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Abstract—The integration of data-driven machine learning
strategies with adaptive control are capable of producing
efficient and optimal self-tuning algorithms for nonlinear optical
systems. We demonstrate the concept on the specific case
of an optical fiber laser cavity where the adaptive, multi-
parameter extremum-seeking control algorithm obtains and
maintains high-energy, single-pulse states. The machine learn-
ing algorithm, which is based upon a physically realizable
objective function that divides the energy output by the fourth
moment of the pulse spectrum, characterizes the cavity itself
for rapid state identification and improved optimization. The
theory developed is demonstrated on a nonlinear polarization
rotation (NPR) based laser using waveplate and polarizer
angles to achieve optimal passive mode-locking despite large
disturbances to the system. The objective function peaks are
high-energy mode-locked states that have a safety margin near
parameter regimes where mode-locking breaks down or the
multi-pulsing instability occurs. The methods demonstrated can
be implemented broadly to optical systems, or more generally
to any self-tuning complex

Index Terms—nonlinear optics, fiber lasers, machine learn-
ing, adaptive control, complex systems.

I. INTRODUCTION

ROBUST and adaptive self-tuning algorithms for nonlin-
ear optics have eluded practical implementation in en-

gineered lightwave system. The ability to deliver a software
architecture capable of achieving these goals has the potential
to revolutionize both the commercial and research sectors
associated with the optical sciences. In optical fiber lasers, for
instance, this has led to recent efforts of integrating state-of-
the-art adaptive control algorithms [1] with newly developed
servo-control of optical components [2] to demonstrate the
first successful implementations of the long-envisioned goal
of robust, fully self-tuning fiber lasers [3], [4]. Concurrently,
machine learning methods [5], [6], [7] are transforming the
engineering and physical sciences. By combining machine
learning methods with adaptive control, we demonstrate that
robust, self-tuning performance can be achieved in optical
systems, thus allowing for potentially transformative perfor-
mance gains in fiber lasers.

For the field of optical fiber lasers, it is anticipated that
within the next decade these lasers will close the order-of-
magnitude performance gap in comparison with their solid-
state counterparts [8], a performance gap largely imposed by
the multi-pulsing instability (MPI) [9], [10], [11]. Engineer-
ing design concepts based upon machine learning algorithms
are critical to pushing this fiber technology forward. It can
help circumvent the performance limitations that are induced
when laser cavities are pushed to their limits in producing
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high-power and/or ultra-short pulses. Interestingly, one of
the most intriguing possibilities for designing around the
deleterious MPI is the standard and well-known mode-locked
fiber laser that relies on nonlinear polarization rotation (NPR)
for achieving saturable absorption using a combination of
waveplates and polarizer [12], [13], [14], [15]. This NPR
based laser concept is more than two decades old and is one
of the most commercially successful mode-locked lasers due
to its reliance on simple off-the-shelf telecom components,
rendering it a highly cost-effective mode-locking source.
However, such commercial lasers must enforce strict envi-
ronmental control to maintain performance, i.e., the fiber is
pinned into place and shielded from temperature fluctuations.
Such system sensitivity has prevented performance advances,
limiting power and pulsewidths. Our adaptive control strat-
egy [3] overcomes this cavity sensitivity while optimizing,
resulting in significant performance enhancements.

In addition to carrying out the task of adaptive control,
which effectively becomes the expert-in-the-loop for opti-
mizing cavity performance, the machine-learning architecture
can further be used to characterize difficult-to-model system
parameters, such as the fiber birefringence. Indeed, the
self-tuning adaptive controller developed here represents a
significant technological advancement, allowing for the con-
tinued pursuit of optimal performance in high-dimensional
parameter spaces. More broadly, these techniques apply to
any tunable laser and/or optical system, promising superior
performance by augmenting the system with adaptive control
and machine learning algorithms.

II. GOVERNING EQUATIONS: CAVITY DYNAMICS

We model the laser cavity by evolving the intra-cavity
pulse dynamics in a component by component manner. Thus
the nonlinear propagation in the optical fiber is treated sep-
arately from the discretely applied waveplates and polarizer
each round trip through the cavity.

