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Abstract—Mechanical design of viscoelastic parts fabricated
using additive manufacturing technologies are under consider-
ation. Such a design is of great importance for obtaining final
products with desired shape and strength which are determined
by their stress-strain state. Mathematical model of model of
viscoelastic solid which grows due to the process of additive
manufacturing is proposed. Complete system of boundary value
problem equations is obtained. A method for solving formulated
boundary value problem is developed. Qualitative conclusions
concerning the behavior of growing solids are presented.

Index Terms—additive manufacturing technologies, growing
solid, viscoelastic material, shape, strength

INTRODUCTION

A DDITIVE manufacturing (AM) technologies include
stereolithography, electrolytic deposition, laser and

thermal 3D printing, production of 3D integrated circuits and
a number of other technologies. Actually, there is a real boom
in the development of AM technologies since they allow
to reproduce a 3D object of arbitrarily complicated shape
(in theory from any material) with high accuracy and low
expenses in a short time. However, problems of deformation
and strength of products fabricated using such technologies
remain still unsolved. Mathematical models and methods
developed in the paper allow one to study the stress-strain
state of parts of devices, machines, and mechanisms created
in AM processes from viscoelastic materials. This gives an
opportunity to estimate their shape distortion, strength, stabil-
ity and life time. This problem is of general interest for the
modern technologies in engineering, medicine, electronics
industry, aerospace industry, and other fields.

I. CHARACTERISTIC FEATURES OFGROWING SOLIDS

The process of accretion or deposition of new material
to a solid is studied in the fundamental scientific area
called Growing Solids Mechanics. This area deals with all
sorts of solid materials including elastic, viscoelastic, plastic,
composite and graded materials. Currently a great number
of AM fabricated part are made from viscoelastic materials
with complex properties so we consider just such materials
(see [1–6]).
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By a (piecewise) continuously growing solid we mean a
solid solid whose composition, mass or volume varies as
a result of a (piecewise) continuous addition of material
to its surface. The process of adding new material to the
solid is called accretion or growth. For piecewise-continuous
accretion the following basic stages of its deformation are
strictly followed: before accretion, during the continuous
growth, and after the accretion has ceased and growth has
stopped. Each of these stages is characterized by the times
when it starts and ends. The first is characterized by the time
of application of a load to the solid and the time when growth
starts. The second by the time when growth starts and the
time when it ends. Conversely, the third is characterized by
the time when growth ends and the time when it starts. The
process under investigation is usually concluded by the third
stage, for which the time when the next stage begins is taken
to be as long as desired. The solid on whose surface new
material is deposited starting from the time when accretion
starts is called the basic or original solid. The solid consisting
of the material pieces added to the basic solid over the time
interval from the beginning of accretion up to a given instant
of time is called the additional solid. The additional solid can
have a complex structure and consist of a collection of solids
formed over different time intervals of continuous accretion.
We call them sub-solids. The additional solid is obviously
the union of sub-solids. The domains occupied by the former
and latter can be disconnected. The union of the basic and
the additional solids will be called the accreted orgrowing
solid. Note that accretion can also occur without the basic
solid, starting from an infinitesimal material element. The
part of the surface where infinitesimal pieces of the material
are deposited at the actual instant is called the accretion or
growth surface. The growth surface may be disconnected,
in general. In particular, it can be the whole surface of the
solid. Finally, the part of the surface of the original or the
growing solid that coincides with the growth surface at the
time when growth starts will be called the base surface. The
base surface is clearly the part of the surface of the solid
on which material is to be deposited during the next stage
of continuous accretion. At different stages it coincides, as
a rule, with the surface between the basic solid and the
additional solid as well as with the surfaces between the
sub-solids.

We assume that the basic solid, which is made from a
viscoelastic ageing material, occupies a domainΩ0 with the
surfaceS0 and is free of stresses up to the timeτ0 of appli-
cation of the load. Fromτ0 up to the timeτ1 when accretion
starts the classical boundary conditions are given onS0, the
specific form of which is stated below. Atτ1 the continuous
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accretion of a solid begins due to the addition of material
particles to the accretion surfaceS∗(t). As it grows, the solid
occupies a domainΩ(t) with surfaceS(t). It is obvious that
S∗(t) ⊆ S(t). The time when a particle characterized by a
position vector x is deposited on the solid will be denoted
by τ∗(x) and called the time of deposition of the particle on
the growing solid. The configuration of the accreted solid is
completely defined by the functionτ∗(x) depending on the
spatial coordinates. Boundedness and piecewise-continuity
are the general conditions usually imposed onτ∗(x).

