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Abstract— In this paper we analysis the subdiffusive 

structure of ISE 100 index price evaluation using the 

subordinated Ornstein-Uhlenbeck process. We use the 

subordinated Langevin equation approach to obtain a model of 

index prices. We use the inverse tempered  stable 

distribution as a subordinator process. The subordinated 

Langevin equation approach is parallel to role played by 

Riemann-Liouville operator in fractional Fokker-Planck 

equation. Our aim to enhance the understanding of logarithmic 

asset returns behavior. We investigated the evolution of the 

subordinated Ornstein-Uhlenbeck process. The studied model 

combines the mean-reverting behavior, long range dependence 

and trapping events properties of index prices. To assess the 

capabilities of the model, we applied the model to the historical 

price data of the ISE100 index. The obtained results suggest 

that long range memory, trapping events, volatility clustering 

and fat tails and anomalous subdiffusive properties of 

interested index prices are captured by the proposed model. 

  

Index Terms— Ornstein-Uhlenbeck Processes, Anomalous 

diffusion, Langevin equation, Subdiffusion.  

I. INTRODUCTION 

In 1900 Louis Bachelier proposed a Random Walk model 

to describe the fluctuations in financial market prices. 

Nowadays also the modeling of the financial price dynamics 

using stochastic processes has been an active research area 

in financial risk management, asset valuation and derivative 

pricing.  In this study, we investigate time changed 

stochastic process models for financial time series. The one 

of the most important problems in financial modeling is to 

understand and appropriately model the price dynamics. The 

models of price process are the basis for the value of the 

contracts or assets under the uncertainty. Price process is 

given the complete description of uncertainly behavior of 

prices. Brownian motion is a continuous time model to 

describe diffusion of prices (particles) [1]. The diffusion 

processes are widely used for modeling real-world 

phenomena. The diffusion is the most prevalent form of the 

Physical transport. They are stochastic processes with 

continuous –time and continuous-space. In application, the 

diffusion processes are important tools in Physic, Biology 

and Finance etc. A general diffusion process is given by 

    tttt dBXdtXdX  ;;  . As a special case 

  tt XX  ;  and   tt XX  ;  and it was used to model 

the spot price of a stock by Black-Scholes option pricing 
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formula. All these models based on Brownian motion have 

normal distribution. That assumption is not consistent with 

empirical properties as heavy tailed and skewed marginal 

distributions, trapping events, non independence. The 

anomalous diffusive behaviors were observed a variety of 

Physical, Biological and Financial systems [19]. 

(Magdziarz,M and Gajda,J(2012))  proposed the geometric 

Brownian motion time- changed by infinitely divisible 

inverse subordinators to reflect underlying anomalous 

diffusive behavior [23]. 

The anomalous diffusion (subdiffusion) usually described 

using (Fractional) Fokker-Planck equation which describes 

probability density function of the diffusion (sub diffusion) 

and derived from continuous-time random walk with heavy 

tailed waiting times. The main idea in generalization of the 

Ornstein-Uhlenbeck process is to replacement another 

stochastic process.  

The continuous time models are rather popular in finance. 

The Classic Ornstein-Uhlenbeck process (OU) is one of the 

basic continuous time models. It is a univariate continuous 

time Markov process and has a bounded variance and has a 

stationary probability density function. Vasicek(1977) [2] 

used the Ornstein-Uhlenbeck (OU) process to model the spot 

interest rate. Non-Gaussian OU processes are an important 

special case of Markov processes with jumps [15]. 

The description of waiting time  which corresponding to 

trapping events is an important in the analysis of time 

changed processes[1]. Generally the subdiffusion is 

described by fractional Fokker-Planck equation which is 

derived from the power law waiting times. The solution of 

Fokker-Planck-type equation is equal to the probability 

density function of the subordinated process   tSX  [22]. 

