The Partial Order on Category of Semigroups and Endo-Cayley Digraphs

C. Promsakon

Abstract—Let \mathbb{C} be a set of all structures (S_f, A) where S is a semigroup, f is an endomorphism on S and A is a subset of S. We define operation \otimes on \mathbb{C} and also prove (\mathbb{C}, \otimes) is a semigroup. Similarly, we show \mathbb{D} , the set of all endo-Caylay sigraphs, is a semigroup under the tensor product. Moreover, we find partial order relations in both \mathbb{C} and \mathbb{D} .

Index Terms—Endo-Cayley digraph, Partial order, Semigroups.

I. INTRODUCTION

ET (S_1, \cdot) and (S_2, \circ) be semigroups. We can create a new semigroup from S_1 and S_2 as $(S_1 \times S_2, \times)$ where $(a, b) \times (x, y) = (a \cdot x, b \circ y)$ for all $(a, b), (x, y) \in S_1 \times S_2$. This semigroup is called as **product semigroup**. Clearly that \times is well-defined. Let (a, b), (s, t) and (x, y) be elements in $S_1 \times S_2$. We have that $[(a, b) \times (s, t)] \times (x, y) = (a \cdot s, b \circ t) \times (x, y) = (a \cdot s \cdot x, b \circ t \circ y) = (a, b) \times (s \cdot x, t \circ y) =$ $(a, b) \times [(s, t) \times (x, y)]$. Hence $S_1 \times S_2$ with operator \times is a semigroup.

For any semigroup S, we denote End(S) for the set of all endomorphisms on S. Let S be a semigroup and $f_1, f_2 \in End(S)$. We will show that $f_1 \circ f_2 \in End(S)$. Let x and y be elements in S. Then $f_1 \circ f_2(xy) = f_1(f_2(xy)) =$ $f_1(f_2(x)f_2(y)) = f_1(f_2(x))f_1(f_2(y)) = (f_1 \circ f_2(x))(f_1 \circ$ $f_2(y))$. Hence $f_1 \circ f_2 \in End(S)$. As we know associate property holds for functions composition, therefore End(S)is a semigroup under function composition. In Theorem 1, we show an example of an endomorphism on the product semigroup.

Theorem 1. Let S_1 and S_2 be semigroups and f_1 and f_2 be endomorphisms on S_1 and S_2 , respectively. Define $f_1 \times f_2$: $S_1 \times S_2 \rightarrow S_1 \times S_2$ by $f_1 \times f_2(s_1, s_2) = (f_1(s_1), f_2(s_2))$. Then $f_1 \times f_2 \in End(S_1 \times S_2)$.

Proof: Let $(a,b), (x,y) \in S_1 \times S_2$. Then $f_1 \times f_2((a,b)(x,y)) = f_1 \times f_2((ax,by)) = (f_1(ax), f_2(by)) = (f_1(a)f_1(x), f_2(b)f_2(y)) = (f_1(a), f_2(b))(f_1(x), f_2(y)) = (f_1 \times f_2(a,b))(f_1 \times f_2(x,y))$. Hence $f_1 \times f_2 \in End(S_1 \times S_2)$.

Let $\mathbb{C} = \{(S_f, A) | S \text{ is a semigroup, } A \subseteq S, f \in End(S)\}$. We say $(S_{f_1}, A) = (T_{f_2}, B)$ if there exists a function $f : S \to T$ such that $S \cong^f T$, f(A) = B and $f \circ f_1 = f_2 \circ f$. We will show that = is an equivalent relation on \mathbb{C} .

Proposition 2. A relation = is an equivalent relation on \mathbb{C} .

Proof: We show = preserve reflexive, symmetric and transitive properties here.

C. Promsakon are with the Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.

E-mail: chanon.p@sci.kmutnb.ac.th.