A. Coupled nonlinear Schrödinger equations

The propagation of the slowly-varying envelop of the
electric field in the fiber is well-described by the coupled
nonlinear Schrödinger equation (CNLS) [16]:
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In the above equations, u(z, t) and v(z, t) are the two
orthogonally polarized electric field envelopes in the optical
fiber. The variable t is time in the frame of reference of
the propagating pulse non-dimensionalized by the full-width
at half-maximum of the pulse, and z is the propagation
distance normalized by the cavity length. The functions u
and v are often referred to as the fast and slow components,
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respectively. The parameter K is the average birefringence
while D is the average group velocity dispersion of the cav-
ity. The nonlinear coupling parameters A and B correspond
to the cross-phase modulation and the four-wave mixing,
respectively. They are determined by physical properties of
the fiber, and A + B = 1. For this case (a silica fiber),
A = 2/3 and B = 1/3. The dissipative terms Ru and
Rv account for the saturable, bandwidth-limited gain and
attenuation arising from, for instance, the Yb-doped fiber
amplification. They satisfy the following equations:

R =
2g0

(
1 + τ∂2t

)

1 + (1/e0)
∫∞
−∞ (|u|2 + |v|2) dt

− Γ.

where g0 is the non dimensional-pumping strength, and e0 is
the non-dimensional saturating energy of the gain medium.
The pump bandwidth is τ and Γ quantifies losses due to
output coupling and fiber attenuation.

B. Jones matrices for waveplates and polarizers

The application of the waveplates and passive polarizer
after each round trip through the cavity may be modeled by
the discrete application of Jones matrices [17].

Wλ/4 =

[
e−iπ/4 0

0 eiπ/4

]
,Wλ/2 =

[
−i 0
0 i

]
,Wp =

[
1 0
0 0

]
.

Here, Wλ/4 is the quarter-waveplate (α1 and α2), Wλ/2 is
the half-waveplate (α3), and Wp is the polarizer (αp). If the
principle axes of these objects are not aligned with the fast
field of the cavity, it is necessary to include the addition of
a rotation matrix:

Jj = R(αj)WjR(−αj), R(αj) =

[
cos(αj) − sin(αj)
sin(αj) cos(αj)

]

where αj is a waveplate or polarizer angle (j = 1, 2, 3, p).
These rotation angles will be the control variables, allowing
us to find mode-locked solutions. Recent experiments show
that these control variables can be easily manipulated through
electronic control [2].

C. Optimizing performance: Objective function

Given the governing equations, extensive numerical sim-
ulations can be performed in order to identify parameter
regimes where mode-locking occurs. Each of these regimes
can in turn be evaluated for their ability to produce high-
energy, high-peak-power mode-locked states. In addition to
being a costly exercise, such studies also rarely match the
real cavity dynamics since, for instance, parameters like
the fiber birefringence K are unknown. This motivates our
use of machine learning, optimization and adaptive control
strategies for characterizing the laser cavity. Interestingly, the
integration of all three methods can be achieved without a
detailed theoretical knowledge of the cavity equations, i.e.
they are equation-free methods in the sense that learning the
laser characteristics and applying adaptive control only relies
on experimental measurements of the underlying system.

For any such data-driven strategy to be effective, we
require an objective function, with local maxima that cor-
respond to high-energy mode-locked solutions. Although we
seek high-energy solutions, there are many chaotic wave-
forms that have significantly higher energy than mode-locked

solutions. Therefore, energy alone is not a good objective
function. Instead, we divide the energy function E by the
fourth-moment (kurtosis) M4 of the Fourier spectrum of the
waveform

O =
E

M4

which is large for undesirable chaotic solutions. This ob-
jective function, which has been shown to be successful
for applying adaptive control, is large when we have a
large amount of energy in a tightly confined temporal wave
packet [3].