The Ornstein-Uhlenbeck process denotes the mean-

reverting property which means that if process is above the 

long run mean, then drift become negative then process be 

pulled to mean level. Likewise if process is below the long 

range mean level then process is pulled again to long run 

mean level. The spread of a sub diffusive random variable 

(asset price or particle) is slowed compared Brownian 

motion predicts. To modeling the kind of diffusion, the time 

structure of process is changed. The time changed process 

has not Markovian Dynamics. The idea of time-change of 

process was introduced by Bochner,S.(1949)[24]. It can be 

consider the replacement of real time in the consider process 

(it call external process) by some subordinator (non 

decreasing process with stationary, independent 

increments).The inverse subordinator is used a new random 

operational time for external process [8]. 

In this study, we consider Ornstein-Uhlenbeck process as 
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external process and as a subordinator inverse tempered 

stable distribution (the first passage time). We change the 

time of base process with this inverse subordinator. The 

trajectory of subordinator has increments of length 

 random time moments and it is driven by tempered stable 

distribution. We use the subordinator process as the 

operational time. We use the tempered stable distribution to 

model the waiting times (motionless periods). It leads a 

subdiffusive behaviour in short times and diffusive 

behaviour in longer times. In this study we will use Langevin 

approach to analyze the subdiffusive behavior. 

The paper is organized as follows. In section 2, we review 

some basic facts of the Langevin equation and Ornstein-

Uhlenbeck process and its parameter estimation problem.  In 

section 3, we give subdiffusion concept then we describe the 

subordinated Ornstein-Uhlenbeck processes with inverse 

tempered stable subordinator. In section 4, we apply the 

examined models to daily ISE100 index data, section 5 

provides the conclusions. 

II. THE ORNSTEIN-UHLENBECK PROCESSES 

A. Langevin Equation 

The Langevin equation describes the main characteristics 

of a general random motion in the random environments. 

This equation was produced by Langevin(1908) [25] and 

become one of the most fundamental stochastic differential 

equation especially  in Physics[26]. The Langevin approach 

assumes that the particle moves in the fluid medium follows 

Newtonian mechanic under the influence of external force 

and friction. The influence of the molecules of the 

surrounding medium are modelled a random noise term. 

This equation also has applications in Biology, Physical 

Chemistry and Engineering. Let we consider a particle of 

mass m moves along a line is subject to two forces. We will 

assume that the deterministic external force F  is zero. A 

fractional force that is proportional to particle velocity and a 

random white noise force that it models random fluctuations. 

Let tV  denotes the velocity of the particle which a Brownian 

motion of a free point particle in a fluid at time t . One 

dimensional Langevin equation is given by 

tt
t V

dt

dV
m                                                           (1) 

 Where m is the particle’s mass, tV is the friction force, 

 is the friction coefficient ,   is strength of the noise, t  is 

the random force. Dividing the equation by m   

tt
t V

dt

dV
                                                             (2) 

Where 0 m  and m   are constant [5]. We can 

use dtdBt  instead of t . We write the above equation in 

differential form as 

ttt dBdtVdV                                                         (3) 

Where 00 vV   is fixed deterministic quantity. The process 

tB is standard Brownian motion. 

B. Ornstein-Uhlenbeck Processes 

The classic Ornstein-Uhlenbeck process (OU) was 

proposed in 1930 by G.E. Uhlenbeck and L.S. Ornstein [27]. 

Essentially, the model (OU) proposed to describe velocity of 

Brownian particle immersed in a fluid. It is unique 

continuous time Markov process possessing a stationary 

distribution. The Ornstein-Uhlenbeck processes driven by 

Lévy processes are a special case of Markov processes with 

jumps [28]. 

The process tV  satisfies the Langevin equation by equation 

(3) is called Ornstein-Uhlenbeck process. 

