxation (IR)

methodology is an interesting alternative [3]–[5]. Here, the

PDE domain is decomposed into subdomains defined by the

modelling of the underlying problem, while initial guesses

Manuscript received March 23, 2015; revised April 16, 2015. The

present research work has been partially supported by the European Union

(European Social Fund ESF) and Greek national funds through the
Operational Program Education and Lifelong Learning of the National

Strategic Reference Framework (NSRF) - Research Funding Program:

THALIS. Investing in knowledge society through the European Social
Fund (MIS 379416).

A. Korfiati is with Department of Computer Engineering and

Informatics, University of Patras, Patras, Greece (phone: 00302610996985;
e-mail: korfiati@ceid.upatras.gr).

N. Sfika, C. Alexakos and S. Likothanassis are with Department of

Computer Engineering and Informatics, University of Patras, Patras,
Greece (e-mail: {sfika, alexakos, likothan}@ceid.upatras.gr).

K. Daloukas is with Department of Electrical and Computer

Engineering, University of Thessaly, Volos, Greece and Helic Inc., 2880
Zanker Road, Suite 203, San Jose, CA, USA (e-mail:

kodalouk@inf.uth.gr).

P. Tsompanopoulou is with Department of Electrical and Computer
Engineering, University of Thessaly, Volos, Greece (e-mail:

yota@inf.uth.gr).

are set on the interfaces between the subdomains. The

subproblems are solved and new values on the interfaces are

computed iteratively by particular IR methods (forcing the

correct conditions for the problem), until convergence is

succeeded.

Multidomain multiphysics problem solving environments

(PSEs) implementing the interface relaxation methodology

should be able to accommodate and incorporate a variety of

existing PDE solvers and IR methods. These solvers should

provide a minimum functionality including domain and PDE

definition, mesh/grid generator, discretization scheme,

evaluation of the solution and its derivatives at any point of

the domain including the boundaries/interfaces. A complete

list of existing software for the solution of differential

equations can be found in [6].

A limited number of implementations of IR methods can

be found in the literature. The first PSE implementing the IR

methodology was the SciAgents Framework [7], [8]. This

implementation exploits the parallelism inherent in IR

methodology using the Agents computing paradigm over a

network of heterogeneous workstations. A second approach

was accomplished with BOND agent middleware [9]. Both

SciAgents and BOND implementation used PELLPACK

[10] for their PDE solvers. GasTurbnLab [11], [12] is the

latest complete approach. It is a multidisciplinary PSE for

the gas turbine engine design based on the Grasshopper

agent middleware and FORTRAN and C libraries. Matlab

has also been used for the implementation of IR methods

[3], [13], not forming, though, a multidomain/multiphysics

PSE. Last, a MATLAB toolbox that solves

multidomain/multiphysics PDE problems is under

construction, while a first stable version is presented in [14].

The main problems of the aforementioned PSEs are that

they highly depend on the agent platforms and PELLPACK,

revealing the need of a new implementation free of such

constraints.

On the other hand, cloud computing introduces a set of

technologies for delivering computational resources and

services to the end-users according to their demands. The

ability of flexibility and scalability of computational

resources has set cloud computing an emerging technology

for scientific applications that demand parallelization and

high computational workload [15]. In this direction, many

approaches turn to cloud computing for defining

frameworks or architectures for parallel solution of scientific

problems [16]. Another prominent paradigm is the SciCloud

that studies the “unification” of already existing

computational resources on research facilities under a cloud

infrastructure for the execution of computational demanding

IRaaS: A Cloud Implementation of an Interface

Relaxation Method for the Solution of PDEs

Aigli Korfiati, Niki Sfika, Konstantis Daloukas, Christos Alexakos, Panagiota Tsompanopoulou and

Spiros Likothanassis

T

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

and parallel scientific solutions [17]. A platform that

supports multiple problem solving environments and is able

to execute code in parallel has been introduced in [18].

Although there is a lack of implementations of IR methods

with cloud technologies, there are other cloud-based

approaches with high demands on computational resources

such as satellite image processing [19], medical image

processing [20] and bioinformatics [21].