ISBN: 978-988-19253-4-3 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

- To show = is reflexive, let $(S_f, A) \in \mathbb{C}$. Clearly that $S \cong^I S$, I(A) = A and $If_1 = f_1 = f_1I$ where I is an identity function. So = is reflexive.
- To show = is symmetric, let (S_{f1}, A) and (T_{f2}, B) be in C such that (S_{f1}, A) = (T_{f2}, B). Then there exists a function f: S → T such that S ≅^f T, f(A) = B and f ∘ f1 = f2 ∘ f. So f is a bijection and a bijection f⁻¹: T → S exists. We obtain that T ≅^{f⁻¹} S, f⁻¹(B) = A and f⁻¹f2 = f1f⁻¹. Therefore (T_{f2}, B) = (S_{f1}, A).
- To show = is transitive, let (S_{f_1}, A) , (T_{f_2}, B) and (U_{f_3}, C) be elements in \mathbb{C} such that $(S_{f_1}, A) = (T_{f_2}, B)$ and $(T_{f_2}, B) = (U_{f_3}, C)$. Then there exist bijections $f : S \to T$ and $g : T \to U$ such that $S \cong^f T f(A) = B$, $ff_1 = f_2 f$ and $T \cong^g U g(B) = C$, $gf_2 = f_3 g$. So $g \circ f$ is a bijection and also $S \cong^{g \circ f} U$. Next, $g \circ f(A) = g(f(A)) = g(B) = C$ and $(g \circ f) \circ f_1 = g \circ (f \circ f_1) = g \circ (f_2 \circ f) = (g \circ f_2) \circ f = (f_3 \circ g) \circ f = f_3 \circ (g \circ f)$. Hence $(S_{f_1}, A) = (U_{f_3}, C)$.

Therefore = is an equivalent relation on \mathbb{C} .

Next, we define an operator on \mathbb{C} , called $\otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, as $(S_{f_1}, A) \otimes (T_{f_2}, B) = (S \times T_{f_1 \times f_2}, A \times B)$ for all (S_{f_1}, A) and (T_{f_2}, B) be elements in \mathbb{C} . Let $(S_{f_1}, A), (T_{f_2}, B) \in \mathbb{C}$. It is clear by Theorem 1 that $S \times T$ is a semigroup and $f_1 \times f_2 \in End(S \times T)$. Since A and B are subset of S and T, respectively, we have $A \times B \subseteq S \times T$. Therefore \otimes is well-defined. Now, we show \mathbb{C} with operator \otimes is a semigroup.

Theorem 3. (\mathbb{C}, \otimes) is a commutative semigroup.

Proof: We already show \otimes has a closed property. It remains to show that \otimes preserves an associate property. Let $(S_{f_1}, A), (T_{f_2}, B)$ and (U_{f_3}, C) be in \mathbb{C} . Then

$$[(S_{f_1}, A) \otimes (T_{f_2}, B)] \otimes (U_{f_3}, C)$$

= $(S \times T_{f_1 \times f_2}, A \times B) \otimes (U_{f_3}, C)$
= $(S \times T \times U_{f_1 \times f_2 \times f_3}, A \times B \times C)$
= $(S_{f_1}, A) \otimes (T \times U_{f_2 \times f_3}, B \times C)$
= $(S_{f_1}, A) \otimes [(T_{f_2}, B) \otimes (U_{f_3}, C)].$

Therefore (\mathbb{C}, \otimes) is a semigroup. Next, we show (\mathbb{C}, \otimes) is commutative. Let (S_{f_1}, A) and (T_{f_2}, B) be elements in \mathbb{C} . Define $\phi : S \times T \to T \times S$ by $\phi(s, t) = (t, s)$ for all $(s, t) \in S \times T$. Let $(s_1, t_1), (s_2, t_2) \in S \times T$. Then

$$\begin{split} \phi((s_1, t_1) \times (s_2, t_2)) &= \phi(s_1 s_2, t_1 t_2) \\ &= (t_1 t_2, s_1 s_2) \\ &= (t_1, s_1)(t_2, s_2) \\ &= \phi(s_1, t_1) \times \phi(s_2, t_2). \end{split}$$

So ϕ is homomorphism. Clearly that ϕ is bijective. Hence ϕ is isomorphism and also $S \times T \cong^{\phi} T \times S$. Since ϕ is bijective,

Manuscript received March 20, 2015; revised April 3, 2015.

