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Abstract—Diffusion is a common phenomenon in physical,
biological or social sciences, but it is not trivial to be analytically
described when commodity or information is spread through
a social network in our daily life. This work proposed a
mathematical model to trace the change of a target attribute
under a diffusion mechanism. Such model is applied to a
commodity sharing game where participants could donate their
tokens to each other in a defined network relationship. The
diffusion and decay rates of the model govern respectively the
flow directions and magnitude decreases towards the steady
state.

Index Terms—social network, diffusion, Markov chain.

I. INTRODUCTION

DONATIONS is an important part of world economy.
Many universities, health services and non-profit or-

ganizations relied on donations to remain viable. There
were some social, economical and psychological factors that
were known to have influence on people’s decision-making
process of charitable donations [1], [12], [18]. For examples,
charitable donation can strongly be influenced by comments
from people’s social groups, like employer recommendations
and colleague suggestions. Furthermore, organizations pro-
vide services like medical care, babysitting and teaching to
attract individuals to increase investments. Psychologically,
[13] found that former patients were likely to make donations
to hospitals as an expression of gratitude. In addition, there
are other factors, including personal attributes like age,
income, marital status and education that have great impacts
on charitable giving behavior. In terms of the recognition of a
charity, people are likely to make their charitable decision on
the reputation of a charity. [11] found the gender difference
matters that women are more likely to donate than men.
People aged 45 to 54 were, on average, more likely to donate.
[3] found that people who received higher education than a
high school degree were more likely to make donations than
those with lower education. Donors with large income are
likely to make the largest average donations. See [16] for a
more complete description.

Commodity and/or information diffusion exists among
people in the modern society through their relationships, like
classmates, colleagues or friends in social media. Such mech-
anism is important in understanding the social networks via
a general frameworks for descriptive and analytical purposes.
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There have been theories on diffusion processes in physical
sciences, and one of these famous theories is the reaction-
diffusion (RD) process. It is used to model phenomena as
diverse as chemical reactions, population evolution, epidemic
spreading and other spatially distributed systems. The RD
process is a dynamical system defined by many kinds of
statess, which diffuse stochastically and interact among them
according to a fixed set of diffusion mechanisms. A detailed
introduction on the RD process is referred to [5], [4], [6],
[7], [8], [14], [15], [17].

Inspired by a token donation game developed in [2], we
develop a mathematical model that describes the diffusion
mechanism of the commodity among players in a defined
network relationship in this paper. The diffusion mechanism
is similar to the RD process, in which each player holds
different amount of tokens, and the donation (mediated by
diffusion) takes place among players who are connected by
edges (thus representing tie matrix) in a predefined network.
Such mechanism includes several calibration parameters that
decide how the tokens are distributed towards the steady
states. [2] provided a detailed explanation on the general
setup of the physical experiment and thus we omit here.
Readers who are interested in its detailed setup and obser-
vational studies can refer to [2].

The paper is organized as follows. Sections 2 and 3 pro-
vides definitions and theorems that are related to the social
networks and our diffusion algorithm. A mathematical model
is built, its implicit idea is described and its complexity is
calculated afterwards. Section 4 studies how the calibration
parameters affect the eventual outcomes of the algorithm. We
draw our concluding remarks in the last section.

II. INITIALIZATION OF THE EXPERIMENT

We project the token donation game into a network dif-
fusion model as follows. (1) Each player in the game is
considered as a node in a network and we denote n as the
number of players in the game or the number of nodes of a
network. (2) A connective relationship between two players
is described as a link between two nodes in the network. The
whole connective relationship is thus described as a tie matrix
T (dimension n × n) of a network. If there is a connective
relationship between two players, the corresponding entry of
T is 1, or otherwise 0. (3) The randomly assigned amount
of tokens of all players in the initial round is recorded in a
token vector M(0) (dimension n×1). (4) The round number
is denoted as t and thus the token vector at round t is M(t).
In addition, due to limited amount of playing time, it usually
sets a maximum number of rounds for a game and denoted
as tmax.

It is clear that every player’s generosity to donation is
different. In our model, we define a generosity constant g to
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each player as a representation of its personal generosity. It is
scaled from 0 to 1. A player with g = 0 is ultimately selfish
and never shares any tokens to any players, while a player
with g = 1 is ultimately generosity and shares all tokens to
his or her connected players in a round. It is also reasonable
that every player’s fatigue to the continuation of the game
is different. Some players may feel excited about the game
after many rounds, but others may feel bored and do not
want to play anymore. In our model, we define a tolerance
constant r to each player as a representation of its personal
tolerance to the game. It is a nonnegative number from 0 to
infinity. A player with r = 0 feels the game is ultimately
exciting and never stops playing the game. A player with
r =∞ feels the game is ultimately boring and gives up the
game even before the game started. It is unrealistic to have
players with r =∞ in reality, so we only expect players with
low tolerance to have large r. According to the game rule
described in the initial part of the section, the game stops
when there is no player to share tokens with one another
anymore. It is equivalent to setting a threshold, denoted as
ε, in a simulation of a mathematical model.

