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Abstract—We consider an application of the least squares
piecewise monotonic data approximation method to the problem
of locating significant extrema in univariate observations that
are contaminated by random errors. The piecewise monotonic
approximation method makes the smallest change to the data
such that the first differences of the smoothed values change
sign a prescribed number of times, but the positions of the
sign changes are unknowns of the optimization process. We
present a numerical example in order to show the efficiency of
the method for peak finding. The example is an application to
31959 noisy observations of daily sunspots. Our results suggest
some subjects for future research in automatic peak finding.

Index Terms—data smoothing, divided differences, peak find-
ing, piecewise monotonic approximation, sunspots

I. BACKGROUND

T he piecewise monotonic data approximation method by
Demetriou and Powell [8] provides useful applications

in signal processing (see, for example, [2], [7], [12], [21]
and references therein). In this paper an example is worked
out as an illustration of the method for estimating turning
points of a function from some measurements of its values
that contain random errors.

Let {φi : i = 1, 2, . . . , n} be a sequence of measured
values of a function f(x) at the abscissae x1 < x2 < · · · <
xn, but the measurements include random errors (noise).
We assume that if the function has turning points, then the
number of measurements is substantially greater than the
number of turning points. Therefore some algorithms have
been developed by [8] and [5] that modify the measurements
if their first differences {φi+1 − φi : i = 1, 2, . . . , n − 1}
include more than k−1 sign changes, where k is a prescribed
integer. This condition allows k monotonic sections to the
smoothed data, alternately increasing and decreasing. Let
{yi : i = 1, 2, . . . , n} be the smoothed values, which we
regard as components of a n-vector y.

Specifically, the method calculates a vector y that mini-
mizes the sum of squares of the errors

Φ(y) =
n∑

i=1

(yi − φi)2 (1)
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subject to the piecewise monotonicity constraints

ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj
, if j is odd

ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj
, if j is even

}
, (2)

where the integers {tj : j = 1, 2, . . . , k − 1}, namely the
positions of the turning points or extrema of the fit, satisfy
the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n. (3)

The integers {tj : j = 1, 2, . . . , k − 1} are not known in
advance and they are variables in the optimization calculation
that gives a best fit. This raises the number of combinations
of integer variables to the order O(nk), but fortunately
the method of Section II allows an efficient and automatic
calculation of an optimal fit y together with the associated
integers {tj : j = 1, 2, . . . , k− 1} in only O(kn2) computer
operations. This complexity reduces to O(n) when k = 1 or
k = 2. Except when k = 1, the problem need not have a
unique solution.

The method is suitable for data smoothing when the data
errors are so large that they can be detected by the first
differences. By contrast, the method may not be suitable if
the data contains significant random errors that are too small
to cause many sign changes in its first differences. An initial
advantage of the method is that it is a projection operator,
because if the data satisfy the constraints, then they remain
unchanged, so if P takes φ to y, then P 2 = P . Further, by
considering piecewise linear functions, it is straightforward
to see that there exists a piecewise monotonic function
{y(x) : x1 ≤ x ≤ xn} that interpolates the smoothed values,
so {y(xi) = yi : i = 1, 2, . . . , n}.

The piecewise monotonic approach to data smoothing
avoids the assumption that f depends on a set of parameters
and takes the view that some useful smoothing should be
possible if the data fails to satisfy a property that is usually
satisfied by the underlying function [4]. Indeed, it is different
from methodologies, where the data are approximated by
spline functions, wavelets or other functional forms (see,
for example, [1], [3] and [11]) that have to be chosen a
priori. The properties, however, of monotonicity (i.e. k = 1)
or piecewise monotonicity property (i.e. k > 1) in the
function being sought are readily diagnosed in the data.
In addition, piecewise monotonic data smoothing can be
used in several disciplines because the properties it gives
occur in a wide range of underlying functions. It can also
be used in estimating turning points of a function from
noisy measurements of its values. It is reported by [2]
that our method was used competitively for automatic peak
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position finding in P31 spectral analysis. Peak finding is
a major problem in signal processing, spectroscopy and
chromatography that is supported by computer packages,
like PeakFitTM and AutosignalTM by Systat Software Inc.,
computing environments like Matlab and many websites
(see, for example, [14]). For presentations of medical uses
of proton spectroscopy see [16]. The piecewise monotonic
method provides optimal extreme values over the whole
sequence of data as it is defined by the constraints (2).
However, if the user is only interested in a fairly small region
about an extremum, he may well combine the global results
of our method with his local analyses.

