
 

 

Abstract—The solution of composite Partial Differential 

Equations is an indispensable step in numerous scientific 

applications.  However, this is a computationally and memory 

demanding process for large-scale differential equations. This 

is especially true for multidomain/multiphysics problems, 

which require application of an interface relaxation (IR) 

methodology on the common boundaries between domains. In 

this paper, we present IRaaS, a cloud-based environment for 

the solution of multidomain/multiphysics problems. IRaaS 

efficiently exploits the inherent parallelism found in the 

solution step for the individual subdomains, thus significantly 

reducing computational and memory requirements. At the 

same time, its efficient allocation and management mechanism 

allocates the optimal number of resources (virtual machines), 

based on the total number of resources available, as well as the 

size of the problems for solution. 

 

Index Terms—cloud computing applications, interface 

relaxation, multidomain/multiphysics problems, PDEs 

 

I. INTRODUCTION 

HE solution of large and composite Partial Differential 

Equations (PDE)s is a problem primarily faced with 

domain decomposition techniques [1], [2]. This approach 

involves decomposing at the linear algebra level after 

discretizing the domain and the equation with the desired 

method, i.e., Finite Differences (FD) or Finite Elements 

(FE). The main characteristic of these methods is the non-

flexibility on the selection of different method for each 

subdomain of the initial problem. Interface Relaxation (IR) 

methodology is an interesting alternative [3]–[5]. Here, the 

PDE domain is decomposed into subdomains defined by the 

modelling of the underlying problem, while initial guesses 
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are set on the interfaces between the subdomains. The 

subproblems are solved and new values on the interfaces are 

computed iteratively by particular IR methods (forcing the 

correct conditions for the problem), until convergence is 

succeeded. 

Multidomain multiphysics problem solving environments 

(PSEs) implementing the interface relaxation methodology 

should be able to accommodate and incorporate a variety of 

existing PDE solvers and IR methods. These solvers should 

provide a minimum functionality including domain and PDE 

definition, mesh/grid generator, discretization scheme, 

evaluation of the solution and its derivatives at any point of 

the domain including the boundaries/interfaces. A complete 

list of existing software for the solution of differential 

equations can be found in [6]. 

A limited number of implementations of IR methods can 

be found in the literature. The first PSE implementing the IR 

methodology was the SciAgents Framework [7], [8]. This 

implementation exploits the parallelism inherent in IR 

methodology using the Agents computing paradigm over a 

network of heterogeneous workstations. A second approach 

was accomplished with BOND agent middleware [9]. Both 

SciAgents and BOND implementation used PELLPACK 

[10] for their PDE solvers. GasTurbnLab [11], [12] is the 

latest complete approach. It is a multidisciplinary PSE for 

the gas turbine engine design based on the Grasshopper 

agent middleware and FORTRAN and C libraries. Matlab 

has also been used for the implementation of IR methods 

[3], [13], not forming, though, a multidomain/multiphysics 

PSE. Last, a MATLAB toolbox that solves 

multidomain/multiphysics PDE problems is under 

construction, while a first stable version is presented in [14]. 

The main problems of the aforementioned PSEs are that 

they highly depend on the agent platforms and PELLPACK, 

revealing the need of a new implementation free of such 

constraints. 

On the other hand, cloud computing introduces a set of 

technologies for delivering computational resources and 

services to the end-users according to their demands.  The 

ability of flexibility and scalability of computational 

resources has set cloud computing an emerging technology 

for scientific applications that demand parallelization and 

high computational workload [15]. In this direction, many 

approaches turn to cloud computing for defining 

frameworks or architectures for parallel solution of scientific 

problems [16]. Another prominent paradigm is the SciCloud 

that studies the “unification” of already existing 

computational resources on research facilities under a cloud 

infrastructure for the execution of computational demanding 
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and parallel scientific solutions [17]. A platform that 

supports multiple problem solving environments and is able 

to execute code in parallel has been introduced in [18]. 

Although there is a lack of implementations of IR methods 

with cloud technologies, there are other cloud-based 

approaches with high demands on computational resources 

such as satellite image processing [19], medical image 

processing [20] and bioinformatics [21]. 