 


 

t

s
stt

t dseevV

0

0                                                (4) 

The Vasicek model assumes that instantaneous short rate 

 tt Vx   follows an OU process with constant 

coefficients  ,, , 

  0,   ttt dBdtxdx                                     (5) 

The explicit solution to the above SDE between any two 

instants s  and t , with ts 0  can be easily obtained from 

the solution to the Ornstein-Uhlenbeck SDE, namely: 

    


 

t

s

u
utst

s
st

t dBeeexex   1                   (6) 

Where :  long term mean, : the velocity of the process 

to  .The conditional mean and conditional variance of tsx   

given sx is described as follows 

     st
sst exxxE                                                 (7) 

    st
st exxVar  



 2
2

1
2

                                            (8) 

If the time increases the mean tent to the long term value   

and variance remains bounded, this implies mean-reverting 

process. The covariance of the process at two different times 

t  and st  given by 

    0,,1
2

, 2
2

 
 steexxCov st

stt





                         (9) 

Conditional distribution of tsx   given sx  is  

      













  stst

s eexN 




 2

2

1
2

,                        (10) 

When, t  the distribution of the Ornstein-Uhlenbeck 

process is stationary and Gaussian with mean   and standard 

deviation  22 .The transition density function of the 

above Ornstein-Uhlenbeck process is given by 

   










 


2

2

2
0

2
exp

2

1
,

t

t

t

x
xtxp







                                 (11) 

Above OU process  
0ttx  also can be denote by a time 

scaled Brownian motion, 

    tttt
t eeBeexx 




   1

2
1 2

0                       (12) 

The time and space are shrinking; self-similar Brownian 

motion can be transformed into the stationary Ornstein-

Uhlenbeck process [29]. The process  
0ttx  can be discrete 

using Euler Scheme with time step 1 ii ttt , 

  ttttt Zttxxx                                       (13) 

where  1,0~ NZt  . In practice, ones can only obtain the 

observations at discrete time points from a finite span. T  

is the time span, 0t  the sampling interval and n  
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 tT   the number of observations. We assume that we 

observed the process at discrete time points. Discrete time 

observations was denoted by  nxxxX ,..., 10  then Ornstein-

Uhlenbeck process is given by 

     
i

t
t

ti

t

ti Z
e

exex







2

1
1

2

1













    (14) 

where  1,0~ NZi  and ni ,...,2,1  . 

C.  Parameter Estimation of Ornstein-Uhlenbeck Process 

Maximum Likelihood Method: The conditional PDF of rate 

ix  given the 1ix  (for brevity  itx is denoted by ix ) given 

by 

    





















 2

2

1

2
1

2
exp

2

1







exx
xxf ii

ii
                      (15) 

(for details look[30]).  

































   

 



 



n

t

n

t

t

n

t

ttt

n

t

n

t

tt xxxxnxxn
1 11

11

1

2

1

1

2

1 lnln̂

  (16) 

 










n

t

tt exx
ne

1

ˆ
1ˆ

1

1

1
ˆ 


                                          (17) 

  









n

t

tt exx
ne

1

2ˆ
1ˆ2

2 ˆˆ
1

1

ˆ2
ˆ 





                        (18) 

OLS  Method : We can write the value of random variable 

x  at time t  conditional on 1tx  as follows 

   
s

t

t

stt

t

t

t dWeexex 






 
1

11  

        
If we take the time increments 1t  and we consider 

AR(1) model as ttt bxcx  1  comparing above 

equation and AR(1) model we have that, 

   ec 1 ,   eb  and     21 2 e . Finally 

we obtain the OLS estimators as, 

 b̂lnˆ  , 
b

c

ˆ1

ˆ
ˆ


   and  

   bb ˆln21ˆ

ˆ
ˆ

2 




       

Where ̂  is standard deviation of residuals of regression 

equation the ttt exbcx  1
ˆˆ .  