In order to apply the piecewise monotonicity method to
a sequence of data, only the parameter k must be set by
the user. Then the method automatically and simultaneously
provides the optimal turning points and the best fit. The au-
thor has developed the Fortran software package L2WPMA
[6], which implements the method of [5], as a version of a
method in [8]. It is suitable for processing very large numbers
of data in real time. The software package has been tested on
a variety of data sets showing a performance that provides in
practice far shorter computation times than those indicated
in theory.

A value for k may be selected by inspecting the plotted
data, or by forming tables of the first differences of the data
and checking for sign alterations, or by increasing k until
the differences {yi−φi : i = 1, 2, . . . , n} seem to be due to
the errors of the data. Prior knowledge about f(x) or about
the underlying process may provide estimates of k, but it is
not inefficient to run the algorithm of [8] for a sequence of
integers k if a suitable value is not known in advance.

The paper is organized as follows. In Section II we give a
brief description of the method with emphasis on properties
of the turning points of the smoothed data. In Section
III we consider a numerical example in order to illustrate
the method. Specifically, we apply the method on 31959
observations of daily sunspots during the time period August
1928 - February 2015, we present some results and we
demonstrate the capability of the method in locating turning
points. The Karush-Kuhn-Tucker statistical test provided an
adequate value of k automatically. In Section IV we present
some concluding remarks and discuss on the possibility of
future directions of this research.

II. SOME FEATURES OF THE PIECEWISE MONOTONIC
APPROXIMATION METHOD

This section gives some details of the method that are
needed in the application of Section III. For proofs one may
consult the references stated previously.

Turning points are important to this calculation, because
they have properties that are used in practice and enhance
the computation greatly. In order to state these properties, we
define t ∈ [1, n] to be the index of a local minimum of the
data if, moving to the left or right from φt in the sequence
{φi : i = 1, 2, . . . , n}, we find either φi > φt or the end
of the sequence before φi < φt occurs, and analogously
for a local maximum. We denote the sets of the indices of
local minima and local maxima of the data by L and U
respectively. We note that L and U can be formed in O(n)
operations, each of these sets has fewer than n/2 elements

that are in strictly ascending order and their interior elements
interlace.

If the number of extrema in the data is less than k − 1,
then y = φ, because in this case φ satisfies the piecewise
monotonicity constraints. If, however, φ does not satisfy the
piecewise monotonicity constraints, as it occurs in practice,
then it is proved that the turning point indices {tj : j =
1, 2, . . . , k − 1} of a best fit y are all different and at the
turning points we have the interpolation conditions

ytj = φtj , j = 1, 2, . . . , k − 1. (4)

The component ytj , for some j ∈ [1, k − 1], need not be
where max{φi : tj−1 ≤ i ≤ tj+1} occurs. Indeed, an exam-
ple in [6] considers the data n = 5, xi = i, i = 1, 2, . . . , 5
and, φ1 = φ2 = 2, φ3 = −7, φ4 = 3 and φ5 = −5,
where φ4 =max{φi : 1 ≤ i ≤ 5}. Then the example finds
that the components of a monotonic increasing / decreasing
fit z subject to the condition that its maximum is at the
fourth data point satisfy z1 = z2 = z3 = −1, z4 = 3
and z5 = −5 and give Φ(z) = 54. Further, the optimal fit
y∗ with two monotonic sections in (2) has the components
y∗1 = y∗2 = 2, y∗3 = y∗4 = −2 and y∗5 = −5 and gives
Φ(y∗) = 50 < Φ(z) = 54. However, the maximum is at the
first or at the second data point, different from the fourth
where max{φi : 1 ≤ i ≤ 5} occurs.