In this paper, IRaaS (Interface Relaxation as a Service), a 

cloud-based PSE implementing the interface relaxation 

methodology, is presented. The parallel IR implementation 

is based on the architecture described in [22], where a 

geometric (GEO) contraction based IR method [13] was 

implemented along with FEniCS [23] and RabbitMQ [24] (a 

message-oriented communication middleware). In that 

approach, the virtualization method (virtual machines (VMs) 

with predefined memory, network and processors) was used. 

In the proposed cloud application, the actual process for 

solving multidomain/multiphysics problems is conducted in 

the cloud infrastructure. In addition, in order to take into 

account the diversity of the subproblems for a given 

problem, the proposed application manages to calculate and 

provide optimal VMs according to the available resources, 

the size of the global problem and the size of its 

subproblems. Finally, the application can be accessed by its 

users following the SaaS paradigm and providing a user-

friendly web-based graphical interface that can be used by 

most of today’s devices. 

The rest of the paper is organized as follows. We provide 

some background details regarding cloud computing, PSEs, 

and the interface relaxation methodology in Section 2, while 

Section 3 describes the proposed cloud implementation. 

Next, we present the evaluation results of the proposed 

methodology. Finally, Section 5 concludes our paper. 

II. METHODS AND TECHNOLOGIES 

A. Cloud Computing 

Cloud computing is a new model in the area of 

Information and Communication Technologies. Its main 

purpose is to provide access to all computing resources 

(such as applications, networks, storage, servers, services, 

etc.) directly from the web. Cloud computing aims to share 

resources among the cloud service vendors, consumers and 

partners resulting to the provision of computational 

resources as a utility [25]. One important benefit of Cloud 

computing is elasticity, i.e., the capability to scale the 

computational resources depending on the computational 

needs. Cloud computing has been divided into three service 

models: infrastructure as a service (IaaS), platform as a 

service (PaaS) and software as service (SaaS). The IaaS 

model delivers basic storage and different computational 

resources utilizing virtual machines. The PaaS model gives 

programming APIs to users for coding their own 

applications. SaaS is a model that delivers software 

applications over the web enabling the user to use an 

application from anywhere without caring about the 

computational needs [26].  

In the present work we provide a cloud application (SaaS) 

named IRaaS where the users can easily manage and solve 

multidomain/multiphysics problems based on the IR 

methodology from any place and device without being 

concerned about the computational needs. For the proposed 

cloud implementation a software platform called Cloudstack 

has been combined with the existing virtualization 

infrastructure. Cloudstack is a tool that controls pools of 

computational resources, manages the network resources 

and storage in order to build cloud infrastructures according 

to the IaaS model [27]. 

B. FEniCS 

The FEniCS project is a collection of free, open source 

software components forming an environment for the 

automated solution of differential equations. FEniCS 

provides scientific computing tools to specify the domain’s 

properties (i.e., domain’s geometry, PDE operator and 

boundary/interface conditions), define different types of 

element in the FEM algorithm, and efficiently solve the 

corresponding PDE problems. 

 FEniCS employs the Sparse LU algorithm for the 

solution of the underlying linear systems, mainly due to its 

robustness. However, since it can become slow and memory 

demanding in large problems, FEniCS provides iterative 

methods such as preconditioned Krylov solvers, as well, 

which are faster and require much less memory. The actual 

solvers implementations that are brought into action depend 

on the choice of the corresponding linear algebra package. 

PETSc is the default choice and uBLAS, Epetra (Trilinos) 

and MTL4 are other supported backends [23]. 

C.  Advanced Message Queuing Protocol  

RabbitMQ is a lightweight, reliable, scalable and portable 

message broker that enables efficient communication 

between applications to send and receive messages. It is 

compatible with all major operating systems and easy to use. 