III. SOME MATHEMATICAL DETAILS IN THE
MECHANISM

A. Different Player’s Viewpoint on Tokens

Due to different generosity for different players, they may
feel differently on the tokens owned by theirs and their
neighbors’. Assume that a player X with generosity gX is
connected to his neighbor Y with generosity gY in T . At
round t, X and Y have MX(t) and MY (t) respectively. We
express the adjusted token amount of X from Y ’s viewpoint
as

MXY = e
(ln(MX(t))+

ln(MX (t))−ln(MY (t))

ln(MY (t))
) × (1− gY ). (1)

The token amount has to be non-negative, which is guar-
anteed by the exponential function. Moreover, if MX(t) =
MY (t), (1) is reduced to a simpler formula MXY =
MX(t)× (1− gY ).

B. Transition Matrix and Columnwise Normalization

In the traditional definition of a transition matrix from [9].
One of its properties is that its overall entry sum equals to
1, which does not fit in our diffusion process. Instead, we
need a matrix that the sum of entries in each column is 1.
Given a matrix H = [hij ] ∈ Rn×n, we define a columnwise
normalization on H that leads to a new matrix P such that
P =

(h)j
H•j . where (h)j is the j-th column vector of H and

H • j ≡ Σjh1j + h2j + · · · + hnj , for j = 1, 2, . . . , n.
Then the transition matrix we refer to is not the one from
the traditional definition, but the one from the definition of
P with columnwise normalization. Then we can express the
update of the token vector in each round via Theorem 2.4 of
[9] rephrased below:

Theorem. If P is the transition matrix of a Markov chain,
then the state vector M(k+ 1), at the (k+ 1)th period, can
be devised from the state vector M(k), at the kth period,
as M(k + 1) = PM(k). Note that the transition matrix P
changes according to the the amount of each person’s tokens
at a certain period.

C. A Theorem on the Observed and Adjusted Token Differ-
ence

The following theorem describes the relationship between
the observed token amount of players and their adjusted
token amount in each player’s mind.

Theorem. Given two nodes X and Y , the amount tokens
of MX(t) and MY (t), generosity coefficients gX and gY .
If MX(t) > MY (t), then it implies MXX − MY X >
0 and MY Y −MXY < 0, where MXX , MY Y , MXY and
MY X are defined in the subsection A.

D. Token Difference Matrix with Negative Value Adjustment
We first rewrite the token adjustment equation into

matrix condensed form. R = {exp(B + (B − C) ◦
{[(C ◦ In)−1En]E>n })} ◦ (EnE

>
n − gE>n ), where B ≡

En(lnM(t))>, C ≡ (lnM(t))E>n , En ∈ Rn×1 is a
column of 1, In is an n × n diagonal matrix with diagonal
entries 1, and ◦ represents the Hadamard product. Then the
difference of each player’s token is Q = R0 − R, where
R0 = [M(t) ◦ (En − g)]E>n .

A positive value in the entries of Q represents that the
donating player has more tokens than the receiving player
after viewpoint adjustments, thus it is normal that the donat-
ing player will donate some tokens to the receiving player.
However, a negative value in the entries of Q requires some
refinements because it is not allowed to have a negative value
in the donation process. From the observational studies in [2],
we still observe some donations from the donating players
who have less tokens than the receiving players, but the
amount is very small. Therefore, in order to reflect these
small donations, we adjust our matrix Q̂ = Qm + (|Qn|/5),
where Q ≡ Qm + Qn ≡ [qij ], Qm = [qij ] ≥ 0 and
Qn = [qij ] < 0.

In addition, unless the network is a complete graph with all
connections among players, there are some nonexist linkages
between some players which are recorded in the tie matrix
T . We do not need to consider these unconnected links in
the token difference matrix, so S1 = Q̂> ◦ T .