In view of the inequalities{
ytj−1 ≤ ytj

≥ ytj+1, if j is odd
ytj−1 ≥ ytj

≤ ytj+1, if j is even (5)

and (4), we see that the constraints ytj−1 ≤ ytj
and ytj

≥
ytj+1 if j is odd, and analogously if j is even, need not be
considered in the calculation of an optimal fit. Thus, each
monotonic section in a best piecewise monotonic fit is the
optimal fit itself to the corresponding data. Hence it can be
obtained by a separate calculation and the components {yi :
i = tj−1, tj−1 + 1, . . . , tj} on [xtj−1 , xtj

] minimize the sum
of the squares

tj∑
i=tj−1

(yi − φi)2 (6)

subject to the constraints

yi ≤ yi+1, i = tj−1, . . . , tj − 1, if j is odd (7)

or subject to the constraints

yi ≥ yi+1, i = tj−1, . . . , tj − 1, if j is even. (8)

In the former case the sequence {yi : i = tj−1, tj−1 +
1, . . . , tj} is the best monotonic increasing fit to {φi : i =
tj−1, tj−1 + 1, . . . , tj} and in the latter case the best mono-
tonic decreasing one. The statement suggests expressing (1)
in the form

Φ(y) = α(t0, t1) + β(t1, t2) + α(t2, t3) + · · ·+ δ(tk−1, tk),

where, for positive integers p and q such that 1 ≤ p ≤ q ≤ n,
we define

α(p, q) = min
yp≤yp+1≤···≤yq

q∑
i=p

(yi − φi)2, (9)
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and

β(p, q) = min
yp≥yp+1≥···≥yq

q∑
i=p

(yi − φi)2 (10)

and δ denotes α if k is odd and β if k is even. The
computation of all {α(p, i) : i = p, p + 1, . . . , q} with
the best fit that occurs in (9) is achieved in only O(q − p)
computer operations and similarly for the β’s.

Further, the required piecewise monotonic fit is obtained
by a dynamic programming formula that makes use of the
separation property of its components. We define Y (k, n) to
be the set of n-vectors y that satisfy the constraints (2). Then
the first tk−1 components of an optimal y in Y (k, n) give
an optimal fit from Y (k − 1, tk−1) to φi, i = 1, 2, . . . , tk−1

and the last n− tk−1 components give the optimal fit to the
remaining data subject to the constraints ytk−1 ≤ ytk−1+1 ≤
· · · ≤ ytk

, if k is odd, or subject to the constraints ytk−1 ≥
ytk−1+1 ≥ · · · ≥ ytk

, if k is even. For any integers m ∈ [1, k]
and t ∈ [1, n], we define

γ(m, t) = min
z∈Y (m,t)

t∑
i=1

(zi − φi)2,

where Y (m, t) is the set of t-vectors with m monotonic
sections analogously to Y (k, n). Therefore tk−1 satisfies the
equation

γ(k − 1, tk−1) + α(tk−1, n) =
min

1≤s≤n
[γ(k − 1, s) + α(s, n)] , if k is odd

γ(k − 1, tk−1) + β(tk−1, n) =
min

1≤s≤n
[γ(k − 1, s) + β(s, n)] , if k is even.


(11)

It follows that the least value of the right hand side of (11)
can be found in O(n) computer operations provided that the
sequences {γ(k−1, s) : s = 1, 2, . . . , n} and {α(s, n) : s =
1, 2, . . . , n} or {β(s, n) : s = 1, 2, . . . , n} are available.

Therefore in order to calculate γ(k, n), which is the least
value of (1), we begin the calculation from γ(1, t) = α(1, t),
for t = 1, 2, . . . , n, and proceed by applying the dynamic
programming formulae

γ(m, t) =

 min
1≤s≤t

[γ(m− 1, s) + α(s, t)] ,m odd

min
1≤s≤t

[γ(m− 1, s) + β(s, t)] ,m even,

(12)
for t = 1, 2, . . . , n, for every value of m ∈ [2, k]. We store
also τ(m, t), namely the value of s that minimizes expression
(12), for each value of m and t.

At the end of the process m = k occurs and the value
τ(k, n) is the integer tk−1 that is required in equation (11).
Then, because τ(k − 1, tk−1) is the optimal value of s in
expression (12) when m = k − 1 and t = tk−1, it is the
required value tk−2. Hence, we set tk = n and we obtain
the sequence of optimal values {tj : j = 1, 2, . . . , k−1} by
the backward formula

tm−1 = τ(m, tm), for m = k, k − 1, . . . , 2. (13)

Accordingly, the components of an optimal fit are monotonic
increasing on [1, t1] and on [tj , tj+1] for even j in [1, k− 1]
and monotonic decreasing on [tj , tj+1] for odd j in [1, k−1].