We denote byτ∗1 (x) the time when an element of the
growing solid is formed and byτ0(x) the time when a load is
applied to it. Naturally,τ∗1 (x) ≤ τ0(x) = τ0 for the elements
of the basic solid (x ∈ Ω0).

To simplify the problem we consider the case of small
deformations and zero volumetric force.

The vector equilibrium equation is obviously satisfied in
the domain occupied by the growing solid at each instant of
time. For quasistatic processes it has the form

x ∈ Ω(t) : ∇ ·T = O, (1)

whereT is the stress tensor, and∇ is the Hamilton operator
(here and henceforth we use the conventional notation of
tensor calculus).

The Cauchy conditions and the compatibility equations for
deformations are always satisfied in the domain occupied by
the basic solid

x ∈ Ω0 : E =
1

2
[∇u+(∇u)T ], ∇× (∇×E)T = O, (2)

whereE is the strain tensor andu is the displacement vector.
But in the domainΩ∗(t) occupied by the additional solid
(Ω∗(t) = Ω(t)/Ω0) only their analogues involving the rates
of change of the corresponding variables are satisfied

x∈Ω∗(t) : D=
1

2
[∇v+(∇v)T ], ∇×(∇×D)T =O,

D =
∂E

∂t
, v =

∂u

∂t
,

i.e. the strains are incompatible, in general.
The latter reflects the fact that deposited elements may be

subject to deforming actions prior to the time of deposition
on a basic solid independently of the processes taking place
in the solid itself.

To study the stress strain state (SSS) of a growing solid one
must know the laws of deformation of the basic solid from
the instantτ0 when the load is applied up to the instantτ1
when accretion starts and of the deposited material from the
instantτ0(x) when a load is applied to this material up to the
instantτ∗(x) of their deposition on the growing solid. The
state of the original solid is determined from the solution
of the problem with fixed boundary. The initial state of new
elements which represent deposited surfaces as well as the
boundary condition on the moving surface of a growing body
can be determined by solving an additional contact problem
of interaction between a solid and a surface.

Furthermore, we observe that

τ∗(x) = t (3)

is the equation of the growth surface and, by (4)

sn = |∇τ∗(x)|−1 (4)

is the velocity of motion of the surfaceS∗(t) in the normal
direction.

The traditional boundary conditions for the displacement
vector and the vector of surface forces are given on the
stationary sections of the surface of the growing solid.

To describe the behaviour of the material of the growing
solid we use the constitutive equations for an nonuniform
ageing solid. Extending the definition ofτ0(x) by a con-
stant τ0 to the domain occupied by the original solid, we
write

devE(x, t) =
devT(x, t)

2G(t− τ∗1 (x),x)
−

∫

t

τ0(x)

devT(x, τ)

2G(τ − τ∗1 (x),x)

×K1(t− τ∗1 (x), τ − τ∗1 (x),x) dτ, (5)

I1[E(x, t)] =
I1[T(x, t)]

E∗(t− τ∗1 (x),x)
−

∫

t

τ0(x)

I1[T(x, τ)]

E∗(τ − τ∗1 (x),x)

×K2(t− τ∗1 (x), τ − τ∗1 (x),x) dτ, (6)

whereG(t), E∗(t) and K1(t,x), K2(t,x) are the instan-
taneous elastic strain moduli and creep functions for pure
shear and uniform compression, respectively,I1(K) denotes
the first invariant of a tensorK, anddevK is the deviator
of K.

The description of the process of continuous accretion of
a viscoelastic ageing solid involves three characteristic in-
stants: the instantτ∗1 (x) when the element with coordinatex
is formed, the instantτ0(x) when a load is applied to this
element, and the instantτ∗(x) when the element is deposited
on the growing solid. These three instants are different, in
general.

