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Abstract— This paper considers the fuzzy inference as 

position estimator for WLAN indoor environments, based on 

received signal strength measurements RSS. The proposal 

algorithm includes a fuzzy inference which uses the k-nearest 

neighbor classification in signal space, where the position of 

target node is calculated as a weighted combination of nearest 

fingerprints, where the weights are estimated using enhanced 

Takagi–Sugeno fuzzy controller with multivariable inputs and 

parameter identification with constrained optimization. The 

new developed technique is proposed to enhance the accuracy 

of position estimation in WLAN indoor environments;  

 

Index Terms— Clustering, Fuzzy logic, RSS, WLAN indoor 

positioning;  

I. INTRODUCTION 

 Position estimation techniques gained potential attention 

from various disciplines ranging from pure engineering to 

social and/or psycho- logical domain. Moreover, the 

emergence and proliferation of the wireless communication 

industry and the popularity of mobile and handheld devices 

with billions of users has also prompted the interest in the 

position estimation task to a higher level where the location 

of the data is as important as the data itself. This is referred 

to as Location Based Services (LBS), where the quality of 

service (QoS) received is highly dependent on the accuracy 

of the location estimation [1]. Positioning is also a key in 

ubiquitous computing architectures as sensors/access points 

are distributed across the whole environment such as 

intelligent cities and health monitoring. Mobile services such 

as user’s tracking, location specific advertising, finding the 

nearest points of interest, route planner etc. In this respect, 

the LBS makes use of technologies involving Global 

Positioning System (GPS), GSM for outdoor environments, 

and local range technologies, e.g., Bluetooth, WiFi, Radio 

Frequency Identification (RFID) [2]. Although it is 

acknowledged that the Global Positioning Systems (GPS) 

technology becomes effective and affordable in open and flat 

outdoor environments, its use in WLAN indoor 

environments as well as in Non-Line-Of-Sight (NLOS) 

scenarios is not effective. This triggers the need for 

alternative positioning techniques in wireless systems. 

Besides, the constraints imposed by regulator bodies to force 

the operators to achieve minimal positioning accuracy 

regardless of availability of GPS data for emergency 

purpose, together with the need to accommodate local  
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network constraints, e.g., communication cost and nature of 
outcome, pushed towards the development of wireless-like 
solution as a pre-requisite to the success of the underlying 
application(s). The variety of applications in wireless 
systems as well as the growing challenges has led to a range 
of positioning techniques developed to meet various 
constraints [2,3]. Many measurements can be employed for 
positioning purpose, such as time of arrival (TOA), time 
difference of arrival (TDOA), angle of arrival (AOA) and 
received signal strength (RSS) [4]. The latter is usually the 
cheapest preferred option when one excludes the possibility 
of adding an extra hardware support to the system. 
Fingerprinting approach [5], which makes use of a training 
phase where RSS data are collected from different survey 
points, yielding a radio map of the deployment area. While in 
the online stage, the current RSS measurement set is mapped 
to its best match in the radio map according to the underlying 
mapping strategy where various machine learning based 
methods [6] have been put forward for this purpose. But still 
the problem is very challenging because of the uncertainty 
pervading the RSS data due to signal fading, signal 
attenuation as well as the radio propagation model and the 
non-uniformity of data in radio. 

To tackle the above challenges, in continuation of work 
carried out in [7] and as part of the positioning project for 
WLAN, this paper presents an RSS based algorithm 
combining fuzzy methodology yielding a Multiple Variable 
Fuzzy Localization (MVFL) algorithm. Especially, a 
multivariable Takagi–Sugeno (TS) fuzzy inference system 
[8] was designed to estimate the weight of the target position 
relative to its surrounding neighbors, and use, in turn, such 
information to estimate its location. Unlike work in [7], 
different input variables have been employed and a new 
procedure for identification of parameters of fuzzy system 
using gradient descent approach together with a set of 
rational constraints has been introduced. The performances 
of the algorithm have been evaluated and compared to some 
state of art algorithms. The rest of the paper is organized as 
follow. Section 2 presents some related work. Section 3 
explains the methodology with highlighting the fingerprint 
approach, localization algorithms and fuzzy parameter 
identification. Section 4 presents the implementation results 
and discussion. Section 5 presents the conclusion.  

II. RELATED WORK 

Since the introduction of IEEE 802.11 standard for 

implementing WLAN, various methods and technologies 

have been proposed to address the indoor position estimation 

problem using the RSS measurements. The Microsoft Radar 

system [9] was probably one of the pioneer works in 

integrating the RSS measurements with a local area map, 

which, using k-Nearest Neighbor (kNN) approach, achieved 

a localization accuracy of up to 5 m. This ultimately assumes 

that the strength of the signal from an IEEE 802.11 access 

point does not vary significantly at a given location. 