This dynamic programming process requires O(kn2) com-
puter operations.

Formulae (12) provide the basis for the calculation, but
far more efficient formulae are employed in practice. In-
deed, we assume in this calculation that φ 6∈ Y (k, n)
and let {t1, t2, . . . , tk−1} be optimal integers. If t = t`
for some ` ∈ {2, 3, . . . , k − 1} such that φt+1 = φt,
then {t1, t2, . . . , t`−1, t`+1, t`+1 . . . , tk−1} are also optimal.
Hence, it is not necessary to compute both γ(m, t) and
γ(m, t + 1) and in fact the integer tm−1 = τ(m, tm) is the
index of a local maximum of the data if m is even, that is
tm−1 ∈ U , and it the index of a local minimum if m is odd,
that is tm−1 ∈ L. Further, if the righthand side of (12) is least
for some s < t, then s satisfies similar conditions. Therefore
we only need to compute γ(m, t) when t is the index of
a local extremum of the data and similarly for s. With
these choices, the process requires O(n|U|+k|U|2) computer
operations, which provides a considerable operations saving
in practice. More improvements of the calculation are avail-
able in [8] and [5], which are summarized by our software
package L2WPMA [6].

In Section III we apply a version of L2WPMA that
calculates initially an optimal fit with k = 2 monotonic
sections and then an iterative procedure is started. On each
iteration an optimal fit with k + 2 monotonic sections is
calculated, say it is ỹ, and then it is tested if ỹ is improved
with respect to the fit with k monotonic sections, say it is y,
on each interval [xtj−1 , xtj

]. If the test is affirmative then
k is increased by 2 and another iteration is commenced.
Otherwise y is accepted as an adequate approximation to
the data. The test for whether the fit need be improved is
based on the value of the Karush-Kuhn-Tucker (Lagrange
multiplier) statistic (see, for example, [15]) that employs the
components of y and the components of ỹ. We accepted ỹ
for values of the Karush-Kuhn-Tucker test that were larger
than the associated 0.1% value of the F-distribution.

III. NUMERICAL EXAMPLE IN PEAK FINDING OF DAILY
SUNSPOTS DURING 1927 - 2015

In order to illustrate the efficacy of our method for
identifying important extrema in noisy data, we present a
numerical example which considers 31959 data points that
span the period from August 1927 to February 2015 of the
daily sunspot numbers. These numbers show dark spots that
appear periodically on the solar surface and affect terrestrial
magnetism and other terrestrial phenomena [17], [18]. The
datafile dayssnv0-1.dat was downloaded from the website of
the Solar Influences Data Analysis Center (SIDC) of the
Royal Observatory of Belgium [19]. The datafile contains
individual yearly data of the daily sunspot number in three
columns: The first column keeps year, month and day, the
second column keeps year and fraction of year (in Julian
years of 365.25 days) and, the third column keeps the sunspot
number. The second and third column provided the data pairs
(xi, φi), which we plot in Fig. 1. The total number of local
minima of the data is |L| = 6064 and the total number
of local maxima is |U| = 6063. We see that the data vary
considerably and exhibit cycles and spikes.

Without any preliminary analysis or assumption we sought
turning points by applying the method of Section II together
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Fig. 1. Detected peaks (circles) by best piecewise monotonic fit with k = 18 to 31959 daily sunspots (plus signs) during 1927 - 2015. The solid line
illustrates the best fit. The numbers give the sunspots at the corresponding dates.

TABLE I
LEFT FIVE COLUMNS: TURNING POINTS IN DAILY SUNSPOTS DURING 1927 - 2015 BY A BEST FIT WITH k = 18 MONOTONIC SECTIONS. RIGHT EIGHT

COLUMNS: THE TURNING POINTS POSITION OF THE OPTIMAL FIT FOR k = 2, 4, . . . , 16 ARE INDICATED BY THE TIMES SIGN

j tj Date Year (xtj ) Sunspot number (φtj ) k = 2 4 6 8 10 12 14 16
0 1 19270831 1927.663 56 × × × × × × × ×
1 300 19280625 1928.482 163
2 2259 19331105 1933.845 0
3 3604 19370712 1937.528 223 × ×
4 6076 19440418 1944.296 0 × ×
5 7208 19470525 1947.395 323 × × × × ×
6 9632 19540112 1954.031 0 × × × × ×
7 11074 19571224 1957.979 355 × × × × × × × ×
8 13473 19640719 1964.548 0 × × ×
9 15154 19690224 1969.150 215 × × ×