Proceedings of the World Congress on Engineering 2015 Vol I WCE 2015, July 1 - 3, 2015, London, U.K.

we have that $\phi(A \times B) = B \times A$. Let $(s, t) \in S \times T$. Then

$$\begin{aligned} (\phi \circ f_1 \times f_2)(s,t) &= \phi(f_1(s), f_2(t)) \\ &= (f_2(t), f_1(s)) \\ &= f_2 \times f_1(t,s) \\ &= (f_2 \times f_1)(\phi(s,t)) \\ &= ((f_2 \times f_1) \circ \phi)(s,t). \end{aligned}$$

Therefore $(S_{f_1}, A) \otimes (T_{f_2}, B) = (T_{f_2}, B) \otimes (S_{f_1}, A)$. Next, we present idempotent elements of \mathbb{C} . We use $E(\mathbb{C})$ for the set of idempotent elemaent of \mathbb{C}

Theorem 4. Let $\{e\}$ be a trivial semigroup. Then $\{(\{e\}_{Id}, \{e\}), (\{e\}_{Id}, \phi)\} \in E(\mathbb{C})$. Moreover, $(\{e\}_{Id}, \{e\})$ is an identity of \mathbb{C} .

Proof: Clearly that

 $(\{e\}_{Id}, \{e\}) \otimes (\{e\}_{Id}, \{e\}) = (\{(e, e)\}_{Id \times Id}, \{(e, e)\}).$

We will show that $(\{(e, e)\}_{Id \times Id}, \{(e, e)\}) = (\{e\}_{Id}, \{e\})$. Define $f : \{(e, e)\} \to \{e\}$ by f((e, e)) = e. We obtain that $\{(e, e)\} \cong^{f} \{e\}, f((e, e)) = e$ and $f \circ (Id \times Id)(e, e) = f((e, e,)) = e = Id(e) = Id(f((e, e))) = Id \circ f((e, e))$.

Hence $(\{(e, e)\}_{Id \times Id}, \{(e, e)\}) = (\{e\}_{Id}, \{e\})$. We can prove that $(\{e\}_{Id}, \phi) \otimes (\{e\}_{Id}, \phi) = (\{e\}_{Id}, \phi)$. So $(\{e\}_{Id}, \{e\}), (\{e\}_{Id}, \phi) \in E(\mathbb{C})$.

Let (S_f, A) be an element in \mathbb{C} . Define $g: S \to S \times \{e\}$ by g(s) = (s, e) for all $s \in S$. It is easy too see that gis an isomorphism and $g(A) = A \times \{e\}$. Let $s \in S$. Then $g \circ f(s) = g(f(s)) = (f(s), e) = f \times Id(s, e) = (f \times Id) \circ$ g(s). Hence $(S_f, A) = (S_f, A) \otimes (\{e\}_{Id}, \{e\})$. Because \mathbb{C} is commutative, so $(\{e\}_{Id}, \{e\})$ is an identity.

Now, we have \mathbb{C} is a commutative monoid. Our goal is to define a partial order on \mathbb{C} . We present that results in section 2. In [1], we see a relation between \mathbb{C} and \mathbb{D} where \mathbb{D} is a category of digraph. So we will find a partial order on \mathbb{D} with respond to a partial order on \mathbb{C} showed in section 3.

II. Partial order on $\mathbb C$

This section, we present a partial order on \mathbb{C} and also show a compatible property of that partial order.

Theorem 5. Let \leq be a relation on $\mathbb{C} \times \mathbb{C}$ defined by $(S_{f_1}, A) \leq (T_{f_2}, B)$ if and only if there is a subsemigroup H of T such that $S \cong^f H$, $f(A) \subseteq B$ and $f \circ f_1 = f_2 \circ f$. Then \leq is a partial order on \mathbb{C} .