Improvements to RADAR’s fingerprint matching algorithm 
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have been suggested in [10] for the purpose of improving its 

accuracy. Support vector machine approach to wireless 

localization has been advocated in [11] and a comparable 

performance to kNN approach was reported. In [12] 

histogram and Kernel based approach was investigated for 

the same purpose. In [13] the use of WLAN RSS signals for 

indoor positioning was considered for a university buildings 

and labs using empirical models. The original Active Badge 

System proposed in [14] used infrared emitters and detectors 

to achieve 5–10 m accuracy. The Daedalus project [15] 

developed a system for coarse- grained user location, which 

coincides with that of the base station to which it is attached 

to, so that the accuracy is restricted by the radius of the base 

station. This obviously corresponds to the easiest and 

simplest fingerprinting-like approach. On the commercial 

market, Ekahau [16] has taken a leading role in indoor 

positioning through a combination of signal strength pattern 

recognition with an attempt to recover user’s history. 

Strictly speaking, in order for the aforementioned methods 

to perform well, a large number of labeled samples need to 

be collected at each survey point, which is rather context 

dependent. Indeed, the target environment is critical for the 

accuracy of WLAN fingerprinting-like approach. Besides, 

radio characteristics in an open environment are never static, 

and there is no universally fine methodology to tune the data 

to accommodate environmental change, although, one 

acknowledges a growing interest in post-deployment 

adaptation in recent years from telecom industry [17]. Even 

the commercial products like that provided by Ekahau fall 

victim to environmental change post-deployment adaptation 

problems [17]. Consequently, the issue of handling 

uncertainty pervading the signal strength measurements as 

well as environmental layout is of paramount importance. 

This opened the way to alternative uncertainty models like 

fuzzy logic [19] in wireless indoor position. In this course, 

one distinguishes two broad classes of solutions. One makes 

use of fuzzy inference system and the other one advocates a 

fuzzy clustering related approach, especially fuzzy c-means 

algorithm. The former is based on the idea that the 

positioning of the (unknown) target node is determined as a 

weighted combination of fingerprint nodes, where the 

weights are determined using some fuzzy inference system 

[20]. While the latter strategy employs a fuzzy c-means-like 

algorithm to cluster the fingerprint in the RSS space into a 

certain number of classes. Next, those fingerprints that 

belong to the same class of the target were selected, and the 

target position is estimated by taking the average of 

fingerprints [3]. 

A combination of fingerprint based on fuzzy inference 

system with multi-nearest neighbor algorithm to locate 

objects in wireless sensor networks was reported in [21]. 

This work showed that fuzzy logic can significantly enhance 

the accuracy and keep the cost of computation as low as 

possible. However, given that the fuzzy inference system 

only makes use of one single input consisting of the RSS 

distance measurements, renders the approach very limited to 

handle dynamic environmental changes. This partly 

motivates our choice to advocate a fuzzy logic approach for 

developing our indoor positioning algorithm. On the other 

hand, the choice of fuzzy c-means-like approach was 

discarded mainly because of its computational cost due to its 

iterative behavior and its sensibility to initialization. Overall, 

this work differs from the aforementioned related works in 

different perspectives. First, the suggested fuzzy inference 

makes use of several input variables in order to enhance the 

robustness of the outcomes (weight parameters). Second, a 

nonlinear optimization approach based on gradient descent 

and resilient propagation together with a set of rational 

constraints that ensure easy interpretability as well as 

agreement with radio propagation model have been used to 

estimate the parameters of the fuzzy systems (antecedents 

and consequents parts of fuzzy “If . ..  then” rules). Third, 

the dynamic change of environment is accounted for 

through the integration of empirical radio propagation 

model. 

III. METHODOLOGY 

A. Fingerprint based on RSS 

Fingerprinting is a positioning technique that involves a 

two-stage process: an offline phase and an online phase as 

shown in (Fig. 1). In the offline phase, the goal is to build a 

database for each reference location (fingerprint), say, FPi by 

sampling the RSS from several wireless Access Points (APs) 

yielding vectors (RSSi1, RSSi2, ..., RSSin), i = 1 to m, where 

RSSik is the signal strength from the ith reference location 

(fingerprint FPi (x, y)) to the kth AP, n is the total number of 

access points and m is the total number of fingerprints [22]. 

While in the online phase, the location of the target (or target 

node) T with a measured RSS vector is estimated using some 

pattern matching algorithm by comparing the current 

observed signal (RSS vector) with pre-recorded values in 

database.   