The deposition process is largely determined by specifying
these three instants. If the processes of continuous concrete
casting, ice formation, crystal growth, etc. are studied, then
τ∗1 (x) = τ0(x) = τ∗(x), i.e. the elements are deposited at
the same instant as they are formed and a load is applied to
them. If spray deposition or erection of a structure from a
large number of blocks is modelled by a continuous growth
process, then, as a rule,τ0(x) = τ∗(x) and the instantτ∗1 (x)
when the elements are formed is arbitrary. If the deformatiort
of elements begins as soon as they are formed and they are
being added to the basic solid only over some time interval,
thenτ∗1 (x) = τ0(x) 6= τ∗(x) and so on.

Before formulating the problem considered in the present
paper, we emphasize that the problem of the growth of a
solid differs in a major way from that involving the removal
of material. The latter is characterized solely by the fact that
the domain occupied by the solid is reduced, subject to the
standard equations and boundary conditions.

Suppose that a homogeneous viscoelastic ageing solid
occupying a domainΩ0 with surfaceS0 (x ∈ Ω0) is formed
at instant τ∗1 (x) = 0 and is free of stresses up to the
instant τ0 ≥ 0 when a load is applied. Starting from the
latter instant, we consider two kinds of boundary conditions
on the surface of the solid (surface forces onS1(t) and
displacements onS2(t)).

The sections of the surface on which different boundary
conditions are given do not intersect one another and cover
the whole surface of the solid. The dependence ofSi on t
enables us to take into account the possible evolution of the
system of loads, punches, etc. onS0, and is assumed to be
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piecewise constant. Unless the solid surface is closed, the
behaviour of stresses or strains at infinity is prescribed.

Continuous deposition of material formed simultaneously
with the solid (τ∗1 (x) = 0) starts atτ1 ≥ τ0. The solid
occupies a domainΩ(t) with surfaceS(t) during its growth.
The growth surfaceS∗(t) (S∗(τ1) ⊂ S0) moves in space. The
sectionsSi(t) (i = 1, 2) on which the common boundary
conditions are given can vary because of the loading of
the stationary surface of the additional solid. We assume
that the growing surface is always free of outer loads and
new deposited surfaces are loaded at the instant of their
deposition.

At the instantτ2 > τ1 the accretion of the solid ceases, and
starting from this instant four kinds of boundary conditions
are given on the sectionsSi(t) of the surfaceS1 = S(τ2) of
the solid occupying the domainΩ1 = Ω(τ2).

After some time, at the instantτ3 > τ2 the solid accretion
may start again. An accretion surface may appear which is
not related in any way to the previous one. Then the accretion
may stop at instantτ4, and so on, leading to the problem of
piecewise-continuous accretion of a solid withn instants at
which the growth starts and, respectively,n instants when it
stops.

Proceeding to the study of the basic stages of the process
of piecewise-continuous accretion of a viscoelastic solid, we
note that fairly slow processes will be considered everywhere
below, so that the inertial terms can be neglected in the
equilibrium equations.

II. BVP FOR A SOLID PRIOR TO THEGROWTH

We consider the SSS of a viscoelastic ageing solidΩ0 in
the time interval[τ0, τ1]. We write the equilibrium equation
in the form (1)

∇ ·T = O. (7)

We represent the boundary conditions described above as
follows

x ∈ S1(t) : n ·T = p0,
x ∈ S2(t) : u = u0,

(8)

wherep0 and u0 are given vectors of surface forces and
strains andn is the unit vector normal to the solid surface.
The Cauchy conditions are written as follows (see (2))

E =
1

2
[∇u+ (∇u)T ]. (9)

We take the constitutive equations in the form (6) and (7),
assuming that the transverse contraction (Poisson’s) ratio of
the instantaneous elastic strain and the creep strain of the
ageing material are identical and are equal toν. Then we
have (see [1])

T = G(I+N(τ0, t))[2E+ (K − 1)I1(E)1], (10)

where

(I+N(τ0, t))
−1 = (I− L(τ0, t)),

2G = E(1 + ν)−1, K = (1− 2ν)−1,

L(τ0, t)f(t) =

∫

t

τ0

f(τ)K(t, τ) dτ,

ω(t, τ) = 2C(t, τ)(1 + ν),

K(t, τ) = E(τ)
∂

∂τ
[E−1(τ) + C(t, τ)] =

= K1(t, τ) = G(τ)
∂

∂τ
[G−1(τ) + ω(t, τ)],

whereE = E(t) andG = G(t) are the elastic moduli under
tension and shear,C(t, τ) andω(t, τ) are the creep measures
under tension and shear,K(t, τ) is the creep function under
tension, and1 is the unit tensor. The arguments are omitted in
a number of obvious cases above. They will also be omitted
in what follows and will be used only in those cases when
their absence may be misleading.