It supports several languages among which Python, which is 

also used by FEniCS. RabbitMQ is based on the Advanced 

Message Queuing Protocol (AMQP), a message protocol 

that deals with publishers and consumers. The publishers 

produce the messages; the consumers pick them up and 

process them. [24] 

D. IR methodology and GEO 

 Interface Relaxation methods, such as GEO, provide an 

efficient methodology for the solution of multidomain PDEs 

through an iterative procedure [3]–[5]. Consider the 

composite differential problem defined by 

 

𝐿𝑢 = 𝑓 𝑖𝑛 𝛺\𝜕𝛺,    𝑢 = 𝑢𝑏 𝑜𝑛 𝜕𝛺             (1)  

               

where 𝑢𝑏 is a prescribed function on the boundary 𝜕Ω, 

𝛺 ≡ ⋃ 𝛺𝑖
̅̅̅𝑝

𝑖=1  and 𝛺𝑖 , 𝑖 = 1, … , 𝑝 are open sets such that, 

⋂ 𝛺𝑖
𝑝
𝑖=1 =  ∅ and 𝐿 is the differential operator which might 

be different in each subdomain 𝛺𝑖. With the IR 

methodology, the above problem can be replaced with the 

following loosely coupled system of differential problems. 

 

𝐿𝑖𝑢𝑖 = 𝑓𝑖  𝑖𝑛 𝛺𝑖 

𝐺𝑖𝑗𝑢 = 0 𝑜𝑛 (𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗)\𝜕𝛺, ∀𝑗 ≠ 𝑖          (2) 

𝑢 = 𝑢𝑖
𝑏𝑜𝑛 𝜕𝛺𝑖 ∩ 𝜕𝛺 

 

where 𝐿𝑖 , 𝑓𝑖 and 𝑢𝑖
𝑏, for 𝑖 = 1, … , 𝑝 are the restrictions of 
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𝐿, 𝑓and 𝑢𝑏 respectively on each subdomain 𝛺𝑖 and 𝐺𝑖𝑗 is a 

condition on the interface between subdomains 𝛺𝑖 and 𝛺𝑗 

which enforces proper coupling. This coupling is 

responsible for preserving the physical properties of the 

original problem (i.e., continuity, smoothness or jumping). 

The differential operators and the coupling can be of any 

kind. However, this study is focused, but not limited, to the 

most common case of second order elliptic differential 

equations with smooth global solution. Thus, continuity of 

the solution and its first (normal) derivative should be 

imposed on the interfaces.  

As we can observe, the solution of (1) through (2) 

requires solution of each subdomain problem and 

combination of the computed solutions on the interface. 

GEO [7] is an interface relaxation method that allows for 

efficient calculation of the values at the interface points 

between different subdomains and guarantees fast 

convergence. The new relaxed values on the interface points 

are obtained by adding to the old ones a geometrically 

weighted average of the normal boundary derivatives of the 

adjacent subdomains. Specifically, the solution at each 

iteration 𝑘 is given from the following equation: 

 

𝑢(𝑘+1) = 𝑢(𝑘) − 𝜌 (
𝜕𝑢𝐿

(𝑘)

𝜕𝑛
−

𝜕𝑢𝑅
(𝑘)

𝜕𝑛
),                              (3) 

𝑘 = 1,2, … 

 

where 𝑢 is the computed solution on the interface, 

𝜕𝑢𝐿
(𝑘)

𝜕𝑛
,−

𝜕𝑢𝑅
(𝑘)

𝜕𝑛
 are the values of the outward normal 

derivatives in the two adjacent subdomains and 𝜌 is a 

relaxation parameter used to accelerate convergence. 

III. PROPOSED CLOUD IMPLEMENTATION 

A. System Architecture 

The system architecture of the proposed approach is 

based on the IaaS and SaaS cloud models and is efficient in 

terms of performance, scalability, user experience and 

energy cost. It supports the multidomain/multiphysics 

problem solving environment with the provision of a user-

friendly interface, the automated distribution of the problem 

to appropriate computational resources, the storage of the 

problems’ parameters and results and the necessary 

communication.  This architecture is depicted in Fig. 1. 