 

  

Then the similarity between the ith fingerprint and the 

target can be calculated using some form of (Euclidean) 

distance [23]. Moreover, several possibilities could be 

considered for obtaining the location of the target T. Machine 

learning related approaches [6], including neural network, 

support vector machine, support vector regressions, 

histogram and kernel methods as well as fuzzy approaches 

[12,19,20,21] have also been suggested to handle the 

positioning aspect.  

Strictly speaking, most of these techniques rely on the 

generalization power of the underlying method. 

Nevertheless, it should be noted that, fingerprinting for 

indoor WLAN environment performance still is limited by 

some growing challenges. First, most of the indoor WLAN 

are implemented using the 2.4 GHz public band WLAN 

frequency proposed by IEEE 802.11 which is also used by 

 
Fig 1 General bloack diagram of fingerprinting technique 
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GSM, microwave and other wireless devices. This may cause 

irregular RSS patterns to the collected data in offline stage. 

Second, the availability of blocking bodies in the indoor 

environment could weaken the signal and could hide the 

LOS between AP and receivers. Third, the accuracy of 

fingerprinting methods heavily relies on the density of 

fingerprints collected during the offline phase, where, on 

long term run, any change in the environment such as Access 

Point (AP) replacement, facilities upgrade, etc., can lead to 

poor system performance. Indeed, if for any reason one of the 

reference nodes vanished from the map, the algorithm will 

end selecting a point with larger Euclidean distance, and this 

will negatively impact the accuracy of estimation. This 

motivates the need to account for physical signal properties 

when using the RSS data. More specifically, the use of 

appropriate radio propagation model that accounts for such 

irregularities contributes significantly to the performance of 

the underlying fingerprinting application. Our approach for 

such issue is detailed in next section. 

B. Multivariable fuzzy localization (MVFL) architecture 

Similarly to work carried out in [7], a fuzzy inference 

system is applied to find out weights attached to the kNN 

fingerprints. Then, the location of the target node is 

determined as the weighted combination of these K 

fingerprints: 

 
( ) ( )

1 1

1 1
,

i i

K K

T i FP T i FP

i i

x w x y w y
K K 

 

     (1) 

 

where iw is the weight for every fingerprint and 

1
1

K

ii
w


 . 

( ) ( )
( , )

i iFP FPx y
 

stands for x-y coordinates 

for fingerprints. σ corresponds to a permutation of the 

indices of K fingerprints.   

Therefore, the first phase consists of determining the k-

nearest neighbors. This is performed by calculating the 

distances in RSS space from each fingerprint to the target 

node, and then selecting the fingerprints yielding the k-

smallest distances.  

In order to determine the weights in (1), a fuzzy inference 

system has been put forward. The proposal makes use of 

two input variables: 

i. The distance D(j ) (j = 1 to K ) in RSS space from 

the target node to the jth nearest neighbor 

fingerprint. 

ii. The difference of the signal variations V(j) between 

target node and jth nearest neighbor with respect to 

different APs. 

 
The output of the fuzzy system consists of the weight 

attached to each fingerprint belonging to the set of kNNs. A 

Takagi–Sugeno (TS) fuzzy system was adapted as the main 

fuzzy inference. The main feature of T–S fuzzy models is that 

they characterize the local dynamics of each fuzzy rule by a 

linear model. In our system, as it will be detailed later on, the 

outcome is constant. The generic system is shown in Fig. 2. 

More formally, the input variables are expressed as 

 
'

2

'
1

1
( ) ( )

n

ij Tj

i

D j RSS RSS
n 

    (2) 

( ) (max min ) (max max )

{ (1), (2),...., ( )}

ji ji Ti Ti
ii i i

V j RSS RSS RSS RSS

j K  

   



 (3) 

Strictly speaking, the input variable V(j) allows us to 

control the extent to which both the target and the 

underlying fingerprint agree in terms of the total variations 

caused by the use of distinct access points. Indeed, it is 

trivial that the distance is not a sufficient indicator to 

discriminate between distinct scenarios. For instance, 

geometrically speaking, points located on the same circle 

have equal distance to the center of this circle even if they 

may be very disparate from each other. Consequently, 

adding an extra discrimination parameter sounds intuitively 

useful. In the same spirit, authors in [20] have employed 

standard deviation statistics as an extra discriminating 

variable. Therefore, the more a given fingerprint agrees with 

the target node in terms of both distance D and variation V, 

the more important is the weight associated to the 

underlying fingerprint. In order to quantify this statement in 

fuzzy logic, a set of “if… then...” rules are elaborated. For 

instance, 

 
 ( )    ( )      

 ( )    ( )      

 ( )    ( )      

j

j

j

If D j is VSmall AND V j is VSmall THEN w is VHigh

If D j is high AND V j is high THEN w is Vlow

If D j is high AND V j is Small THEN w is low

  

The above linguistic qualifications are obtained through 

fuzzification process where the (crisp) inputs are transformed 

into fuzzy sets. The latter are characterized by their 

membership functions, which describe the shapes. 