In this paper, IRaaS (Interface Relaxation as a Service), a

cloud-based PSE implementing the interface relaxation

methodology, is presented. The parallel IR implementation

is based on the architecture described in [22], where a

geometric (GEO) contraction based IR method [13] was

implemented along with FEniCS [23] and RabbitMQ [24] (a

message-oriented communication middleware). In that

approach, the virtualization method (virtual machines (VMs)

with predefined memory, network and processors) was used.

In the proposed cloud application, the actual process for

solving multidomain/multiphysics problems is conducted in

the cloud infrastructure. In addition, in order to take into

account the diversity of the subproblems for a given

problem, the proposed application manages to calculate and

provide optimal VMs according to the available resources,

the size of the global problem and the size of its

subproblems. Finally, the application can be accessed by its

users following the SaaS paradigm and providing a user-

friendly web-based graphical interface that can be used by

most of today’s devices.

The rest of the paper is organized as follows. We provide

some background details regarding cloud computing, PSEs,

and the interface relaxation methodology in Section 2, while

Section 3 describes the proposed cloud implementation.

Next, we present the evaluation results of the proposed

methodology. Finally, Section 5 concludes our paper.

II. METHODS AND TECHNOLOGIES

A. Cloud Computing

Cloud computing is a new model in the area of

Information and Communication Technologies. Its main

purpose is to provide access to all computing resources

(such as applications, networks, storage, servers, services,

etc.) directly from the web. Cloud computing aims to share

resources among the cloud service vendors, consumers and

partners resulting to the provision of computational

resources as a utility [25]. One important benefit of Cloud

computing is elasticity, i.e., the capability to scale the

computational resources depending on the computational

needs. Cloud computing has been divided into three service

models: infrastructure as a service (IaaS), platform as a

service (PaaS) and software as service (SaaS). The IaaS

model delivers basic storage and different computational

resources utilizing virtual machines. The PaaS model gives

programming APIs to users for coding their own

applications. SaaS is a model that delivers software

applications over the web enabling the user to use an

application from anywhere without caring about the

computational needs [26].

In the present work we provide a cloud application (SaaS)

named IRaaS where the users can easily manage and solve

multidomain/multiphysics problems based on the IR

methodology from any place and device without being

concerned about the computational needs. For the proposed

cloud implementation a software platform called Cloudstack

has been combined with the existing virtualization

infrastructure. Cloudstack is a tool that controls pools of

computational resources, manages the network resources

and storage in order to build cloud infrastructures according

to the IaaS model [27].

B. FEniCS

The FEniCS project is a collection of free, open source

software components forming an environment for the

automated solution of differential equations. FEniCS

provides scientific computing tools to specify the domain’s

properties (i.e., domain’s geometry, PDE operator and

boundary/interface conditions), define different types of

element in the FEM algorithm, and efficiently solve the

corresponding PDE problems.

 FEniCS employs the Sparse LU algorithm for the

solution of the underlying linear systems, mainly due to its

robustness. However, since it can become slow and memory

demanding in large problems, FEniCS provides iterative

methods such as preconditioned Krylov solvers, as well,

which are faster and require much less memory. The actual

solvers implementations that are brought into action depend

on the choice of the corresponding linear algebra package.

PETSc is the default choice and uBLAS, Epetra (Trilinos)

and MTL4 are other supported backends [23].

C. Advanced Message Queuing Protocol

RabbitMQ is a lightweight, reliable, scalable and portable

message broker that enables efficient communication

between applications to send and receive messages. It is

compatible with all major operating systems and easy to use.

It supports several languages among which Python, which is

also used by FEniCS. RabbitMQ is based on the Advanced

Message Queuing Protocol (AMQP), a message protocol

that deals with publishers and consumers. The publishers

produce the messages; the consumers pick them up and

process them. [24]

D. IR methodology and GEO

 Interface Relaxation methods, such as GEO, provide an

efficient methodology for the solution of multidomain PDEs

through an iterative procedure [3]–[5]. Consider the

composite differential problem defined by

𝐿𝑢 = 𝑓 𝑖𝑛 𝛺\𝜕𝛺, 𝑢 = 𝑢𝑏 𝑜𝑛 𝜕𝛺 (1)

where 𝑢𝑏 is a prescribed function on the boundary 𝜕Ω,

𝛺 ≡ ⋃ 𝛺𝑖
̅̅̅𝑝

𝑖=1 and 𝛺𝑖 , 𝑖 = 1, … , 𝑝 are open sets such that,

⋂ 𝛺𝑖
𝑝
𝑖=1 = ∅ and 𝐿 is the differential operator which might

be different in each subdomain 𝛺𝑖. With the IR

methodology, the above problem can be replaced with the

following loosely coupled system of differential problems.