Thus (8)–(11) constitute the boundary-value problem
(BVP) of the linear theory of elasticity for a homogeneous
ageing basic solid, the SSS of which can be described by the
solution of the system fort ∈ [τ0, τ1].

We transform the BVP for the basic solid. Let us introduce
the notation

N0 = H(τ0, t)NG
−1, a0 = H(τ0, t)aG

−1,

H(ψ, t) = (I− L(ψ, t)),
(11)

whereN anda are an arbitrary tensor and arbitrary vector,
respectively. We apply the operatorH(τ0, t) to the relations
in (8)–(11) containingT after dividing them byG. Then,
since H(τ0, t) commutes with the Hamilton operator, we
obtain the following BVP using (12) (τ0 ≤ t ≤ τ1)

∇ ·T0 = O,

x ∈ S1(t) : n ·T0 = p0
0,

x ∈ S2(t) : u = u0,

E =
1

2
[∇u+ (∇u)T ],

T0 = 2E+ (K − 1)I1(E)1.

(12)

Unlike (8)–(11), time occurs in the BVP (13) as a pa-
rameter. The latter is mathematically equivalent to the BVP
of the theory of elasticity with a parametert. All analytic
and numerical methods of the theory of elasticity can be
used when constructing the solution of such a problem,
which undoubtedly lends itself better to investigation than
the problem (10)–(13) of the theory of viscoelasticity.

In order thatT, E, andu be a solution of the BVP (8)–(11)
it is necessary and sufficient thatT0, E, and u form a
solution of the BVP (13) and the relation

T(x, t) = G(t)[T0(x, t) +

∫

t

τ0

T0(x, τ)R(t, τ) dτ ], (13)

be satisfied (τ0 ≤ t ≤ τ1). HereR(t, τ) is the resolvent of
the kernelK(t, τ).

Therefore, solving the BVP (12) with t as a parameter,
one can reconstruct the true characteristics of the SSS of the
original viscoelastic ageing solid (10)–(13) from using (14).

III. BVP FOR A CONTINUOUSLY GROWING SOLID

We now consider the process of continuous accretion of a
solid (τ1 ≤ t ≤ τ2). For a growing solid we have:
the equilibrium equation

∇ ·T = O, (14)
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the boundary conditions on the stationary part of the surface

x ∈ S1(t) : n ·T = p0,
x ∈ S2(t) : u = u0,

(15)

the condition on the growing surface which can be obtained
from the solution of a contact problem for solid and surface
provided that they interact without friction (smooth contact)

x ∈ S∗ : n ·
∂T

∂t
= p n, p = −sn(Ts : L),

v =
∂u

∂t
, sn = n · v, (t = τ∗(x)),

(16)

whereTs is the 2D tensor of the deposited elastic surface
tension,L is the 2D tensor of this surface curvature, the
relation between the rates of strain and displacement

D =
1

2
[∇v + (∇v)T ], (17)

and the constitutive equation in the form

T = G(I+N(τ0(x), t))[2E + (K − 1)I1(E)1], (18)

τ0(x) =

{

τ0, x ∈ Ω0,

τ∗(x), x ∈ Ω∗(t).

Relations (15)–(19) form a general non-inertial initial BVP
(IVBP) for a continuous growing solid, where the op-
erator (I − L(τ0(x), t)) = H(τ0(x), t)) and its inverse
(I + N(τ0(x), t)) can be determined from (11) and (12)
with τ0 replaced byτ0(x). We observe that the process
of continuous deposition of new elements on the basic
solid under investigation leads, in general, to governing
relations containing discontinuities on the interface between
the original and the additional solids.