Proof: We will show that \leq preserves reflexive, antisymmetric and transitive properties.

- To show \leq is reflexive, let (S_{f_1}, A) be an element in \mathbb{C} . Clearly that $(S_{f_1}, A) \cong^{id_S} (S_{f_1}, A)$, $id_S(A) = A$ and $id_S \circ f_1 = f_1 \circ id_S$. Hence $(S_{f_1}, A) \leq (S_{f_1}, A)$.
- To show \leq is anti-symmetric, let (S_{f_1}, A) and (T_{f_2}, B) be elements in \mathbb{C} such that $(S_{f_1}, A) \leq (T_{f_2}, B)$ and $(T_{f_2}, B) \leq (S_{f_1}, A)$. Then there exist subsemigroups H_1 and H_2 of S and T, respectively, such that $S \cong^f$ H_2 and $T \cong^g H_1$. So $|S| = |H_2| \leq |T|$ and |T| = $|H_1| \leq |S|$. Hence $H_1 = S$ and $H_2 = T$. We have $S \cong^f T$ and $f = g^{-1}$. Since $f(A) \subseteq B$ and $f^{-1}(A) =$ $g(A) \subseteq A$, we have f(A) = B. Finally, we have $ff_1 =$ f_2f , because $(S_{f_1}, A) \leq (T_{f_2}, B)$. Hence $(S_{f_1}, A) =$ (T_{f_2}, B) .

• To show \leq is transitive, let $(S_{f_1}, A), (T_{f_2}, B)$ and (U_{f_3}, C) be elements in \mathbb{C} such that $(S_{f_1}, A) \leq$ (T_{f_2},B) and $(T_{f_2},B) \leq (U_{f_3},C)$. Then we have $S \cong^f$ $H_1, f(A) \subseteq B$ and $ff_1 = f_2 f$ for all $H_1 < T$ and $T \cong^{g} H_2, g(B) \subseteq C$ and $gf_1 = f_2g$ for all $H_2 < U$. So $g \circ f : S \to g(H_1)$ is bijective. Since $H_1 < T$ and g is a semigroup homomorphism, we have $g(H_1) < U$. Let $s_1, s_2 \in S$. Then we have $g \circ f(s_1 s_2) = g(f(s_1 s_2)) =$ $g(f(s_1)f(s_2)) = g(f_1(s_1))g(f_1(s_2)) = (g \circ f)(s_1)(g \circ f_1(s_2)) = (g \circ f)(g \circ f$ $f(s_2)$. Hence $g \circ f$ is a homomorphism. Therefore $S \cong^{g \circ f} g(H_1)$. Since f and g are bijective, we have $f(A) \subseteq B$ imply that $g \circ f(A) \subseteq g(B) \subseteq C$. Next, let $s \in S$. Then we have $((g \circ f)f_1)(s) = g(f(f_1(s))) =$ $g((ff_1)(s)) = g((f_2f)(s) = g(f_2(f(s))) =$ $(gf_2)(f(s)) = (f_3g)(f(s)) = f_3(g(f(s))) = f_3((g \circ$ $f(s) = (f_3(g \circ f))(s)$. Hence $(g \circ f)f_1 = f_3(g \circ f)$. Therefore $(S_{f_1}, A) \leq (U_{f_3}, C)$.

So \leq is a partial order relation on \mathbb{C} .

Example 6. Let (S_{f_1}, A) and $(T_{f_2}, \{e\})$ be elements in \mathbb{C} where e is an idempotent of T. We have $(S_{f_1}, A) \leq (S_{f_1}, A) \otimes (T_{f_2}, \{e\})$. To prove this statement, define $\beta : S \rightarrow S \times \{e\}$ by $\beta(s) = (s, e)$ for all $s \in S$. Clearly that $S \times \{e\} < S \times T$ and β is bijective. Hence $S \cong^{\beta} S \times \{e\}$. For any $a \in A$, $\beta(a) = (a, e) \in A \times \{e\}$. Thus $\beta(A) \subseteq A \times \{e\}$. Let $s \in S$. Then $\beta f_1(s) = (f_1(s), e) = (f_1 \times f_2)(s, e) = (f_1 \times f_2)\beta(s)$. Hence $\beta f_1 = (f_1 \times f_2)\beta$. Therefore $(S_{f_1}, A) \leq (S_{f_1}, A) \otimes (T_{f_2}, \{e\})$.