Typically, simple parameterized models, e.g., Gaussian, 

triangular, S-shape, were used in the literature. In our model, 

trapezoid membership functions were employed as shown in 

Fig. 3. 

 

According to Fig. 3, the assignment of a specific (fuzzy) 

linguistic quantifier to the distance d (in signal space) 

output depends on its numerical value. More formally, we 

have for instance 

 2,        ( )

 1 4,       ( )

   3 6,       ( )

 5,       ( )

( )If d s then d is classified as VerySmall VS

If s d s then d is classified as Small S

If s d s then d is classified as High H

If d s then d is classified as VeryH

in d

igh

B

VH



 

 



 On the other hand, the determination of the boundary of the 

membership functions in Fig. 3 obeys some rational criteria 

[25]. This includes: 

 
Fig 3 Fuzification of input variable D (or V) 

 
Fig 2 General bloack diagram of MVFL 

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



i. easy interpretability. 

ii. respect of physical and statistical characteristics of the 

RSS. 

iii. agreement with one of membership function 

interpretations. 

iv. existence of sufficient number of (fuzzy) rules could be 

activated. 

v. minimization of predicted output and ground truth. 

 

Especially, requirement (ii) imposed some constraints on 

the simulation and experiment setup. Indeed, given that the 

RSS values fail sharply in the first meter or so (~40 dB) as 

opposed to smooth transition in the range 1m – 50m, 

therefore, we deliberately chosen situations in which the 

APs and fingerprints/target were at least one meter distant 

in order to ensure smooth coverage of the whole RSS range. 

More detailed handling of the above constraints is 

highlighted in next section. 

C. Fuzzy system parameter identification 

 First in order to ease the comparison with previous work, 

we consider the output of the fuzzy system to be a numerical 

constant value. This makes the underlying fuzzy system 

coincide with zero-order Takagi–Sugeno fuzzy system [8]. 

The ith rule can be formulated as:  

:i i i i

D V VDR If D is F ANDV is F thenW is  

where 
i

DF and 
i

VF  are fuzzy sets associated to variables 

D and V, respectively, while 
i

VD  stands for a constant value 

associated to weight W , for the rule Ri . In accordance to 

fuzzy operators where the fuzzy connective AND is 

implemented using the product operator [25], then assuming 

the center of area-like defuzzification, the output associated 

to M fuzzy rules is provided by [18]: 

 1

1
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



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  (4) 

where the membership functions i
VF

 and i
DF

 are 

defined as trapezoidal function as pointed out previously, 

Through their associated four parameters defining the 

support and core of the membership function as in (5). 
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 (5b) 

From (5), the problem of fuzzy system identification boils 

down to estimating the parameters of the fuzzy system; 

namely, vi  and ρi, which correspond to antecedents parts of 

rule Ri and the consequent part θi. 

From a set of observation (Vi , Di , wi ) i=1…N, the 

estimation of the parameter vector should also minimize the 

estimation error: 

   2

1

ˆJ , , [ ( , , )]
m

i i

i i i VD

i

v w w v   


     (6) 

Notice that the weights wi issued from the observation 

are quantified according to the distance of the underlying 

fingerprint to the known target so that the more the location 

of the fingerprint is close to the (true) target, the higher is 

the associated weight. More formally, given a target T in 

x–y coordinates and a fingerprint Pi yielding (Vi , Di) 

measurement, then weight is given as 

1

1 2

2

2

1 ( , )

( , )
1 ( , )

0 ( , )

i

i
i i

i

if dist P T

dist P T
w if dist P T

if dist P T



 




 



   

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 (7) 

where dist stands for distance in Euclidean space, and τ1 and 

τ2 are thresholds on distance delimiting the full coincidence 

with target node and full separation, respectively. 

Strictly speaking, at least two streams of research in the 

estimation of the fuzzy system parameters could be 

distinguished. The first one advocates the use of a two stage 

strategy where the antecedent parts vi and ρi (i=1 to M) of 

the membership functions were identified through clustering 

or neural network/genetic algorithm-like approaches [26]. 