Let us transform the IBVP for a continuously accreted vis-
coelastic ageing solid into a problem with the time parameter
that has the same form as the BVP of the theory of elasticity.
We omit technical details and obtain the final result in the
form of BVP as follows

∇ · S = O,

x ∈ S1(t) : n · S = Rp0,
x ∈ S2(t) : v = v0,
x ∈ S∗(t) : n·S= R(pn) (t = τ∗(x)),

D =
1

2
[∇v + (∇vT ],

S = 2D+ (K − 1)I1(D)1,

(19)

whereR acts on an arbitrary vectora(x, t) by the rule

Ra(x, t) =
1

G(t)

∂a(x, t)

∂t
+

∫

t

τ0(x)

∂a(x, τ)

∂τ

∂ω(t, τ)

∂t
dτ

+ a(x, τ0(x))
∂ω(t, τ0(x))

∂t
, S =

∂(HT)

∂t
, (20)

Note that the conditions onS1(t) andS∗(t) are identical.
Relations (20) supplemented with the initial conditions for

the basic solid att = τ1 form an BVP witht as a parameter.
For T, E, andu to be solutions of IBVP (15)–(19) it is

necessary and sufficient thatS, D, andv form the solution

of (20) and that the following relations be satisfied

T(x, t) = G(t)

{

T(x, τ0(x))

G(τ0(x))

[

1 +

∫

t

τ0(x)

R(t, τ) dτ

]

+

∫

t

τ0(x)

[

S(x, τ) +

∫

τ

τ0(x)

S(x, ζ) dζR(t, τ)

]

dτ

}

,

u(x, t) = u(x, τ0(x)) +

∫

t

τ0(x)

v(x, τ) dτ.

(21)
Hence, the solution of the problem of the accretion of

a viscoelastic ageing solid can be obtained by the solution
of the mathematically identical problems with a parametert,
which have the same form as the BVP of the clacssical theory
of elasticity. Then the true stresses and displacements in the
growing solid can be reconstructed using (22).

Relations (22) indicate that the SSS for a growing vis-
coelastic solid depends on the whole history of loading and
accretion of the solid. The initial values of the displacements
u(x, τ∗(x)) of the deposited elements in (22) are usually set
to be zero (since the SSS of the growing solid does not
depend on them).

IV. BVP FOR SOLID AFTER THEGROWTH STOP

Suppose that the solid ceases to grow at instantτ2. At
this instant it occupies a domainΩ1 with surfaceS1, on
which two kinds of boundary conditions are specified, as
in the case of the problem for the basic solid. Moreover
S∗(τ2) = S∗

1 ⊆ ∪i Si(t) (i = 1, 2). In this case the problem
for the invariable solid occupyingΩ1 is similar to (15)–(19)
without the initial-boundary condition onS∗(t)

∇ ·T+ f = O,

x ∈ S1(t) : n ·T = p0,
x ∈ S2(t) : u = u0,

D =
1

2
[∇v + (∇v)T ],

T = G(I+N(τ0(x), t))[2E+ (K − 1)I1(E)1],

(22)

with τ∗(x) = τ2 for x ∈ S∗

1 . The stresses, strains and
displacements att = τ2 found by solving the growth problem
at the previous step serve as the initial conditions.

One can obtain the following BVP (see (20))

∇ · S = O,

x ∈ S1(t) : n · S = Rp0,
x ∈ S2(t) : v = v0,

D =
1

2
[∇v + (∇vT ],

S = 2D+ (K − 1)I1(D)1,

(23)

where the initial conditions remain as before.
For T, E, andu to be solutions of the IBVP (23) it is

necessary and sufficient thatS, D, andv form a solution of
BVP (24) and that relations (22) be satisfied.

Thus, to construct the solution of the problem over the
time interval [τ0, τ3] one has to construct the solutions of
the following tree identical problems (having the same form
as the BVP of the theory of elasticity with a parametert):
problem (13) fort = τ0 as well as problems (20), and (24).
The SSS of the growing solid can then be reconstructed for
any t ∈ [τ0, τ3] from (14) and (22).
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V. THE CASE OFPIECEWISE-CONTINUOUS GROWTH

Suppose that the growth process restarts at instantτ3 and
deposition of new elements begin on the surfaceS1 of the
solid (or part of it) occupying the domainΩ1. Then, by
analogy with Section III, one can obtaina problem in the form
(20) describing the behaviour of the growing viscoelastic
solid up to the instantτ4 when the accretion stops again.
Naturally, the new growth surface may not be related in any
way to the previous one, the functions and parameters in (20)
may take new values. Once the problem is solved, the SSS
of the growing solid can be determined using (22).