𝐿𝑖𝑢𝑖 = 𝑓𝑖 𝑖𝑛 𝛺𝑖

𝐺𝑖𝑗𝑢 = 0 𝑜𝑛 (𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗)\𝜕𝛺, ∀𝑗 ≠ 𝑖 (2)

𝑢 = 𝑢𝑖
𝑏𝑜𝑛 𝜕𝛺𝑖 ∩ 𝜕𝛺

where 𝐿𝑖 , 𝑓𝑖 and 𝑢𝑖
𝑏, for 𝑖 = 1, … , 𝑝 are the restrictions of

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

𝐿, 𝑓and 𝑢𝑏 respectively on each subdomain 𝛺𝑖 and 𝐺𝑖𝑗 is a

condition on the interface between subdomains 𝛺𝑖 and 𝛺𝑗

which enforces proper coupling. This coupling is

responsible for preserving the physical properties of the

original problem (i.e., continuity, smoothness or jumping).

The differential operators and the coupling can be of any

kind. However, this study is focused, but not limited, to the

most common case of second order elliptic differential

equations with smooth global solution. Thus, continuity of

the solution and its first (normal) derivative should be

imposed on the interfaces.

As we can observe, the solution of (1) through (2)

requires solution of each subdomain problem and

combination of the computed solutions on the interface.

GEO [7] is an interface relaxation method that allows for

efficient calculation of the values at the interface points

between different subdomains and guarantees fast

convergence. The new relaxed values on the interface points

are obtained by adding to the old ones a geometrically

weighted average of the normal boundary derivatives of the

adjacent subdomains. Specifically, the solution at each

iteration 𝑘 is given from the following equation:

𝑢(𝑘+1) = 𝑢(𝑘) − 𝜌 (
𝜕𝑢𝐿

(𝑘)

𝜕𝑛
−

𝜕𝑢𝑅
(𝑘)

𝜕𝑛
), (3)

𝑘 = 1,2, …

where 𝑢 is the computed solution on the interface,

𝜕𝑢𝐿
(𝑘)

𝜕𝑛
,−

𝜕𝑢𝑅
(𝑘)

𝜕𝑛
 are the values of the outward normal

derivatives in the two adjacent subdomains and 𝜌 is a

relaxation parameter used to accelerate convergence.

III. PROPOSED CLOUD IMPLEMENTATION

A. System Architecture

The system architecture of the proposed approach is

based on the IaaS and SaaS cloud models and is efficient in

terms of performance, scalability, user experience and

energy cost. It supports the multidomain/multiphysics

problem solving environment with the provision of a user-

friendly interface, the automated distribution of the problem

to appropriate computational resources, the storage of the

problems’ parameters and results and the necessary

communication. This architecture is depicted in Fig. 1.

The major functional components of the architecture are

the following:

In the graphical user interface users can create a new

account, log in, upload data for a new problem to be solved

and have access to the progress and the results of their

current or previous problems. This module is implemented

utilizing the state-of-art technologies and techniques for

front-end web applications in order to be easily adapted in

any end-user’s device (PC, tablet, smartphone). It is build

according to W3C’s HTML5 standard, JQuery JavaScript

framework and the responsive design technique provided by

Bootstrap framework.

The Advanced Message Queue Server (AMQS) handles

the communication between the entities of the system. It is

based on RabbitMQ and on the Advanced Message Queuing

Protocol (AMQP).

The task manager is responsible for the whole

procedure. It manages the virtual machines (VMs) in the

cloud infrastructure, checks for new potential jobs/problems

and according to the size of each problem, it creates the

appropriate VMs, sends them the input data through a web

service and oversees their functionality during the whole

execution. Moreover, if there are no jobs or all jobs have

finished, it is responsible for destroying the VMs and

releasing their computational resources.

Fig. 1. IRaaS system architecture.