Next, the consequent parts were determined, usually using 

least square algorithm. The second stream involves the use 

of optimization-like approach such as gradient descent where 

all parameters are learned through iterating with constant 

adjustment factor until a satisfactory level of performance 

metric, usually estimation error, is reached [27]. Hybrid 

approaches employing both gradient descent and clustering 

and/or least squares can also be envisioned. Besides, the 

number of partition of the input space V and D, which 

controls the number of total fuzzy rules M, can also be used 

as part of system identification. For this purpose, usually 

inter-class validity criteria is used in case of clustering 

based approach, while it can also be part of parameters to be 

identified in case of gradient descent-like approach. On the 

other hand, it is also worth pointing that both clustering and 

gradient descent-like approaches may lead to non-appealing 

result where there is less or full absence between fuzzy sets, 

which, in turn, result in weakly activated or not activated at 

all fuzzy rule(s) for some combination of input space, see for 

instance [26] and references therein. This yields into 

relaxation of optimality criteria governing either the 

clustering or the gradient descent-like approaches. Even 

early work of Sugeno and Yasukawa [28] fits into this 

category. This motivates our approach to employ the 

gradient descent approach in order to estimate both the 

antecedent and the consequent parts of the rule in 

conjunction with a set of rational constraints that ensure full 

comply with desirable requirements set in earlier section. 

Especially, in order to ensure requirements (i) and (iv), we 

consider that, for a given input variable, for any fuzzy set, 
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there is always one fuzzy rule for which the overlapping part 

has a membership grade of 0.5 as it can be seen in the 

example of Fig. 3. Besides, in order to ensure requirements 

(ii) and (iii), the range of the values that can be assigned to 

the input variable is determined by the physical and statistical 

characteristics of RSS. The latter are simulated using the 

simulated environment as well as the radio propagation 

model (14) as will be detailed later. In this context, the core 

and support of the membership function can be interpreted as 

the extent of the interval where the true boundary of the 

distance in signal space will possibly and certainly lie in, 

respectively. This agrees with the random set view 

interpretation, where the membership function is viewed as a 

nested family of level-cuts [25]. 

More formally, the determination of the fuzzy system 

parameters boils down to the following optimization 

problem: 

  2

, ,
1

ˆMinimize  J , , [ ( , , )]
m

i i

i i i VD
v

i

v w w v
 

   


       (8) 
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 [inf( ) sup( )] ( )V V f RSS   (11) 

[inf( ) sup( )] ( )D D g RSS   (12) 

Expression (8) is in agreement with requirement (v) where 

the estimated parameters constituting of rule premise 

antecedents part v and ρ as well as consequent parts θ are the 

unknown variables. 

Expressions (9) and (10) state that for each value of the 

input variables V and D belonging to the corresponding 

universe of discourse UD and UV , the sum of membership 

grades associated to all fuzzy sets of the partition (M1 

partition for input variable V and M2 partition for variable D) 

is equal to unity. This insures that for each value of the input 

variable, there is at least one rule which is activated. If there 

is an overlapping between two fuzzy sets, then the maximum 

membership grade of the overlapping area is equal to 0.5. 

This guarantees the interpretability requirement stated earlier.  

 Finally, expressions (11) and (12) indicate that the range 

of values associated to universe of discourse of the two input 

variables is function of the signal strength values. 

In order to implement the above optimization problem a 

gradient descent method is applied, similar to work in [27]. 

Besides, in order to strengthen its computational complexity, 

we used resilient propagation RPROP [29], initially 

developed for neural network training, and employed a 

gradient descent algorithm with a resilient parameter update 

step. A link of RPROP with Matlab FIS system environment 

is also established in order to ease the solution of the above 

constrained optimization problem. Besides, the fact that the 

trapezoidal functions are piecewise derivable makes the use 

of the RPROP appropriate. On the other hand, the number of 

partition is taken constant M1=M2=4, yielding a total of 

M=4×4=16 rules. This is mainly motivated on one hand, by 

the desire of simplification of the above optimization 

problem, and the ease of comparison with alternative 

approaches on the other hand. Strictly speaking, an 

alternative implementation would be to work out the 

augmented Lagrangian operator from (8)–(9) as: 
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 (13) 

and then set the derivatives with respect to antecedent, 

consequent rule parameters as well as Lagrange multipliers λ, 

χ to zero, yielding a solution close to clustering-like fuzzy 

identification approach. Nevertheless such solution has not 

been pursued due to already proven efficiency of RPROP 

and less sensitivity to initial guess-this can be part of the 

future investigation-. Alternative studies have shown that 

even applying much more exhaustive search strategies i.e., 

Johansen and Foss [28] only marginally outperform 

RPROP. 