10 17651 19751227 1975.986 0 × × × × × × ×
11 19065 19791110 1979.858 302 × × × × × × ×
12 21485 19860626 1986.483 0 × × × × × ×
13 22656 19890909 1989.689 296 × × × × × ×
14 25217 19960913 1996.701 0 × × × ×
15 26622 20000719 2000.548 246 × × × ×
16 29821 20090422 2009.306 0 ×
17 31593 20140227 2014.157 154 ×
18 31959 20150228 2015.159 41 × × × × × × × ×

with the Karush-Kuhn-Tucker (Lagrange) multiplier test for
the automatic determination of k.

The data φ were fed to the program and the best fit
with k = 18 monotonic sections was calculated. Hence the
method detected 17 turning points, which gives 9 peaks. In
the left part of Table I we present the turning point indices
{t1, t2, . . . , t17} as well as t0 = 1 and t18 = 31959, the
associated sunspot date according to the format year, month
and day, the year in decimal form and the sunspot number;
the odd turning point indices indicate the peaks and the even
ones indicate the troughs. Fig. 1 displays the fit and the
detected peaks. Indeed, the fit to the data is much smoother
than are the data values themselves, it has revealed turning
points that seem to be adequately located and it has followed
the in-between the turning points trends.

In the right part of Table I we indicate the positions of
the turning points of each optimal fit for k = 2, 4, . . . , 16
in correspondence with the column labeled “tj” derived
when k = 18. For example, when k = 4 the turning

points occur at the positions 11074, 17651 and 19065 as
indicated by the times signs in the column labeled “4”.
We remind that as k was increased by 2, all the turning
points were found automatically by the method. The method
iterated until the Karush-Kuhn-Tucker test indicated no need
for further improvement of the fit. We see that the extra
turning points of the optimal approximation with k + 2
monotonic sections occur between adjacent turning points
of the optimal approximation with k monotonic sections.
Although it is noticeable that the turning points of the optimal
approximation with k monotonic sections are preserved by
the optimal approximation with k + 2 monotonic sections,
any algorithm based on local improvements of an optimal
approximation with k monotonic sections cannot succeed in
finding more than a local minimum of (1), which may not
be a global minimum [4].

Because of the large number of data in this example, we
restrict attention to a narrow window of data and discuss on
some prominent features of the corresponding smoothed val-
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TABLE II
DAILY SUNSPOTS AND SMOOTHED DATA DURING 20131009-20140518