The major functional components of the architecture are 

the following: 

In the graphical user interface users can create a new 

account, log in, upload data for a new problem to be solved 

and have access to the progress and the results of their 

current or previous problems. This module is implemented 

utilizing the state-of-art technologies and techniques for 

front-end web applications in order to be easily adapted in 

any end-user’s device (PC, tablet, smartphone). It is build 

according to W3C’s HTML5 standard, JQuery JavaScript 

framework and the responsive design technique provided by 

Bootstrap framework.  

The Advanced Message Queue Server (AMQS) handles 

the communication between the entities of the system. It is 

based on RabbitMQ and on the Advanced Message Queuing 

Protocol (AMQP). 

The task manager is responsible for the whole 

procedure. It manages the virtual machines (VMs) in the 

cloud infrastructure, checks for new potential jobs/problems 

and according to the size of each problem, it creates the 

appropriate VMs, sends them the input data through a web 

service and oversees their functionality during the whole 

execution. Moreover, if there are no jobs or all jobs have 

finished, it is responsible for destroying the VMs and 

releasing their computational resources. 

       

 
Fig. 1.  IRaaS system architecture. 

 

The storage is a universal repository accessible from all 

the system components. The graphical interface stores the 

users’ input data.  The VMs that are computing the problem 

solution get the users’ input data from the storage and store 

their results. The task manager communicates with the 

storage in order to calculate the available and appropriate 

recourses for each problem. 

The execution VMs are responsible for executing 

processing tasks. They are deployed and destroyed by the 

task manager and they receive input data from it, as well. 

Their life cycle begins with their initialization by the task 

manager when a new problem appears and the available 

resources are enough for its execution. They last for the time 

it takes to solve a problem and they die when they send the 

results to the storage in order to be accessed from the user 

interface. 

B. IR Distributed Solution 

The main characteristic of the GEO interface relaxation 

technique is the abundant level of parallelism in the solution 

of the interface points. In order to take advantage of such 

inherent parallelism, we assign each available VM the 

solution of one subdomain and the subsequent update of the 

values in the interface points. Thus, we can achieve full 

utilization of the computational resources found in a cloud 

infrastructure. 

Referring to Fig. 2, the user defines the input parameters 

through a form in the graphical interface and then a Python 

script in each VM generates the subdomain’s mesh 
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(triangular elements), applies the boundary conditions and 

the initial guesses on the interfaces and expresses and 

defines the PDE problem as a variational problem. Then, the 

local solution and gradient are computed. Then, the 

computed solutions and gradients on the interfaces points 

are sent to the VMs that handle the adjacent subdomains. 

These VMs compute the new relaxed interface point values 

as in (3), which serve as input for the subsequent solution of 

the corresponding subdomains. A new iteration begins once 

the VMs that handle neighboring subdomains have finished 

the communication step regarding the computed solution 

and gradients. 

An additional benefit of the proposed scheme is the 

minimization of the communication overhead. Owing to the 

independence of the solution for each subdomain, there is no 

need for a separate VM that will handle the communication 

step between VMs that solve neighboring subdomains. As a 

result, the communication overhead is greatly reduced. 

 

 
Fig. 2.  Interface Relaxation distributed solution: an example with 3 
subdomains and 2 interfaces. 

 

C. Runtime Environment 

The aforementioned system architecture is responsible for 

supporting the problem solving, from the provision of a 

user-friendly interface for defining problem parameters to 

the managing of the distributed process to the nodes.   

The task manager is the main service that controls and 

orchestrates the whole procedure from the time when the 

user requests a solution for a problem, until the time when 

the VMs finish their executions and produce their results. It 

is also executed on a VM of the cloud infrastructure, 

communicates with every functional entity in the system and 

provides a series of functionalities. The most significant 

modules of the task manager are the following: 

1) The job initiator, which iteratively reviews if there are 

any pending jobs in the queue. It chooses the oldest job 

request, reads the problem properties and calculates the 

optimal computational resources according to the 

available resources, the size of the global problem and 

the size of its subproblems. Then, it performs a request 

to the cloud platform in order to deploy the appropriate 

VMs (one for each subproblem) based on a template 

that contains all the software needed for the solution of 

each subproblem (such as FEniCS). Finally, using a 

web service, it passes to each VM the problem 

parameters. When the VMs have booted and received 

their input data successfully, they send a message back 

to the task manager. Fig. 3 depicts the job initiator’s 

process. 