Suppose that $((\mathbb{N}, +)_{id_{\mathbb{N}}}, \{5\}) \leq (([5, \infty), \cdot)_{id_{\mathbb{R}}}, \{5\})$. Then there is an isomorphism $f : \mathbb{N} \to H$ for some $H < [5, \infty)$ and f(5) = 5. Since $5 = f(5) = f(1+1+1+1+1) = f(1)^5$, we have $f(1) = \sqrt[5]{5} \notin [5, \infty)$. This is a contradiction. Hence $((\mathbb{N}, +)_{id_{\mathbb{N}}}, \{5\}) \not\leq (([5, \infty), \cdot)_{id_{\mathbb{R}}}, \{5\})$.

Proposition 7. For any (S_f, A) in \mathbb{C} , $(S_f, A) \leq (S_f, A) \otimes (S_f, A)$.

Proof: Let (S_f, A) be an element in C. Clearly that $\bigcup_{s \in S} < (s, s) >$ is a subsemigroup of $S \times S$. Define $g : S \to S \times S$ by g(s) = (s, s) for any $s \in S$. We leave to show g is a isomorphism. For any $s \in S$, we have $gf(s) = (f(s), f(s)) = f \times f(s, s) = ((f \times f)g)(s)$. Hence $gf = (f \times f)g$. Let $a \in A$. Then $g(a) = (a, a) \in A \times A$. So $g(A) \subseteq A \times A$. Therefore $(S_f, A) \leq (S_f, A) \otimes (S_f, A)$. ■

Theorem 8. \leq *is compatible.*

Proof: We know (\mathbb{C}, \otimes) is commutative by Theorem 3. It is sufficient to show \leq is right compatible. Let (S_{f_1}, A) , (T_{f_2}, B) and (U_{f_3}, C) be elements in \mathbb{C} such that $(S_{f_1}, A) \leq (T_{f_2}, B)$. Then there is a isomorphism $f: S \to H$ for some H < T such that $f(A) \subseteq B$ and $ff_1 = f_2 f$. We will show that $(S \times U_{f_1 \times f_3}, A \times C) \leq (T \times U_{f_2 \times f_3}, B \times C)$.

First, we define $\phi: S \times U \to H \times U$ as $\phi(s, u) = (f(s), u)$ for all $(s, u) \in S \times U$. Clearly $\phi(s, u) \in T \times U$, since $f(s) \in H$ for all $s \in S$. So ϕ is well-defined. Let (s_1, u_1) and (s_2, u_2) be elements in $S \times U$. Then

$$\begin{split} \phi((s_1, u_1)(s_2, u_2)) &= \phi(s_1 s_2, u_1 u_2) \\ &= (f(s_1 s_2), u_1 u_2) \\ &= (f(s_1) f(s_2), u_1 u_2) \\ &= (f(s_1) u_1)(f(s_2), u_2) \\ &= \phi(s_1, u_1) \phi(s_2, u_2). \end{split}$$

So ϕ is a homomorphism. Let $(h, u) \in H \times U$. Then $h \in H = Im(f)$. So there is $s \in S$ such that f(s) = h and also $\phi(s, u) = (h, u)$. Hence ϕ is onto. To prove ϕ is one-to-one, let (s_1, u_1) and (s_2, u_2) be elements in $S \times U$ such that $(f(s_1), u) = \phi(s_1, u_1) = \phi(s_2, u_2) = (f(s_2), u)$. Then $f(s_1) = f(s_2)$ and $u_1 = u_2$. Since f is injective, we have $s_1 = s_2$. Thus $(s_1, u_1) = (s_2, u_2)$ and ϕ is injective. Therefore $S \times U \cong^{\phi} T \times U$.