E. From the Token Difference Matrix to Transition Matrix
The values in every column of S1 represent the unnormal-

ized weights of the donation from the donating player to the
receiving player. To change these weights into percentage
scale, we have

S2 ≡
(s1)j
S1 • j

, (2)

where S1 ≡ [(s1)ij ] and (s1)j is the j-th column vector
of S1, and the denominator S1 • j ≡ Σj(s1)1j + (s1)2j +
· · ·+(s1)nj , for j = 1, 2, . . . , n. Each column of S2 lists the
proportion how a player divides his donating tokens to his
neighbors. Finally, we combine S2 with the token ratio that
a player keeps his tokens for himself,

P = S2 ◦ (Eng
>) + (In −D), (3)

where D ≡ diag(g1, g2, . . . , gn). Each column of P lists
the proportion how a player divides his overall tokens in
a round. The diagonal entries represent the proportion of
tokens a player keeps while the off-diagonal entries represent
the proportion of tokens a player donates to his connected
neighbors. Therefore, P is the transition matrix and the itera-
tion step in the algorithm continues via M(t+ 1) = PM(t).
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IV. A GENERAL ATTRIBUTE DIFFUSION MECHANISM

A. The Complete Algorithm

We summarize the mathematical model as follows. We
assume that there are n nodes connected to donation and the
linkage is described as a tie matrix T . The game starts with
an initial token vector M(0) ∈ Rn×1. All nodes have some
attributes of generosity g ∈ Rn×1 and tolerance r ∈ Rn×1.
The game will end at either t = tmax or M(t) reaches the
steady state with respect to a threshold ε. Then the algorithm
for our proposed mathematical model is stated as follows.

Algorithm 1 (A General Attribute Diffusion Mechanism)
Input: Token vector M(0) ∈ Rn×1, generosity vector g ∈ Rn×1, ε,
tolerance vector r ∈ Rn×1 and tie matrix T ∈ Rn×n;
Set t = 0;
Do until convergence:

Step 1. Compute the amount of each nodes’ tokens depending on oneself’s
and everyone’s viewpoints step by step using (1) to get R and R0;

Step 2. Calculate the difference matrix Q;
Step 3. Get the Q̂ if negative value adjustment applies;
Step 4. Consider T on Q̂ to get S1;
Step 5. Columnwise normalize S1 into S2 using (2);
Step 6. Combine g and S2 to obtain the transition matrix P via (3);
Step 7. Compute M(t+ 1) = PM(t);

Stop when ‖M(t+ 1)−M(t)‖ ≤ ε,
Set t← t+ 1, M(t)←M(t+ 1) and g ← ge−rt;

End Do
Output: Token vector M at steady state;

B. Demonstration via the Four-Player Example

We use the first step of the four-player example in section
III to demonstrate how Algorithm 1 works. Recall that there
are four players A, B, C and D. They all connect to each
other except B and D. They have 70, 30, 25 and 75 initial
tokens respectively. We assume that their generosities to one
another are “measured” via sociological methods and they are
0.7, 0.5, 0.3 and 0.8 respectively. Moreover, their tolerances
to the continuation of the game are also “measured” and
they are 0.1, 0.5, 0.8 and 0.3 respectively. Mathematically
speaking, we have n = 4, M(0) = (70, 30, 25, 75), g =
(0.7, 0.5, 0.3, 0.8), r = (0.1, 0.5, 0.8, 0.3) and T is given.
Here are the outcomes of each step of Algorithm 1.

Step 1. Compute B and C firstly then calculate the
amount of each person’s tokens depending on some-
one’s mind to get R such that

R =


21.0000 7.3727 5.8859 22.8684
44.9012 15.0000 11.8476 49.0943
67.4704 22.2238 17.5000 73.8559
13.7781 4.8527 3.8767 15.0000

 .

Step 2. Calculate the difference of each two people’s
tokens to get the difference matrix Q

Q =


0 13.6273 15.1141 −1.8684

−29.9012 0 3.1524 −34.0943
−49.9704 −4.7238 0 −56.3559

1.2219 10.1473 11.1233 0

 .

Step 3. There are six negative values in Q and

negative value adjustments are made

Q̂ =


0 13.6273 15.1141 0.3737

5.9802 0 3.1524 6.8189
9.9941 0.9448 0 11.2712
1.2219 10.1473 11.1233 0

 .

Step 4. Consider T on Q̂ to obtain S1:

S1 =


0 5.9802 9.9941 1.2219

13.6273 0 0.9448 0
15.1141 3.1524 0 11.1233
0.3737 0 11.2712 0

 .

Step 5. Columnwise normalize S1 into S2

S2 =


0 0.6548 0.4500 0.0990

0.4680 0 0.0425 0
0.5191 0.3452 0 0.9010
0.0128 0 0.5075 0

 .

Step 6. Combine g and S2 to obtain the transition
matrix P

P =


0.3000 0.3274 0.1350 0.0792
0.3276 0.5000 0.0128 0
0.3634 0.1726 0.7000 0.7208
0.0090 0 0.1522 0.2000

 .

Step 7. Calculate the next token vector M(t+ 1)

M(t+ 1) =


40.1360
38.2534
102.1756
19.4350

 .