                  
20131009 79 79.00 20131115 113 85.80 20131222 83 86.52 20140128 54 86.52 20140306 91 93.50 20140412 55 91.76 
20131010 90 85.80 20131116 125 85.80 20131223 81 86.52 20140129 66 86.52 20140307 96 93.50 20140413 60 91.76 
20131011 91 85.80 20131117 131 85.80 20131224 79 86.52 20140130 69 86.52 20140308 83 91.76 20140414 79 91.76 
20131012 84 85.80 20131118 99 85.80 20131225 70 86.52 20140131 65 86.52 20140309 79 91.76 20140415 109 91.76 
20131013 99 85.80 20131119 77 85.80 20131226 75 86.52 20140201 66 86.52 20140310 81 91.76 20140416 141 91.76 
20131014 96 85.80 20131120 57 85.80 20131227 77 86.52 20140202 83 86.52 20140311 79 91.76 20140417 150 91.76 
20131015 96 85.80 20131121 49 85.80 20131228 73 86.52 20140203 89 89.00 20140312 94 91.76 20140418 134 91.76 
20131016 89 85.80 20131122 46 85.80 20131229 90 86.52 20140204 101 97.28 20140313 80 91.76 20140419 134 91.76 
20131017 109 85.80 20131123 42 85.80 20131230 73 86.52 20140205 117 97.28 20140314 78 91.76 20140420 130 91.76 
20131018 116 85.80 20131124 49 85.80 20131231 99 86.52 20140206 120 97.28 20140315 79 91.76 20140421 113 91.76 
20131019 97 85.80 20131125 27 85.80 20140101 87 86.52 20140207 103 97.28 20140316 87 91.76 20140422 93 91.76 
20131020 85 85.80 20131126 25 85.80 20140102 93 86.52 20140208 103 97.28 20140317 90 91.76 20140423 64 79.31 
20131021 96 85.80 20131127 50 85.80 20140103 107 86.52 20140209 103 97.28 20140318 97 91.76 20140424 54 79.31 
20131022 88 85.80 20131128 72 85.80 20140104 95 86.52 20140210 96 97.28 20140319 101 91.76 20140425 43 79.31 
20131023 93 85.80 20131129 67 85.80 20140105 94 86.52 20140211 111 97.28 20140320 99 91.76 20140426 34 79.31 
20131024 108 85.80 20131130 65 85.80 20140106 117 86.52 20140212 113 97.28 20140321 90 91.76 20140427 58 79.31 
20131025 103 85.80 20131201 90 85.80 20140107 98 86.52 20140213 103 97.28 20140322 104 91.76 20140428 60 79.31 
20131026 99 85.80 20131202 101 85.80 20140108 75 86.52 20140214 91 97.28 20140323 108 91.76 20140429 58 79.31 
20131027 111 85.80 20131203 80 85.80 20140109 84 86.52 20140215 79 97.28 20140324 98 91.76 20140430 62 79.31 
20131028 110 85.80 20131204 85 85.80 20140110 96 86.52 20140216 72 97.28 20140325 97 91.76 20140501 59 79.31 
20131029 112 85.80 20131205 80 85.80 20140111 99 86.52 20140217 74 97.28 20140326 80 91.76 20140502 77 79.31 
20131030 109 85.80 20131206 71 85.80 20140112 93 86.52 20140218 89 97.28 20140327 82 91.76 20140503 82 79.31 
20131031 97 85.80 20131207 65 85.80 20140113 82 86.52 20140219 88 97.28 20140328 87 91.76 20140504 85 79.31 
20131101 72 85.80 20131208 69 85.80 20140114 67 86.52 20140220 93 97.28 20140329 84 91.76 20140505 95 79.31 
20131102 69 85.80 20131209 103 86.52 20140115 65 86.52 20140221 95 97.28 20140330 72 91.76 20140506 99 79.31 
20131103 84 85.80 20131210 136 86.52 20140116 56 86.52 20140222 102 102.00 20140331 84 91.76 20140507 80 79.31 
20131104 87 85.80 20131211 128 86.52 20140117 52 86.52 20140223 111 109.00 20140401 72 91.76 20140508 88 79.31 
20131105 83 85.80 20131212 110 86.52 20140118 81 86.52 20140224 107 109.00 20140402 86 91.76 20140509 93 79.31 
20131106 99 85.80 20131213 105 86.52 20140119 77 86.52 20140225 120 120.00 20140403 100 91.76 20140510 82 79.31 
20131107 113 85.80 20131214 98 86.52 20140120 93 86.52 20140226 145 145.00 20140404 119 91.76 20140511 100 79.31 
20131108 97 85.80 20131215 98 86.52 20140121 90 86.52 20140227 154 154.00 20140405 102 91.76 20140512 103 79.31 
20131109 71 85.80 20131216 83 86.52 20140122 108 86.52 20140228 137 137.00 20140406 91 91.76 20140513 89 79.31 
20131110 69 85.80 20131217 88 86.52 20140123 102 86.52 20140301 111 113.00 20140407 86 91.76 20140514 111 79.31 
20131111 77 85.80 20131218 102 86.52 20140124 81 86.52 20140302 113 113.00 20140408 88 91.76 20140515 104 79.31 
20131112 92 85.80 20131219 102 86.52 20140125 70 86.52 20140303 115 113.00 20140409 71 91.76 20140516 89 79.31 
20131113 104 85.80 20131220 104 86.52 20140126 68 86.52 20140304 101 105.50 20140410 49 91.76 20140517 101 79.31 
20131114 118 85.80 20131221 102 86.52 20140127 53 86.52 20140305 110 105.50 20140411 46 91.76 20140518 92 79.31 
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Fig. 2. Plot of the daily sunspots (plus signs) and the smoothed data (solid
line) during 20131009-20140518, which are presented in Table II. Number
154 gives the sunspots on date 20140227.