III. LEARNING THE CAVITY DYNAMICS

Exploring the input parameter space is a central part of the
overall control strategy. There are a number of direct benefits
to a simple, fast, and robust method of characterizing the
cavity dynamics. First, it is necessary to identify a set of
candidate high-energy mode locked solutions for use with
the adaptive control algorithm. Ideally, these peaks would
have the broadest support possible in parameter space. It is
possible to use either a toroidal search or a genetic algorithm
to find these high-energy candidate solutions. In addition to
a set of candidate peaks, the toroidal search algorithm also
provides a well-stereotyped pattern that changes with pa-
rameters (e.g., birefringence) that may be otherwise difficult
to measure directly. Therefore, we use the library-building
phase to construct a library of toroidal search patterns as we
slowly vary the birefringence and other parameters.

Once the library is built, when we turn the laser cavity
on, or when it suffers from a large disturbance and mode-
locking is broken, we repeat a short toroidal search protocol
and compare against our library to estimate the underlying
parameter values. These parameters do not need to be nu-
merical values, but may instead refer to proxy quantities,
such as “birefringence A”, “birefringence B”, etc. Once
the parameters are identified, it is possible to go directly
to the pre-determined optimal input angles. At this point,
the adaptive controller is applied to compensate for any
uncertainty or error in the parameter estimation, and also
to track slowly varying changes to parameters.

A. Toroidal search

We advocate a toroidal search algorithm both to identify
mode-locked states that may be used in conjunction with
the adaptive controller, and also to identify and estimate
the underlying parameters. All of the control inputs are
periodic, so the input space forms a high-dimensional torus.
It is possible to efficiently sample this toroid by increasing
each of the control angles at incommensurate angular rates.
This means that the ratio of each of the angular rates is an
irrational number, and it is simple to show that after large
enough time, the sampling scheme will approach arbitrarily
close to every point in the input space. It turns out that for
two rotating angles, the optimal incommensurate rates will
be related by the golden ratio.

Because of the nature of some servomotors or stepper
motors, it may be necessary to build in a mechanism for
zeroing out the angles at the beginning of the search. This
may be achieved by placing a small weight on each of the
rotating optical components so that when power is cut to the
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motor, they all drop down to a zero-degree dead-center posi-
tion. This is important when comparing two toroidal search
profiles for the birefringence estimation. In less than two
minutes (real time), the algorithm can identify ten candidate
mode-locked states. For multiple NPR cavities where a much
higher parameter space is required to manipulate, the toroidal
search may be replaced with a genetic algorithm.

B. Sparse approximation in library for recognition

One of the most challenging technological issues around
optical systems, and in particular the NPR-based mode-
locked fiber laser, is its sensitivity to small changes in
parameters, i.e. birefringence. Indeed, temperature changes
and/or small physical modifications in fiber based systems
can easily compromise what was an ideal performance state.
Such system sensitivity has prevented performance advances,
limiting power and pulsewidths. The machine learning algo-
rithms advocated here simply learn a relationship between
the sensitive parameters of interest and the objective func-
tion, thus recognizing uniquely the current parameter state
and adjusting the optical cavity parameters accordingly in
order to optimize performance. Such a recognition task is
significantly faster than re-executing the toroidal or genetic
algorithm search as it allows one to move immediately to
near the optimal solution where adaptive control can then
maintain peak performance. The recognition task is based
upon performance and activity that is correlated with each
other via a singular value decomposition (SVD). Only the
dominant SVD modes (capturing 99.9% of the energy) are
retained and used to characterize a particular parameter
space. Thus for a large number of parameter values, a library
of dominant modes, Ψ is constructed.