The storage is a universal repository accessible from all

the system components. The graphical interface stores the

users’ input data. The VMs that are computing the problem

solution get the users’ input data from the storage and store

their results. The task manager communicates with the

storage in order to calculate the available and appropriate

recourses for each problem.

The execution VMs are responsible for executing

processing tasks. They are deployed and destroyed by the

task manager and they receive input data from it, as well.

Their life cycle begins with their initialization by the task

manager when a new problem appears and the available

resources are enough for its execution. They last for the time

it takes to solve a problem and they die when they send the

results to the storage in order to be accessed from the user

interface.

B. IR Distributed Solution

The main characteristic of the GEO interface relaxation

technique is the abundant level of parallelism in the solution

of the interface points. In order to take advantage of such

inherent parallelism, we assign each available VM the

solution of one subdomain and the subsequent update of the

values in the interface points. Thus, we can achieve full

utilization of the computational resources found in a cloud

infrastructure.

Referring to Fig. 2, the user defines the input parameters

through a form in the graphical interface and then a Python

script in each VM generates the subdomain’s mesh

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

(triangular elements), applies the boundary conditions and

the initial guesses on the interfaces and expresses and

defines the PDE problem as a variational problem. Then, the

local solution and gradient are computed. Then, the

computed solutions and gradients on the interfaces points

are sent to the VMs that handle the adjacent subdomains.

These VMs compute the new relaxed interface point values

as in (3), which serve as input for the subsequent solution of

the corresponding subdomains. A new iteration begins once

the VMs that handle neighboring subdomains have finished

the communication step regarding the computed solution

and gradients.

An additional benefit of the proposed scheme is the

minimization of the communication overhead. Owing to the

independence of the solution for each subdomain, there is no

need for a separate VM that will handle the communication

step between VMs that solve neighboring subdomains. As a

result, the communication overhead is greatly reduced.

Fig. 2. Interface Relaxation distributed solution: an example with 3
subdomains and 2 interfaces.

C. Runtime Environment

The aforementioned system architecture is responsible for

supporting the problem solving, from the provision of a

user-friendly interface for defining problem parameters to

the managing of the distributed process to the nodes.

The task manager is the main service that controls and

orchestrates the whole procedure from the time when the

user requests a solution for a problem, until the time when

the VMs finish their executions and produce their results. It

is also executed on a VM of the cloud infrastructure,

communicates with every functional entity in the system and

provides a series of functionalities. The most significant

modules of the task manager are the following:

1) The job initiator, which iteratively reviews if there are

any pending jobs in the queue. It chooses the oldest job

request, reads the problem properties and calculates the

optimal computational resources according to the

available resources, the size of the global problem and

the size of its subproblems. Then, it performs a request

to the cloud platform in order to deploy the appropriate

VMs (one for each subproblem) based on a template

that contains all the software needed for the solution of

each subproblem (such as FEniCS). Finally, using a

web service, it passes to each VM the problem

parameters. When the VMs have booted and received

their input data successfully, they send a message back

to the task manager. Fig. 3 depicts the job initiator’s

process.

Fig. 3. Job initiator’s process.

2) The job monitor, which checks the status of each

running job. During the execution, each VM sends to

the job monitor a RabbitMQ message declaring the

iteration it has completed. Upon completion of the

execution an end message is sent to the job monitor and

this is the time when the task manager automatically

destroys the VMs so that their resources are released

and continues with the next problem in the queue, if

any.

IV. EXPERIMENTS AND EVALUATION

To evaluate the performance of the proposed

methodology, we employed the following elliptic PDE

problem:

𝐿𝑢 ≡ −∇2𝑢(𝑥, 𝑦) + 𝛾2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺 (4)

𝑢(𝑥, 𝑦) = 𝑢𝑏(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝜕𝛺

with 𝑓(𝑥, 𝑦) and 𝑢𝑏(𝑥, 𝑦) selected such that the true solution

is:

𝑢(𝑥, 𝑦) = 𝑒𝑦(𝑥+4)𝑥(𝑥 − 1)(𝑥 − 0.7)𝑦(𝑦 − 0.5) (5)

The problem consists of three subdomains which are

depicted in Fig. 4. The interface points are at 𝑥1 =
1

3
 and

𝑥2 =
2

3
 and 𝛾2 = 2. Seven grid sizes are examined,

according to seven different values of the discretization

parameter ℎ, which is considered equal in both 𝑥 and 𝑦

direction. The number of interface points in each case is

equal to the number of points in the 𝑦 direction of the

middle subdomain, i.e., increases from 6 to 321 points. The

left subdomain is approximately four times larger than the

middle, while the right subdomain is approximately two

times larger than the middle. The interfaces have the same

number of points and therefore are of equal workload. The

considered test cases along with their discretization step and

the grid sizes for the left, middle and right subdomains are

described in Table I.