III.  SUBDIFFUSIVE   MOTION 

The idea of subordination firstly was introduced by 

Bohner(1949). It is based on the replacement of real time in 

the external process by a subordinator which plays the role 

of random operational time [8]. The means of subordination 

of process  X with another process  tS  is to randomize 

the physical time t  by  tS , then we obtain a new 

subordinated process as     tSXtY  . It is a continuous 

time random walk (CTRW).We can consider the diffusion of 

a price (particle) as a sequence of independent random 

jumps occurring instantaneously. Other words, the waiting 

time between the successive jumps and jump length are 

random variables. So the subordinated process 

    tSXtY   is combination of two independent processes. 

One of them is a parent process   X . It is also called the 

external process. The second one  tS  is the waiting time 

process. It describes the new operational time  tS   of 

the system [31]. The inverse subordinator is described by 

following first passage time relation, 

    tTtS    :0inf                                                 (19) 

where   T  is the strictly increasing Levy process. It is a 

pure-jump process. For every jump of  T , there is a 

corresponding flat period of its inverse   tS .The flat 

periods of   tS  represent the waiting time which the 

subdiffusion process gets immobilized in the trap. If the 

jumps have normal distribution and waiting times with 

exponential distribution, this case  leads to the normal 

diffusion, if the jump lengthiest have normal distribution and 

the waiting times have a power-law distribution this  leads to 

anomalous model. A non-negative random variable T is 

called infinitely divisible distribution, if its Laplace 

transform takes the following form, 

       uuT
eeE  

                                                     (20) 

If   ,tg is the PDF of  T  then Its Laplace transform is 

defined by 

       uutuT
edttgeeE 


  





 

0

,                              (21) 

where  .  is called Laplace exponent and defined by 

     




0

1 dxveuu ux  

where  is drift parameter and  dxv is a Lévy measure[32]. 

For a stochastic process with an infinitely divisible 

distribution, the function  u should be nonnegative and 

completely monotone recording to first derivative 

and   00  . If we choice the Laplace exponent as 

       uu , then we obtain a tempered  stable 

subordinator. 

A. Subordinators 

One of the most popular statistical models of anomalous 

diffusion is the continuous time random walk model 

(CTRW) which corresponds to the fractional diffusion 

equation driven by Lévy diffusion process. In a CTRW 

model, the each step is characterized by corresponding 

waiting time and the displacement in space.  

The process driven by inverse subordinators are strongly 

related to the continuous time random walk. The distribution 

of the subordinator increments corresponding to observed 

constant time periods (motionless periods). In applications, 

we can choice the different subordinators. These 

subordinators belong to the infinitely divisible distributions 

class. If we choice the Laplace exponent of subordinator is a 

power law i.e.    uu   then we obtain a pure anomalous 

subdiffusive process. [12]. Subordinators are sum of i.i.d. 

random variables with an infinitely divisible PDF. The 

examples of them, Gaussian, inverse Gaussian,  stable, 

tempered  stable, exponential, gamma, compound 

Poisson, Pareto, Linnik and Mittag-Leffler. The non-

negative infinitely divisible random variables are fully 

characterized by the exponentially weighted function. If 

 ,tg is the PDF of  T  then the PDF  tf ,  of its inverse 
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 tS  can be represent by 

   dssgtf

t







 


 ,,

 
The Laplace transform of  tf ,  with respect to t  is 

obtained as follows [32],   

         
   ue
u

u
uf 

 ,
~

                                               (22) 

Generally a subordinator whose Laplace exponent is the 

power law leads to a model of the pure anomalous diffusion 

and their MSD grows as a power law in time. For example if 

   tBtY   is a standard Brownian motion then for    uu   

the subordinated process   tSB   is proportional to 

   1t  as 0t  and proportional to t  as t . 

Hence the process   tSB  occupies an intermediate place 

between pure subdiffusion which the second moment grows 

like t  and normal diffusion where the second moment is 

proportional to t .  B  is Brownian motion is 21 -self-

similar so,    121 BB
d

  ,  T   stable  Levy motion is  

the 1  self-similar so,    11



  TT

d

  and inverse 

subordinator      tTttS
d

 . We can obtain subordinated 

process as follows[32].      