ues. Specifically, in Table II we display 222 data and solution
components around the rightmost turning point integer t17,
which span the time period 20131009-20140518. Index t17
occurs at the date 20140227 which is associated to the value
yt17 = 154 (it is typed with bold characters in Table II). Of
course, at the peak we have the equation yt17 = φt17 = 154.
The data are presented in six triples of columns, where

the first column of each triple keeps the dates, the second
column keeps the sunspot numbers and the 3rd column keeps
the smoothed values. Further, the smoothed values consist
of the monotonic increasing components, which are part of
the best monotonic increasing fit on [xt16 , xt17 ], and the
best monotonic decreasing components on [xt17 , xn]. Fig.
2 displays the data of Table II. In order to simplify the

discussion, let {s, s+ 1, . . . , t17} be the data indices of the
monotonic section on 20131009-20140227 and we note that
the extracted components {ys, ys+1, . . . , yt17} from the best
fit on [x1, xn] give the best monotonic increasing fit to the
data {φs, φs+1, . . . , φt17}. Now, we see that each monotonic
section consists of values of equal components and there are
breakpoints r ∈ [s, t17] such that yr < yr+1. If r and `
are any integers in [s, t17] such that yr < yr+1 = yr+2 =
· · · = y` < y`+1, then it is a consequence of the first order
conditions (see, for example, [9]) of minimizing the function∑̀

i=r+1

(yi − φi)2

subject to the equality constraints

yr+1 = yr+2 = · · · = y`

that the solution satisfies the equations

yr+1 = · · · = y` =
1

`− r
∑̀

i=r+1

φi.

Hence y` is the best least squares approximation by a
constant to the data {φr+1, φk+2, . . . , φ`} and in general
the values of the equal components in a best monotonic
fit are averages of consecutive data. In Table II, we see
that the monotonic increasing fit contains the components
{79 × 1, 85.8 × 60, 86.52 × 56, 89 × 1, 97.28 × 18, 102 ×
1, 109×2, 120×1, 145×1, 154×1}, where 79×1, 85.8×60
and so on, indicate that the components 79, 85.8 and so on
are repeated once, 60 times and so on. Similarly, the best
monotonic decreasing fit contains the components {154 ×
1, 137×1, 113×3, 105.5×2, 93.5×2, 91.76×46, 79.31×26}.
Clearly, the best least squares monotonic fit consists of ranges
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of equal components between breakpoints. An important
consequence of the breakpoints is that the fit has flexibility
in following monotonic data trends.

IV. CONCLUDING REMARKS

We have presented an application that shows the effective-
ness of the piecewise monotonic approximation method in
identifying important extrema in discrete noisy data. Piece-
wise monotonic approximation as a data smoothing approach
can have many applications, because piecewise monotonicity
is a property that occurs in a wide range of underlying
functions. Despite the large number of local minima that
can occur in this optimization calculation, it obtains a global
solution in quadratic complexity with respect to n, but in
practice the complexity is far lower because the dynamic
programming algorithm takes account of several properties
of the turning points that reduce the numerical work. The
accompanying Fortran software L2WPMA would be the
most useful for real time processing applications, because it
is user friendly, it does not need user intervention, it is able
to process fast and effectively large data sets and provided
that k is known it identifies the data extrema automatically.
A question that deserves further study is the development
of techniques of choosing automatically a value for k. The
method of [20], which employs the trend test of [13], is a step
towards this direction and worked successfully on a number
of examples. Further, the Karush-Kuhn-Tucker test that we
employed in Section II seems promising, but more work is
needed to gain experience.

The example with the 31959 sunspots data is especially
challenging, because the very many peaks that occur in the
data raise the number of combinations for optimal extrema
to about 606417/17!. Nonetheless, the least value of (1) was
reached automatically in negligible time on a common pc.
This example drew attention to the effectiveness and accu-
racy of L2WPMA at finding the integers {t1, t2, . . . , tk−1}.
Indeed, the number of peaks and their positions in the data
sequence show that the results accord with human judgment,
while no assumption on any structure of the sunspots data
was made. However, some data, as for instance in NMR spec-
troscopy [10], have typical structures concerning the number
of peaks. Therefore an interesting question for further study
is whether the O(n|U|+k|U|2) complexity of our method is
too high for problems involving such data sets. These studies
may be helped by solving particular peak finding problems,
in order to receive guidance from both underlying structures
and numerical results.
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