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

Fig. 4. Subdomains.

IRaaS has been implemented and installed in a small

private cloud infrastructure of Cloud@CEID in the facilities

of the Pattern Recognition Laboratory of the Dept. of

Computer Engineering and Informatics of University of

Patras, Greece. The test infrastructure comprises a server

with an Intel(R) Xeon(R) CPU E3-1220@3.10GHz with 4

cores and 16GB RAM. As a result, our experiments are

restricted to a small range of input datasets.

TABLE I

CONSIDERED CASES

Case h Left Middle Right

C1 0.1 4x21 4x6 4x11

C2 0.05 8x41 8x11 8x21

C3 0.025 14x81 14x21 14x41

C4 0.0125 28x161 28x41 28x81

C5 0.00625 55x321 55x81 55x161

C6 0.003125 108x641 108x161 108x321

C7 0.0015625 214x1281 214x321 214x641

The combinations of the resources used in order to

produce the rule that decides the resources’ allocation are

presented in Table II. R1 is the minimum case where each

subdomain is solved in a VM with a processor with 1 core, 2

GHz and 1 GB RAM. In R2 each subdomain is solved in a

VM with a processor with 1 core, 2 GHz and 2 GB RAM.

R3 is a more complex scheme where the left subdomain is

solved in a VM with a processor with 1 core, 2 GHz and 4

GB RAM, the middle subdomain in a VM with a processor

with 1 core, 2 GHz and 1 GB RAM and the right subdomain

in a VM with a processor with 1 core, 2 GHz and 2 GB

RAM. R4 is almost identical to R3, except that the middle

subdomain is solved in in a VM with a processor with 1

core, 1.5 GHz and 2 GB RAM.

In Table III the execution times for all possible

combinations for the aforementioned cases and resources are

presented. Each value includes the time for the solution of

the three subdomains along with the interface computations’

time and the necessary communication for 15 iterations. It

also includes the time it takes to inform the system for the

progress of the computations, which takes approximately 12

seconds.

TABLE II

 RESOURCES

Resource

s

Left domain Middle

domain

Right domain

co
re

s

G
H

z

G
B

co
re

s

G
H

z

G
B

co
re

s

G
H

z

G
B

R1 1 2 1 1 2 1 1 2 1

R2 1 2 2 1 2 2 1 2 2

R3 1 2 4 1 2 1 1 2 2

R4 1 2 4 1 1.

5

2 1 2 2

In the first six cases it can be observed that the execution

times are almost equal disregarding the computational

resources used and as a result R1, i.e., the minimum

resources allocation, would be sufficient. On the other hand

in case C7 the R3 allocation of the resources is more

appropriate because it handles better the tradeoff between

time and computational resources minimization. This is due

to the large size of the subproblems addressed in C7. The

left subdomain comprises 274134 points, the middle 68694

points and the left 137174 points.

TABLE III

EXECUTION TIMES

Resources/Case R1 R2 R3 R4

C1 15.041 15.082 15.016 15.042

C2 15.411 15.457 15.320 15.345

C3 15.724 15.894 15.736 15.735

C4 19.169 21.442 19.234 19.334

C5 28.548 37.271 28.669 28.470

C6 71.416 81.252 70.972 71.499

C7 500.146 307.241 297.122 298.870

Based on the above observations, we have employed the

following rule for the allocation of computational resources:

IF subdomain size < =75000:

 VM: 1 core, 2 GHz and 1 GB RAM.

IF 75000 < subdomain size < =150000:

 VM: 1 core, 2 GHz and 2 GB RAM.

IF subdomain size >150000:

 VM: 1 core, 2 GHz and 4 GB RAM.