              111
2221
BTtBtStSBtY

d








     (23) 

1) The Mittag-Leffler Distribution as a Subordinator 

 Mittag-Leffler distribution is an example of power law 

distributed waiting times. The generalized Mittag-Leffler 

function is defined by 

                

    





0

,

n

n nzzE 

 

Let X be a Mittag-Leffler random variable the PDF 

of X on  ,0  has the Laplace transform     1
1


  ss  

where 0s , 10   and 0 . To obtain Mittag-Leffler 

random number we use the Kuzubowski and Rachev 

simulation technique [33], 

 
 

 








1

cos
tan

sin
log 















V
UT                               (24) 

where  1,0, VU  are uniform random variables and T is a 

Mittag-Leffler random number as a second approach we can 

use following classic method  

1,
1
1 


 UTT   where 1,U  is a skew Levy  stable 

random variable and 8log1 UT  . 

2) Tempered Stable Subordinator 

The tempered stable distribution which is extension of 

stable distribution is obtained by multiplying an exponential 

tempering function of probability density function stable 

distribution. We consider the skew tempered stable random 

variableT .The probability density functions (PDFs) of skew 

tempered stable distributions are given by 

 
   

  







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





1,log1

1,11







 

xpe

xpe
xp

U
x

U
x

T                    (25) 

where  .Tp is the PDF of the tempered stable random 

variable T  and  .Up  is a PDF of random variable U  with 

the stable distribution with index of stability , skewness 

1 , mean 0  and scale parameter 





1

2
cos for  

1 , 2   for  1 [34].  
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Where   4,3,2,
1

1

 


kEE
n

m

n

i

k

ik  and E is a sample mean 

of motionless periods of prices. In application the 

parameters in tempered stable distributions can be estimated 

by the real market data. We will simulate operational time 

inverse tempered  stable subordinator  tS  as the step 

size NT  and  Niiti ,...,2,1:  [34], [35]. 

      .1:min itkTNkS                                    (27) 

where 10   and   
0 T  denotes a strictly increasing a 

 stable Levy motion with tempered  stable waiting 

times between successive jumps. 0  Tempering 

parameter is and 10    is stability index. 

a) Generate exponential random variable E with mean
1 . 

b)         NkTZkTkT k ,...2,1,00,1    
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where V is uniformly distributed on  2,2   and 

W exponentially distributed with mean 1. 

)c If kk ZE   put     NkkSkT ,...2,1,    otherwise go to 

step (a). 

B. The Mean Squared Displacement (MSD) 

In the study of diffusion processes, statistical quantification 

of temporal dispersion of diffusions is an important issue. To 

that and we use the mean squared displacement (MSD). In 

the anomalous diffusion case, the variance in the position of 

particle scales other than linearly with time. The MSD 

behaves like power function  i.e.,      ttxtx ~
22

 . 

The value of parameter   characterizes the stochastic 

properties of the observed process. We can calculate the 

MSD values for different  values as, 

       
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For varying time lags tntn  , MSD is calculated as 

follows, 

   




 
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
1

1

2
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2

1

1 nN

i

inin xx
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tx

 
This equation gives a good approximation for short time 

lags. The moving time averages MSD over a single long 

trajectory  tx  is given by 
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Where   is the lag time i.e., a fixed time window and T  is 

the total time. If there are strong difference between the 

moving time averages and ensemble average it implies the 

non ergodicity such systems. The parameter can be 

obtained by measuring the slope of the logarithm of the 

MSD as dependent on the logarithm on time. The 

asymptotically    1~,TMSD  can be observed. Finally we 

can consider following approach for MSD, 

  
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where tttt n  ...0 10  and variable order function. 