C. Operation and Memory Counts

The operation and memory counts of Algorithm 1 for the
tth iteration are summarized in Table I below. In the second
column, we assume that X ∈ Rn×n is a matrix and Y ∈
Rn×1 is a vector, requiring cfn flops to evaluate X−1Y ,
where cf is a constant independent of n. In the third column,
the memory requirement in terms of the number of variables
is recorded. cm is a constant independent of n. At iteration
t + 1, most of the work is done in the computation of R
and P , for which R has to be computed using operation
of the logarithm and exponential functions and P is to do
proportion of token distribution.

We execute the operation and memory counts for the four-
player example as a demonstration. We consider a social
network with four nodes and the connection is described in
a tie matrix T . Following Algorithm 1, the operation counts
are: (1) the flops of B and C are 16 each, so the total flops
in step 1 is 32; (2) the operation counts of R0 and R are 24
and 144 + 4cf respectively, and the flops of Q = R0 −R is
16, so the total flops in step 2 is 184+4cf ; (3) the operation
counts of Q̂ is the number of negative elements of Q, so the
total flops in step 3 is 6; (4) Since S1 is from the Hadamard
product, the total flops in step 4 is 16; (5) the total flops
to obtain S2 via columnwise normalization in step 5 is 28;
(6) To obtain P from S2, it involves an addition on two
Hadamard products, so the total flops in step 6 is 96; (7)
The total flops in the last step is 28. Thus the total number
of operation counts for the four-player example is 390+4cf .
We also have the memory counts of Algorithm 1 to be 16cm,
which are all from the calculation of R.
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TABLE I
OPERATION AND MEMORY COUNTS

Computation Flops Memory

B, C 2n2 −
R0,R, Q 11n2 + (2 + cf )n cmn2

Q̂ n(n− 1)/2 −
S1 n2 −
S2 2n2 − n −
P 6n2 −
M(t+ 1) 2n2 − n −

Total (49n2 + (2cf − 1)n)/2 cmn2

V. CONCLUSION

Inspired by a token donation game performed in [2], this
paper suggests a mathematical algorithm for the general
attribute diffusion mechanism on a network. It consists of
an initialization and an iterative loop, where the attributes of
the nodes flow within a network of defined structure under
some mechanisms. In this paper, the token donation game
is served as an example. It consists of a seven-step iterative
algorithm that calculates the token amount of each player
in every round of the game. Initially, the game assigns a
network structure of attribute diffusion among players, the
initial amount of tokens for each player and a threshold for
game termination if the game continues to proceed overtime.
Sociological methods are used to measure every player’s
generosity to share tokens to their connected neighbors and
tolerance to the continuation of the game. The algorithm
starts with calculating the token amount adjusted from other
players’ viewpoints. The token difference matrix is then
obtained and columnwise normalized, and the columns of the
resulting matrix show the weights of how each player shares
their tokens. A transition matrix is obtained afterwards when
the generosity vector and the normalized token difference
matrix are combined. Such matrix is then used to generate
the next token vectors as the game goes on. In addition to
the algorithm itself, this paper also provides the operation
and memory counts of the algorithm in terms of the number
of the players.

Although our algorithm successfully simulates the diffu-
sion behavior of the token owned by each player in the token
donation game, it may require some potential improvements
that are still under investigation. For example, it is obvious
that unlike a player’s generosity, the tolerance of the game
continuation of a player is not a constant, but a baseline
constant plus a function through iterations. This function is
affected by some potential factors including environmental
factors (temperature, humidity, etc), human factors (willing
to win the game, worth of the presents, etc), psychological
factors (winning/losing condition, etc) and many others. It
remains a research question to social scientists to quantify
this functional. From our own experience, the estimate from
our algorithm works in the first few rounds when every player
plays seriously, but the estimates become erratic when some
players start to play randomly. Mostly due to the lack of wish
to continue at an almost guaranteed losing situation.

Token donation is just an illustrative example to the gen-
eral attribute diffusion. In fact, the similar algorithm can be
used in other scientific researches such as information spread

in the social media analysis, investment flows in the stock
market analysis, and so on. With a well-defined mechanism
proposed by expert opinions, such computer experiment
greatly reduces the experimental resource in terms of time
and cost because a “near-to-free” computer node is used to
substitute a relatively high-paid human subject to conduct
the experiment. In addition, it is sometimes quite unrealistic
and inefficient to gather a large group of human subjects
to perform an experiment that lasts for several minutes,
when it can certainly be done in a computer experiment.
Therefore, the computer experiment opens a new door for
the practitioners to investigate in some phenomena in social
and economical sciences when their relative experiments are
too expensive in resources or even unrealistic to perform.
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