 
Fig. 3.  Job initiator’s process. 

 

2) The job monitor, which checks the status of each 

running job. During the execution, each VM sends to 

the job monitor a RabbitMQ message declaring the 

iteration it has completed. Upon completion of the 

execution an end message is sent to the job monitor and 

this is the time when the task manager automatically 

destroys the VMs so that their resources are released 

and continues with the next problem in the queue, if 

any. 

IV. EXPERIMENTS AND EVALUATION 

To evaluate the performance of the proposed 

methodology, we employed the following elliptic PDE 

problem: 

 

𝐿𝑢 ≡ −∇2𝑢(𝑥, 𝑦) + 𝛾2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺    (4) 

𝑢(𝑥, 𝑦) = 𝑢𝑏(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝜕𝛺 

 

with 𝑓(𝑥, 𝑦) and 𝑢𝑏(𝑥, 𝑦) selected such that the true solution 

is: 

 

𝑢(𝑥, 𝑦) = 𝑒𝑦(𝑥+4)𝑥(𝑥 − 1)(𝑥 − 0.7)𝑦(𝑦 − 0.5)      (5) 

 

The problem consists of three subdomains which are 

depicted in Fig. 4. The interface points are at 𝑥1 =
1

3
 and 

𝑥2 =
2

3
 and 𝛾2 = 2. Seven grid sizes are examined, 

according to seven different values of the discretization 

parameter ℎ, which is considered equal in both 𝑥 and 𝑦 

direction. The number of interface points in each case is 

equal to the number of points in the 𝑦 direction of the 

middle subdomain, i.e., increases from 6 to 321 points. The 

left subdomain is approximately four times larger than the 

middle, while the right subdomain is approximately two 

times larger than the middle. The interfaces have the same 

number of points and therefore are of equal workload. The 

considered test cases along with their discretization step and 

the grid sizes for the left, middle and right subdomains are 

described in Table I. 
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Fig. 4.  Subdomains. 

 

IRaaS has been implemented and installed in a small 

private cloud infrastructure of Cloud@CEID in the facilities 

of the Pattern Recognition Laboratory of the Dept. of 

Computer Engineering and Informatics of University of 

Patras, Greece. The test infrastructure comprises a server 

with an Intel(R) Xeon(R) CPU E3-1220@3.10GHz with 4 

cores and 16GB RAM. As a result, our experiments are 

restricted to a small range of input datasets. 

TABLE I 

CONSIDERED CASES 

Case h Left Middle Right 

C1 0.1 4x21 4x6 4x11 

C2 0.05 8x41 8x11 8x21 

C3 0.025 14x81 14x21 14x41 

C4 0.0125 28x161 28x41 28x81 

C5 0.00625 55x321 55x81 55x161 

C6 0.003125 108x641 108x161 108x321 

C7 0.0015625 214x1281 214x321 214x641 

 

The combinations of the resources used in order to 

produce the rule that decides the resources’ allocation are 

presented in Table II. R1 is the minimum case where each 

subdomain is solved in a VM with a processor with 1 core, 2 

GHz and 1 GB RAM. In R2 each subdomain is solved in a 

VM with a processor with 1 core, 2 GHz and 2 GB RAM. 

R3 is a more complex scheme where the left subdomain is 

solved in a VM with a processor with 1 core, 2 GHz and 4 

GB RAM, the middle subdomain in a VM with a processor 

with 1 core, 2 GHz and 1 GB RAM and the right subdomain 

in a VM with a processor with 1 core, 2 GHz and 2 GB 

RAM. R4 is almost identical to R3, except that the middle 

subdomain is solved in in a VM with a processor with 1 

core, 1.5 GHz and 2 GB RAM. 