D. Properties of MVFL 

Interestingly, MVFL induces the same result as standard 

kNN when either both input variables were evaluated Very 

Small or High. Particularly, based on the values of input 

variables V and D, some useful cases regarding the 

performance of the MVFL algorithm can be distinguished.  

Proposition 1. If the fingerprints outputted by the kNN 

are such that  

max(Di,Vi )≤ s1 for some nearest neighbor i, and  

min(Dj,Vj  ≥ s6, ∀j = 1, K,j ≠ i ,  

then, the outcome of MVFL coincides with the ith nearest 

fingerprint. 

The proof of the above proposition follows 

straightforwardly from the fact that the condition 

max(Di,Vi)≤s1 entails that both Di and Vi are evaluated 

VerySmall and there is only one single fuzzy rule activated. 

This yields according to (7) a maximum weight of 1 

attached to ith nearest neighbor, while the statement 

min(Dj,Vj)≥s6, ∀j=1,k, j≠i ensures that all other nearest 

neighbors were evaluated to High for both input variables D 

and V, which again, according to (7) and uniqueness of 

fuzzy rule activated, yields a zero weight attached to those 

fingerprints. Therefore applying (7) yields straightforwardly 

result pointed out in Proposition 1. 

Proposition 2. If the fingerprints outputted by the kNN 

are such that  min(Dj , Vj ) ≥ s6, ∀j = 1,K  

then, the outcome of MVFL almost coincides with that of 

the standard kNN using (1). 

The proof of Proposition 2 follows the same spirit as that 

of Proposition 1. That is, the condition stated in the body of 

the proposition entails that all nearest neighbors were 

evaluated to High for both V and D inputs, which, together 

with uniqueness of activated fuzzy rule(s), yields almost a 

zero-valued weight attached to each nearest neighbor.  

Proposition 3. If the fingerprints outputted by the kNN 

are such that max(Di , Vi ) ≤ s1  for all nearest neighbor i (i = 

1, K), then, the outcome of MVFL coincides with that of 

standard kNN using (1). Again this follows from the fact 

that the condition in Proposition 3 entails that all nearest 

neighbors were evaluated to Very Small for both input 

variables yielding maximum weight value 1.  
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IV. IMPLEMENTATION AND DISCUSSION 

To evaluate the proposal a testbed was constructed using 

4 APs mounted in the corners of 20×20 meters area with 

coordinates AP1(0, 0), AP2(20,0), AP3(20,20) and 

AP4(0,20). 64 fingerprints were specified in symmetric way 

with approximately 2.2 meter space, and 16 random testing 

targets to be localized were generated with known 

coordinates, as shown in Fig. 4. The simulation setup was 

chosen for its similarity with experiment layout that is 

carried out at later stages of the project, and will be 

described in the future works. 

The radio propagation model (14), which describes the 

signal attenuation with respect to the distance between 

emitter (access point) and receiver. In this experiment the 

used radio propagation model was is adapted from [24], 

which has been tested in indoor environment close to that 

experienced in this paper. Interestingly, the model includes 

an uncertainty element constituting of ± 8, which describes 

an upper and lower bounds to the path loss. This would be 

especially interesting when eliciting the fuzzy membership 

functions. 

 
 

The radio propagation model pointed out in (14) is used 

to construct the RSS map for the fingerprints and targets.  

 
10 40  31        )  (  ij ijRSS log d       (14) 

where dij  stands for the distance from the jth fingerprint to 

the ith access point, while ε stands for the Gaussian random 

noise of zero mean and standard deviation 2 dB. The latter 

was introduced to account for a bounded uncertainty of 8 dB 

as proposed in [24]. Indeed, using the fact that, for a zero-

mean Gaussian signal of standard deviation σ, the range of 

the underlying random variable is approximately bounded 

by [−3σ , 3σ], therefore, to account for a bounded 

uncertainty of 8 dB, a random Gaussian zero mean and 

standard deviation 2 dB sounds rational. 

In the offline phase the radio map is created by 

calculating the physical distance from every fingerprint to 

each AP, using the initial (known) x–y coordinates. Then, 

the propagation model (14) is used to generate fingerprint’s 

RSS values. For each fingerprint j, one therefore generates a 

vector of RSS values where each component corresponds to 

the associated signal strength from a given AP to the jth 

fingerprint. The dimension of such vector is equal to the 

total number of access points. The set of all such vectors 

pertaining to all fingerprints constitutes the offline stage of 

the fingerprinting localization approach. It should be noted 

that in case where all APs were visible to all fingerprints, 

the dataset of the offline phase boils down to standard m×n 

matrix (where m and n stand for the number of fingerprints 

and AP, respectively). 