This rule, when used from the task manager, reaches three

goals simultaneously. It allocates the minimum possible

resources, it solves the problem in a close to minimum

execution time, and the resources allocation is performed

automatically in the background without the user’s

interference.

Referring back to Table III, the execution time achieved

and the resources allocated in the actual implementation of

IRaaS, which is based on the aforementioned rule, are

presented in bold letters. The comparison with the parallel

implementation presented in [22] is shown in Fig. 5. Taking

into account the additional 12 seconds that IRaaS needs to

inform the system for the progress of the computations

(which is not needed in the previous parallel

implementation), the time minimization can be easily

observed. This is especially evident with the increase of the

problem size. The previous parallel implementation was

performed in 3 nodes with 4 cores and 2GB RAM each,

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

running as VMs on a 2 x Intel(R) Xeon(R) CPU E5-2620,

2.00GHz server with XenServer. Thus, apart from the

reduction in the execution time, IRaaS is able to achieve

better resource utilization, as well.

Fig. 5. Comparison to the parallel implementation in [22].

V. CONCLUSION

We have presented IRaaS, a cloud-based environment for

the solution of multidomain/multiphysics problems based on

the GEO interface relaxation methodology. The users: (i)

define complex multiphysics PDEs, (ii) select the

appropriate PDE solvers for the domains and IR methods for

the interfaces and (iii) get the computed solution of the

global problem. This SaaS cloud application is based on an

IaaS model where the subproblems are automatically

assigned to (not preexisting) VMs according to their

computational needs. The advantages of the proposed

environment are threefold. It provides significant reduction

in the execution time by taking advantage of the inherent

parallelism in the solution process of a multidomain

problem, while at the same time provides increased resource

utilization efficiency and allows for seamless integration,

with limited user intervention

As future work, we plan to implement a larger number of

PDE solvers and IR methods are going to be implemented

and provided to the users soon, as well as provide support

for more complex domains.

REFERENCES

[1] Chan, T.F., Mathew, T.P., “Domain decomposition algorithms”, in:
Acta Numerica 1994, Cambridge University Press, Cambridge, 61-

143 (1994)

[2] Keyes, D., Gropp, W., “A comparison of domain decomposition
techniques for elliptic partial differential equations and their parallel

implementation”, SIAM J. Sci. Statist. Comput. 8 s166-s202 (1987)

[3] Rice, J. R., Tsompanopoulou, P., Vavalis, E., “Interface relaxation
methods for elliptic differential equations”, Applied Numerical

Mathematics 32 2, 219–245 (2000)

[4] Rice, J.R., Tsompanopoulou, P. Vavalis, E.A., “Fine Tunning
Interface Relaxation Methods for Elliptic Differential Equations”,

Applied Numerical Mathematics, 43(4), 459–481 (2002)
[5] Tsompanopoulou, P., Vavalis, E., “An Experimental Study of

Interface Relaxation Methods for Composite Elliptic Differential

Equations”, Applied Mathematical Modelling, 32 1620–1641 (2008)
[6] Young, R., MacPhedran, I. (2006): Internet Finite Element Resources.

[Online]: Available:

http://homepage.usask.ca/~ijm451/finite/fe_resources/ (accessed

March 17, 2015)

[7] Drashansky T., “An Agent-Based Approach to Building

Multidisciplinary Problem Solving Environments”, PhD Thesis,
Purdue University, Computer Science Department, (1996)

[8] Rice, J.R., Tsompanopoulou, P., Vavalis, E.A., “SciAgents Tool:

User’s Guide”, Tech. Rpt. TR- 98-043, Dept. Computer Sciences,
Purdue Univ., (1998)

[9] Bölöni, L., Marinescu, D.C., Rice, J.R., Tsompanopoulou, P., Vavalis,

E.A., “Agent Based Scientific Simulation and Modelling”,

Concurancy: Practice and Experience, 12, 845–861 (2000)

[10] Houstis, E. N., Rice, J. R., Weerawarana, S., Catlin, A. C.,
Papachiou, P., Wang, K.-Y., Gaitatzes, M., “PELLPACK: A Problem
Solving Environment for PDE Based Applications on Multicomputer
Platforms”, ACM Transactions on Mathematical Software, 24, 30-73,
(1998)