   1000,1001  ttt  Which represent that a 

decelerating diffusion process, shift from normal to sub 

diffusion for 1,1  M  we obtain the corresponding MSD-

time curves. We calculate the MSD for the sample 

 Nxxx ,...,, 21  with stationary increments as follows 

   

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2
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The MDS is a function of  and it is a random variable. The 

MSD behaves like    ~NM . For 10    the process is 

subdiffusive. This type behaviour usually observed 

disordered systems. A subdiffusive process has long memory 

properties. Subdiffusive systems usually described Levy type 

statistics and heavy tailed distributions, if 1  the observed 

process represent the super diffusive behaviour. This case 

usually observed the system unstable or in transient state and 

if  1  the observed process denotes the normal diffusion 

so systems randomly fluctuation [3]. If the sample comes 

from a H self similar Levy stable process with stationary 

increments then large kN , sample MSD asymptotically 

behaviour as a power law   12~ d
N kkM , 1 Hd , 

estimating the parameter 12 d , we obtain information about 

the diffusive characteristics of the real process. When 

01  Hd  then the process is sub diffusive when 

01  Hd  the process is super diffusive [8]. 

IV. THE SUBDIFFUSIVE ORNSTEIN-UHLENBECK PROCESS 

In this section, we describe the time changed a OU process  

    tSXtY  .We choice the inverse tempered alpha stable 

distribution as a subordinator process, to simulate the price 

series, we used the following model which is proposed by 

L.Longjin., et al.(2012) [14]. 

       kktkttt ZtYDtYFYY
2121

111 1,21,     (27) 

where  1,0~ NZk ,      1 kSkSk  . We will use  

  txtxF 6101.0,   and    txtxD
41

6.0,   

V. APPLICATIONS TO REAL DATA 

In this section the capabilities of the considered model are 

tested on ISE100 index return data. We use the subordinated 

Ornstein-Uhlenbeck process to model ISE100 index closing 

price behaviour. Historical prices data of ISE 100 index 

chosen from 04.01.2000 to 04.01.2013 and 3303 daily 

observations. We obtained the data from Yahoo finance web 

page. The empirical log returns tx  at time 0t of the prices 

 tS  over a period 0t  are defined by 

   tSttSxt lnln  .  For we will use the daily returns, we 

set 2521t  (data collected once a day). In order to 

characterize the probabilistic structure of the price process, 

we give the basic descriptive plots for the daily closing 

prices and returns for ISE100 index is presented in the 

following figures. 

 
Fig. 1.  Daily closing  prices 

 

 
Fig. 2.  Daily logarithmic returns.  
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Fig. 3.  Empirical and standard normal quantiles 

 

The price and log return paths denotes the long memory 

and mean-reverting behavior of series. We did not observe 

any trend at data. The figure2 illustrates that large moves 

follow large moves up and down and small moves follow 

small moves so there is volatility clustering for index 

returns. Q-Q plots indicate the S-shape curves this denotes 

the non normal returns in time series. Furthermore return 

series has heavy tails. These empirical distributions confirm 

the non normal distribution for ISE 100 index returns. We 

give the descriptive statistics in the following table1 for the 

ISE100 index returns. 
TABLE I 

SUMMARY STATISTICS OF DAILY RETURN FOR ISE 100 INDEX 

Index Mean Std.dev Min Max 
Skew 

S 

Kurt 

K 

KS 

Stat. 

ISE10

0 

0,000

5 

0,024 -0,2 0,178 0,025 6,944 0,07 

The skewness of a symmetric distribution for example 
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normal distribution is zero. The index has positive skewness. 

This denotes that return distribution is not symmetric. The 

distribution has a long right tail. The easy way to quantify 

the distribution of log returns. The value of 3Kurt  

indicates a heavy tail. Empirical kurtosis value exceeds 

value of three. So the distribution is leptokurtic relative to 

normal distribution. This means that the distribution has 

heavy tails. 

To investigate the dependence structure on the observed 

time series we calculate and plot empirical autocorrelation 

function (ACF)  k   given for a set of the observations 

nxxx ,...,, 21 .           