In the online phase, the kNN algorithm is first used to 

identify the K closest neighbors for a given target according 

to the Euclidean distance in as defined in the equation (2). 

Then the distances D and V (in signal space) for each closest 

neighbor, are used as inputs to the multivariable Takagi–

Sugeno fuzzy inference system, which, in turn, determines 

the weight associated to each fingerprint of the kNN. 

Finally, the positioning of each target is estimated using: 

(15). Note that (15) is induced from (1) when the weights 

are not normalized. And the symbols are defined similarly. 
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 (15) 

 

Pseudo-code of the overall methodology is summarized as 

follow:  

 
Given the knowledge of the true position of the target 

from the user’s perspective, the performance of the 

developed fuzzy positioning system can be evaluated using 

standard root mean square error (RMSE) metric; namely: 

2 2( ) ( )T TAct T TActError X X Y Y       (16) 

where XTAct , and YTAct are the actual coordinates of target 

T. The results of this technique are compared to kNN 

combined with single variable fuzzy localization (SVFL) 

proposed in [21], as well as the standard kNN, weighted 

kNN and triangulation approach. First, in Fig. 5 is shown the 

positioning of the target within the environmental layout.  

It is also shown the true (actual) positions of the targets as 

well as their estimations using alternative (average) kNN 

approach. A total of sixteen test points (target nodes) 

randomly generated in the environment layout, were 

employed. The graph illustrates the good performance of the 

developed MVFL algorithm as demonstrated by the 

closeness of the estimated target position to the actual (true) 

 
Fig 4 Testbed layout 

 

OFFLINE stage 

   For each access point i 

       For each fingerprint j 

            Compute euclidean distance d(i, j ) 

            Compute rss(i, j ) using (7) 

            Store rss(i, j ) 

       End  

    End 

ONLINE stage 

For each target t 

     Calculate k-nearest neighbours fingerprints to t 

     For each nearest fingerprint i (i = 1 to k ) 

            Calculate v (i)t using (10) 

            Calculate d(i)t using (9) 

            Input v (i)t and d(i)t to t–s fuzzy inference system  

            Collect the weight wi of fingerprint i 

       End 

       Estimate the location of target t using (23)–(24) 

 End 
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position. Besides given the randomness inherent in 

parameter ε of expression (14), the calculus of the 

estimation is averaged over 100 Monte Carlo simulations. 

This process is repeated for both offline and online phases. 

Although, for the offline stage, the process is only 

performed once in order to build the radio map. The dataset 

issued from the radio map are then called upon by each 

fingerprinting algorithm to calculate the position of the 

target. 

 
Fig. 6 illustrates the performance of the MVFL algorithm 

with respect to root mean square error metric for each target. 

Namely, the x-coordinate in Fig. 6 corresponds to the target 

label (first target, second target, etc.) and not to the number 

of targets as it may sound like. 

 
The plot also displays the performance of alternative 

positioning algorithms (average kNN, Weighted kNN, 

SVFL and triangulation or lateration—LAT). 

It is worth pointing out from Figs. 5 and 6 that the MVFL 

outperforms the kNN localization algorithm, as well as other 

alternative approaches. However, in case where the target 

node coincides with a given fingerprint as those symbolized 

by an arrow in testbed of Fig. 4, one notices that MVFL 

evaluation degrades slightly to almost coincide sometimes 

with that of kNN in Fig. 6. This can be explained through 

several arguments. First, the fact that target is generated at 

same location as a given fingerprint does not mean 

necessarily that the associated RSS value also coincides 

with that of fingerprint due to effect of randomness. 

Otherwise, if conditions of Proposition 1 were met, the 

algorithm would provide as stated in Proposition 1 a fully 

accurate result consisting of the position of the underlying 

fingerprint. Second, given the nature of RSS space and the 

fuzzification of the distance parameters D and V , it is not 

fully excluded that both input variables will be evaluated to 

very small, yielding according to Proposition 3 a result 

which coincides with kNN result. Third, the number of 

nearest neighbors k plays also a non-negligible role. Indeed, 

for our case, with k = 3, which was found to perform well, 

the algorithm (both kNN and MVFL) tends in such situation 

to locate the target within a triangle constituted of the three 

nearest neighbors. Roughly speaking to handle such 

scenario, a trivial solution consists of reducing substantially 

the value of k to a singleton. However, although, such 

solution seems to be appropriate for this special case, 

provided that signal strength of the target was very close to 

that of the underlying fingerprint, it will cope poorly with 

the vast majority of cases in which the testdata do not 

coincide with any fingerprint. 