[11] Markus, S., Houstis, E., Catlin, A., Rice, J., Tsompanopoulou, P.,
Vavalis, E., Gottfried, D., Su K., Balakrishnan, G., “An Agent-Based

Netcentric Framework for Multidisciplinary Problem Solving

Environments”, International Journal of Computational Engineering
Science, 1, 33–60 (2000)

[12] Houstis, E.N., Catlin, A.C., Tsompanopoulou, P., Gottfried, D.,

Balakrishnan, G., Su, K., Rice, J.R., “GASTURBNLAB: A
Multidisciplinary Problem Solving Environment for Gas Turbine

Engine Design on a Network of Non-Homogeneous Machines”, J. of

Comp. and Applied Mathematics, 149(1), 83-100 (2002)
[13] Tsompanopoulou, P., Vavalis, E., “Analysis of an interface relaxation

method for composite elliptic differential equations”, Journal of

Computational and Applied Mathematics 226 2, 370– 387 (2009)
[14] Chalkias, C.: “Implementation of a Distributed System for the

Solution of MultiDomain / MultiPhysics Problems”, Diploma Thesis,

(2013), Dep. of Electrical and Computer Eng., Univ. of Thessaly.
[15] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A.

(2009), “Cloud computing: Distributed internet computing for IT and

scientific research”. Internet Computing, IEEE, 13(5), 10-13.
[16] Srirama, S. N., Batrashev, O., Jakovits, P., & Vainikko, E. (2011),

“Scalability of parallel scientific applications on the cloud”, Scientific

Programming, 19(2-3), 91-105.
[17] Srirama, S., Batrashev, O., & Vainikko, E. (2010, May), “SciCloud:

scientific computing on the cloud”, In Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (pp. 579-580). IEEE Computer Society.

[18] Ludescher, Thomas, Thomas Feilhauer, and Peter Brezany, "Cloud-

Based Code Execution Framework for scientific problem solving
environments", Journal of Cloud Computing 2.1 (2013): 1-16.

[19] Wang, L., Kunze, M., Tao, J., & von Laszewski, G. (2011), “Towards

building a cloud for scientific applications”. Advances in Engineering
software, 42(9), 714-722.

[20] G. Kagadis, C. Alexakos, P. Papadimitroulas, N. Papanikolaou, V.

Megalooikonomou, D. Karnabatidis, “Cloud Computing Application
for Brain Tumor Detection”, European Congress of Radiology – ECR

2015, European Society of Radiology (ESR), Vienna, March 4–8,

2015
[21] Krampis, K., Booth, T., Chapman, B., Tiwari, B., Bicak, M., Field,

D., & Nelson, K. E. (2012), “Cloud BioLinux: pre-configured and on-

demand bioinformatics computing for the genomics community”,
BMC bioinformatics, 13(1), 42.

[22] Korfiati A., Tsompanopoulou P. and Likothanassis S., “Serial and

Parallel Implementation of an Interface Relaxation Method”, in
Proceedings of the 6th International Conference on Numerical

Analysis, pp 167-173 (2014)

[23] Logg, A., Mardal, K. A., Wells, G. N. et al., “Automated Solution of
Differential Equations by the Finite Element Method”, Springer,

(2012)

[24] Rabbitmq, 2015. [Online]: Available:
http://www.rabbitmq.com/documentation.html (accessed March 17,

2015).
[25] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,

Konwinski, A., ... & Zaharia, M. (2010), “A view of cloud

computing”, Communications of the ACM, 53(4), 50-58.
[26] George C. Kagadis, Christos Kloukinas, Kevin Moore, Jim Philbin,

Panagiotis Papadimitroulas, Christos Alexakos, Paul G. Nagy,

Dimitris Visvikis, William R. Hendee, “Cloud computing in medical
imaging”, Vision 20/20 paper, Medical Physics, Vol. 40, No. 7,

AAPM, 070901 (2013)

[27] Cloudstack, 2015. [Online]: Available: http://cloudstack.apache.org
(accessed March 17, 2015).

Proceedings of the World Congress on Engineering 2015 Vol I
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015

http://homepage.usask.ca/~ijm451/finite/fe_resources/
http://www.rabbitmq.com/documentation.html
http://cloudstack.apache.org/