Once the library is built, it can be used for future eval-
uation of the state of the system. In particular, suppose a
small set of measurements, let’s say m, are made on the
laser system and the results stored in a measurement vector
y of length m. Then one can expand the measurement vector
in the space of the birefringence library so that

Ψa = y . (2)

where the vector a measures the projection onto each mode
and is of length n, the number of modes in the library. This
is an underdetermined system since m� n, allowing for an
infinite number of solutions. It is highly advantageous to use
a sparsity promoting L1-norm search algorithm to solve the
problem [18]:

a = arg min
a
‖a‖1, such that Ψa = y. (3)

In doing so, it provides an exceptional classifier for the
value of the parameter as the resulting vector a identifies
which modes of the library Ψ are active, thus classifying the
dynamical state of the system. This is yet another example
of the machine learning paradigm allowing for an efficient
classification scheme. For the case of an optical fiber laser,
the most sensitive parameter is the cavity birefringence.
This recognition algorithm can achieve parameter recognition
with 88% accuracy, even if temporal misalignment occurs in
measurement. And even if wrong, the error in evaluating the
parameter remains quite small.
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Fig. 1. Schematic of closed-loop extremum-seeking controller. The input
to the controller is the objective function, and the output are reference
angles for the servo-motor actuators for each optical component. Machine
learning algorithms record the performance of the cavity, thus allowing for
the construction of learned libraries of optimal performance.

IV. ADAPTIVE CONTROL

The adaptive control strategy advocated here does not
rely on an underlying model and may be used on fully
nonlinear systems with varying parameters. In this method, a
sinusoidal input signal is injected into the system to estimate
the gradient of our objective function. It is therefore a form
of perturb-and-observe control, where the signal converges
more rapidly when there is a large gradient in the objective
function. A sinusoidal perturbation is added to the current
estimate of the best control signal û. This results in a
perturbation on the output, which may be attenuated or phase
shifted, but will have the same frequency as long as the
perturbation is slow compared with the system dynamics.
The product of the high-pass filtered output signal and input
perturbation will be positive when the mean of the control
signal is to the left of the optimum point u∗ and will be
negative when the mean is to the right of the optimum. This
demodulated signal is then integrated to the mean and the
controller faithfully tracks the optimum.

In many ways the laser cavity is ideal for the extremum-
seeking control method since the transient dynamics operate
on a timescale many orders of magnitude faster than the
physical actuation of wave plate and polarizer angles. This
means that the only limitation on tracking bandwidth is im-
posed by the measurement and actuation hardware. Figure 1
is a schematic illustrating the extremum-seeking controller
in combination with the mode-lock laser. The input to the
controller is the external perturbation a sin(ωt) as well as
a measurement of the objective function output of the laser
cavity. The controller outputs a signal that goes to four servo
motors connected to the optical components. We see that
in addition to maximizing the objective function, the pulse
energy increases.

V. CONCLUSION

We have demonstrated the practical implementation of
an adaptive, robust, and self-tuning algorithm that can be
used in conjunction with nonlinear optical system, with
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specific implementation on a mode-locked fiber laser. Such
a scheme has eluded practical implementation for more
than two decades. But with state-of-the-art machine learning
and state classification methods, along with adaptive control
schemes that are model independent, the critical components
are now in place to revolutionize both the commercial and
research sectors associated with ultra-fast science. Although
we demonstrate the methodology within the context of NPR-
based fiber lasers, due to newly developed servo-control of
optical components [2], [3], [4], the data-driven strategies are
generic and capable of self-tuning almost any laser or optical
system. The success of such self-tuning strategies hinges
on two critical components: (i) identifying input (control)
parameters and (ii) constructing an appropriate objective
function that is feasible and serves well as a proxy for cavity
performance. The algorithms for both learning the cavity
behaviors and applying adaptive control are both equation-
free methods [18]. Thus they do not rely on one’s ability to
construct accurate model equations. Rather, all characteriza-
tion is done directly from experimental data and no reliance
is made on a faithful model. Such strategies are highly
advantageous since modeling often fails to provide accurate
quantitative prediction of laser cavity dynamics. Even in the
two decade old problem of NPR-based mode-locking, models
have proved to be of value for qualitative modeling, but
have had limited quantitative use since phenomenon such
as the randomly varying birefringence simply are beyond
our capabilities to model due to their extreme sensitivity and
stochastic nature. The methods advocated here do not suffer
from such sensitivity, they simply adapt to the changes and
optimize for global performance.
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