For t ≥ τ4, when the solid does not grow, the problem can
be reduced in the same way to the form (24) and then (22)
can be used.

The following step-wise scheme can be used to solve
the problem of arbitrary piecewise-continuous accretion.
First (13) is solved. Then solutions of (20) and (24) are con-
structed at each stage involving either continuous accretion
or, respectively, no growth at all. The final results can be
obtained using (22).

Hence it follows that the process of piecewise-continuous
accretion of a viscoelastic ageing solid with any finite
number of instants when the growth starts and stops can be
considered using the method proposed. The problem with n
instants when growth starts (and, naturally,n instants when
it stops) can be reduced to the study of2n+ 1 problems of
one type, which have the same form as the BVP of the theory
of elasticity containingt as a parameter. Once these2n+ 1
problems are solved, the SSS of the viscoelastic ageing solid
under consideration can be easily reconstructed for any time
from the above formulas.

The one-to-one correspondence between the solutions of
the problem of piecewise continuous accretion of a viscoelas-
tic ageing solid and the BVP of the theory of elasticity
established in the present section enables us to conclude
that a unique solution of the IBVP exists that describes
the piecewise continuous accretion of a viscoelastic solid
because a unique solution of the BVP of the theory of
elasticity exists.

VI. CONCLUSIONS

One can obtain a number of interesting results from (13),
(20), (24), (14) and (22) using the property of limited creep
of a viscoelastic material. If one assumes that only the
surface of the basic solid is subject to a load, the actions are
stationary, and accretion does not involve pretension, then
the interaction between newly deposited particles and the
solid already formed can be neglected starting from some
instantt0. In other words, starting fromt0 the growth process
has little effect on the state of the part of the solid formed
prior to to and the part formed fort > t0 is practically
stress-free. In particular, if the instant when a stationary
load is applied to the basic solid is much earlier than the
instant when the accretion starts, all other conditions being
equal, then the effect of accretion on the state of the basic
solid will be quite small and practically the whole additional
solid will be strain-free. Similar conclusions can be drawn
when considering a load regime of the original solid under
which the actions remain constant for a prolonged period of
time prior to the beginning of growth, irrespective of their
variation at earlier times.

The effects considered have a clear mechanical meaning.
Indeed, the deformation of a viscoelastic solid will practically
cease after a period of time under limited creep conditions
and stationary actions. Subsequent deposition of stress-free
elements leads to a situation when the interaction between
the parts of the solid already formed and those being created
during the growth process is negligible.

Relations (13), (20), (24), (14) and (22) also enable us to
predict such phenomena inherent in growing solids as the
presence of residual stresses after the loads are removed, the
presence of surfaces of stress discontinuity in the growing
solid, and the dependence of the SSS of a viscoelastic solid
on the growth rate (only the order of the acts of deposition
and loading matters in the elastic case).

Finally, we discuss one more important aspect of the
problem of accretion of a solid. It is concerned with the
correspondence between the solution of the accretion IBVP
and the viscoelasticity BVP for a variable boundary. The
question is as follows: when will the solution of the non-
classical accretion problem be the same as that of the
classical problem of solid mechanics in a domain which
varies with time? It turns out that the solutions are the same
only when the strains in the growing solid and the deposited
elements can be made compatible . Being a degenerate case
of the IBVP describing the accretion of a solid, such an
accretion regime clearly cannot be realized in practice.

Unlike the degenerate case when the strains in the whole
solid are compatible during the accretion process in the case
of stress-free elements being deposited on the solid which is a
completely relevant version of the accretion process the prob-
lem will fail to become much simpler. It provides a brilliant
demonstration of the effects related to accretion in model
examples and is often encountered in applications. Here we
have a situation when some inhomogeneous condition, rather
than the homogeneous one, is trivial in a certain sense, unlike
the traditional formulation of the BVP in solid mechanics.

Thus, using the presented approach for mechanical design
of AM fabricated parts from viscoelastic materials one can
determine the strength and the shape of final products.
Moreover, on the basis of this mechanical analysis one
can work out effective recommendations for improving the
technological process.
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