 

kn

i

kii xxxx
n

k

1

1
  

Where, n  is the number of observations in sample and k  is 

the lag. 

Autocorrelation(ISE100 index return)
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Fig. 4. Autocorrelation function of ISE100 index returns.  

 

We will apply the autocorrelation test to check to the 

independence of the time series. The autocorrelation values 

are near to the zero so we can say that examined time series 

is independent. Before thinking about fitting a specific mean 

reverting process to available data, we have to check the 

validity of the mean reversion assumption. Simple way to do 

this is to test for stationary. Let tx  represent the log-price. 

ttt xbbx  110  ,     1,0~ Nt  

The testing the mean reversion in a sample time series of 

returns is to check whether in the above equation the 

coefficient 1b  is significantly different from 1. This means 

that tx  can be considered as a stationary process. If 11 b  

the process is explosive and it will be never revert back to 

long-range value, if 11 b   the process is a unit-root process 

and if  01 1  b  the process is a mean reverting. Time 

interval between the observations nt 1 .Furthermore we 

should be performed to check whether the coefficient 1b  is 

negative. Test statistics is given by  

21
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 , If 2testt  then the result is 

significant. Using the linear regression we obtained 

491285.0H . This means that an increas will tent to be 

followed by a decreas or a decreas will be followed by an 

increas.This behavior is sometimes called mean 

reversion.The strength of this mean reversion increases as 

H approaches 0 [18]. As a result observed time series has 

mean reverting property. For an arbitrary time lag  , MSD 

of fractional Brownian motion satisfies, that relation 

  HMSD 2~ . This result represent that ISE100 index price 

series has subdiffusive dynamics. We know 

that 982569,02 H . On the other hand   982569.0ttMSD   

for ISE100 index prices. The MSD of the subordinated 

process   tSX   is proportional to  982569,0.01982569.0 t   

as 0t  and proportional to 982569.0t as t . 

 
Fig. 5.  MSD for ISE 100 index returns.  

 

 
   Fig. 6. Real index returns and simulated OU process.  

 

Let be observed time series  nxxxX ,...,, 21 . To analyze 

time changed the index return; we decompose the observed 

series into two 1X  and 2X vectors. The elements of the 

vector  
1

,...,, 211 nlllX   are lengths of constant periods of X . 

The other vector  
2

,...,, 212 nmmmX   is obtained from the 

values of X corresponding to the non-constant periods. We 

assume that the immobile periods of process X  are equal to 

the jumps of the process  tT [34]. 

 
Fig. 7. The distribution of  the constant periods(trapping events) 

We assume that the vector 1X  consist of iid random 

variable from the  tempered stable distribution. 

 
Fig 8.The inverse tempered stable distribution for ISE100 index returns. 
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Fig.9. Subdiffusive Ornstein-Uhlenbeck model for ISE100 index returns  

 

TABLE I I 

THE ESTIMATION OF PARAMETER  FOR VECTOR X1  

Index   estimation 

ISE 100 0.68988 

 

TABLE III 

THE MODEL PARAMETER ESTIMATION FOR ISE100 INDEX RETURNS 

Index â  b̂  ̂  ̂  ̂  

ISE100 0.00051 0.0121 483.54 0.000526 0.7342 

VI. CONCLUSIONS 

In this paper, we investigated the time changed Ornstein-

Uhlenbeck process with application to index returns. As a 

subordinator we used inverse stable tempered distribution 

and shortly revisited some alternative subordinators. We 

presented the estimation methods for unknown parameters in 

this process. Motivation to choice for tempered stable 

distribution based on the empirical properties of index return 

data. The results represent that the proposed model can be 

capture the stylized facts which is observed return time 

series and trapping events. The pricing of assets, the hedging 

of contingent claims, the valuation of investments and risk 

management heavily based on the stochastic model which is 

describe the behavior of considered the real process. As a 

consequence, the changing the time of the model with a 

suitable subordinator can be useful approach to improve the 

financial returns modeling. 
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