Next, in order to compare more efficiently the 

performance of the developed algorithm, one considers 

situations of various noise intensities, and one evaluates the 

RMSE value of each positioning algorithm. For this 

purpose, the RSS value corresponding to the target (node) is 

modified to account for the noise intensity. This boils down 

to rewriting expression (14) as 

 
10   40  31 ( )  iT iTRSS log d       (17) 

where εσ is now zero-mean Gaussian noise with (variable) 

standard deviation σ . Notice that (14) is only applied to the 

generated RSS value of the target T to each access point, 

while the RSS values of fingerprints remain unchanged with 

respect to that already stored in the radio map. The result 

provided in Table 1 corresponds to the average across all 

testdata (the sixteen targets) of the RMSE quantification. 

The results pointed out in Fig. 6 and Table 1 clearly show 

that MVFL outperforms SVFL as well as other standard 

indoor localization algorithms, which justifies of the 

robustness and the feasibility of the proposal. 

 
Table 1 Noise intensity for different algorithms 
Noise 

level SdB 

Average accuracy error 

kNN MVFL SVFL W-kNN LAT 

1 1.32 0.61 0.88 0.86 0.51 

2 1.69 0.82 1.41 1.47 1.6 

3 1.94 0.81 1.42 1.48 1.65 

4 1.98 0.94 1.43 1.53 1.71 

5 2.11 0.88 1.44 1.56 1.88 

6 2.14 0.93 1.47 1.61 1.93 

7 2.16 0.92 1.48 1.62 1.9 

8 2.21 0.98 1.48 1.66 1.91 

9 2.22 0.98 1.51 1.68 2.13 

10 2.27 0.99 1.52 1.71 2.42 

11 2.3 1.01 1.53 1.73 2.53 

12 2.37 1.01 1.57 1.74 2.52 

13 2.41 1.03 1.58 1.75 2.71 

14 2.44 1.04 1.62 1.78 2.77 

15 2.51 1.05 1.63 1.82 2.69 

 

Nevertheless, the results also show that for one testdata, 

the triangulation technique outperforms the rest of the 

algorithms. Strictly speaking, such result cannot be fully 

discarded. This is mainly due to the fact that triangulation 

approach does not rely on the fingerprints but only on access 

points. On the other hand, it is almost unanimously 

acknowledged that any fingerprinting-like approach is 

ultimately restricted by the density and homogeneity of the 

radio map created at the offline stage in the sense that the 

denser the radio map, the higher is the accuracy of the 

estimation. 

 
Fig 5 Positions estimated via MVFL (x) and SVFLkNN (o) 

 
Fig 6 Error in estimations MVFL (□) 
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Table 1 also shows a constant increase of the accuracy of 

all localization algorithms with respect to noise intensity, 

which is also trivially expected. On the other hand, it is 

worth pointing out that the variation of both MVFL and 

SVFL is relatively smaller than the variations of other 

algorithms, which demonstrates, to some extent, the 

robustness of the fuzzy inference system to noise. To see it, 

a graphical illustration is presented in Fig. 7. The graph 

restricts the plot to MVFL and kNN only for clarity of 

illustration. 

 

V. CONCLUSION 

This paper investigates a new approach for wireless 

indoor localization using fuzzy logic. The performances of 

the proposal have been evaluated and compared to several 

alternative approaches, including, triangulation, standard 

kNN, weighted kNN and single input variable fuzzy-based 

positioning already proposed in literature. The results 

demonstrated the feasibility of the proposal. Some 

refinements of the proposal have also been put forward in 

order to handle the uncertainty pervading the RSS values. 

Also, the choice of the membership functions has been 

refined to accommodate the radio propagation model and 

the observed fluctuations in terms of standard deviations of 

the RSS signals at various conditions, e.g., the range of RSS 

values between −65 dB and −80 dB are much more 

dominant than other ranges, it will be interesting to design a 

metric that enhances such discrimination power. 

Similarly, enforcing some flexibility and adaptivity on the 

choice of k would reduce the amount of the associated 

uncertainty. On the other hand, the current fuzzy system 

calculates the weight associated to each nearest neighbor 

from the two inputs involving only the target node and the 

associated nearest fingerprint. This implicitly assumes full 

independence among the fingerprint measurements. 

However such assumption is not always valid. Indeed, for 

instance, all measurements do share the same target node. 

This makes the conditional independence a more plausible 

assumption rather than of full independence. 
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Fig 7 MVFL vs kNN robustness against noise 

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015