In Table III the execution times for all possible 

combinations for the aforementioned cases and resources are 

presented. Each value includes the time for the solution of 

the three subdomains along with the interface computations’ 

time and the necessary communication for 15 iterations. It 

also includes the time it takes to inform the system for the 

progress of the computations, which takes approximately 12 

seconds. 

 

TABLE II 

    RESOURCES 

Resource

s 

Left domain Middle 

domain 

Right domain 

co
re

s 

G
H

z 

G
B

 

co
re

s 

G
H

z 

G
B

 

co
re

s 

G
H

z 

G
B

 

R1 1 2 1 1 2 1 1 2 1 

R2 1 2 2 1 2 2 1 2 2 

R3 1 2 4 1 2 1 1 2 2 

R4 1 2 4 1 1.

5 

2 1 2 2 

 

In the first six cases it can be observed that the execution 

times are almost equal disregarding the computational 

resources used and as a result R1, i.e., the minimum 

resources allocation, would be sufficient. On the other hand 

in case C7 the R3 allocation of the resources is more 

appropriate because it handles better the tradeoff between 

time and computational resources minimization. This is due 

to the large size of the subproblems addressed in C7. The 

left subdomain comprises 274134 points, the middle 68694 

points and the left 137174 points.  

TABLE III 

EXECUTION TIMES 

Resources/Case R1 R2 R3 R4 

C1 15.041 15.082 15.016 15.042 

C2 15.411 15.457 15.320 15.345 

C3 15.724 15.894 15.736 15.735 

C4 19.169 21.442 19.234 19.334 

C5 28.548 37.271 28.669 28.470 

C6 71.416 81.252 70.972 71.499 

C7 500.146 307.241 297.122 298.870 

 

Based on the above observations, we have employed the 

following rule for the allocation of computational resources: 

IF subdomain size < =75000: 

 VM: 1 core, 2 GHz and 1 GB RAM. 

IF 75000 < subdomain size < =150000: 

 VM: 1 core, 2 GHz and 2 GB RAM. 

IF subdomain size >150000: 

 VM: 1 core, 2 GHz and 4 GB RAM. 

This rule, when used from the task manager, reaches three 

goals simultaneously. It allocates the minimum possible 

resources, it solves the problem in a close to minimum 

execution time, and the resources allocation is performed 

automatically in the background without the user’s 

interference. 

Referring back to Table III, the execution time achieved 

and the resources allocated in the actual implementation of 

IRaaS, which is based on the aforementioned rule, are 

presented in bold letters. The comparison with the parallel 

implementation presented in [22] is shown in Fig. 5. Taking 

into account the additional 12 seconds that IRaaS needs to 

inform the system for the progress of the computations 

(which is not needed in the previous parallel 

implementation), the time minimization can be easily 

observed. This is especially evident with the increase of the 

problem size. The previous parallel implementation was 

performed in 3 nodes with 4 cores and 2GB RAM each, 
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running as VMs on a 2 x Intel(R) Xeon(R) CPU E5-2620, 

2.00GHz server with XenServer. Thus, apart from the 

reduction in the execution time, IRaaS is able to achieve 

better resource utilization, as well. 

 
Fig. 5.  Comparison to the parallel implementation in [22]. 

V. CONCLUSION 

We have presented IRaaS, a cloud-based environment for 

the solution of multidomain/multiphysics problems based on 

the GEO interface relaxation methodology. The users: (i) 

define complex multiphysics PDEs, (ii) select the 

appropriate PDE solvers for the domains and IR methods for 

the interfaces and (iii) get the computed solution of the 

global problem. This SaaS cloud application is based on an 

IaaS model where the subproblems are automatically 

assigned to (not preexisting) VMs according to their 

computational needs. The advantages of the proposed 

environment are threefold. It provides significant reduction 

in the execution time by taking advantage of the inherent 

parallelism in the solution process of a multidomain 

problem, while at the same time provides increased resource 

utilization efficiency and allows for seamless integration, 

with limited user intervention 

As future work, we plan to implement a larger number of 

PDE solvers and IR methods are going to be implemented 

and provided to the users soon, as well as provide support 

for more complex domains. 
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