Let (a,c) be an element in $A \times C$. Then $\phi(a,c) = (f(a),c) \in B \times C$. Hence $\phi(A \times C) \subseteq B \times C$.

The last part of proof, we need to show that $\phi(f_1 \times f_3) = (f_2 \times f_3)\phi$. Let $(s, u) \in S \times U$. Then

$$\begin{split} \phi(f_1 \times f_3)(s, u) &= \phi(f_1(s), f_3(u)) \\ &= (f(f_1(s)), f_3(u)) \\ &= (ff_1(s), f_3(u)) \\ &= (f_2f(s), f_3(u)) \\ &= (f_2 \times f_3)(f(s), u) \\ &= (f_2 \times f_3)(\phi(s, u)) \\ &= (f_2 \times f_3)\phi(s, u). \end{split}$$

Hence $\phi(f_1 \times f_3) = (f_2 \times f_3)\phi$.

By all of above, we can conclude that $(S \times U_{f_1 \times f_3}, A \times C) \leq (T \times U_{f_2 \times f_3}, B \times C)$. Therefore \leq is compatible.

Corollary 9. For any (S_f, A) in \mathbb{C} , $(S_f, A) \leq (S_f, A)^n$ for all integer n.

For any endomorphism f on \mathbb{Z}_4 , f(0) = 0. So $(\mathbb{Z}_{4_{Id}}, \{0\}) \not\leq (\mathbb{Z}_{4_{Id}}, \{1\})$. Next, $(\mathbb{Z}_{4_{Id}}, \{0\}) \otimes (\mathbb{Z}_{4_{Id}}, \phi) = ((\mathbb{Z}_4 \times \mathbb{Z}_4)_{Id \times Id}, \phi) = (\mathbb{Z}_{4_{Id}}, \{1\}) \otimes (\mathbb{Z}_{4_{Id}}, \phi)$. Hence converse of Theorem 8 is not true.

III. Partial order on the set of endo-Cayley $$\operatorname{GRAPHS}$$

We begin this section by giving some definitions used in this paper. Let G_1 and G_2 be digraphs. We call H as **subgraph** of G_1 , if $V(H) \subset V(G_1)$ and $E(H) \subseteq E(G_1)$. A subgraph H is **induce**, if whenever vertices u and v in V(H) are joined by arc e in G, then e is in E(H). Assume $V \subseteq V(G_1)$. We refer $G_1[V]$ as a induce subgraph with vertex set is V. A **homomorphism** between G_1 and G_2 is a function $f: V(G_1) \rightarrow V(G_2)$ such that if $(x, y) \in E(G_1)$, then $(f(x), f(y)) \in E(G_2)$. We call a homomorphism which is bijective as **isomorphism**. If there is an isomorphaim between G_1 and G_2 denoted by $G_1 \cong G_2$, we refer as $G_1 = G_2$. We call G_1 is **embedded** in G_2 , if $G_1 \cong H$ for some subgraph H of G_2 .

The **tensor product** of G_1 and G_2 , denoted by $G_1 \otimes G_2$, is a graph with vertex set $V(G_1) \times V(G_2)$ where (u_1, v_1) is adjacent to (u_2, v_2) if and only if u_1 is adjacent to u_2 and v_1 is adjacent to v_2 .

We note here that $G_1 \otimes G_2 = G_2 \otimes G_1$ for any graphs G_1 and G_2 , because $G_1 \otimes G_2 \cong G_2 \otimes G_1$.

Theorem 10. Let G_1 , G_2 and G_3 be graphs. Then $G_1 \otimes (G_2 \otimes G_3) = (G_1 \otimes G_2) \otimes G_3$.

Proof: Clearly that $V(G_1 \otimes (G_2 \otimes G_3) = G_1 \times G_2 \times G_3 = V((G_1 \otimes G_2) \otimes G_3)$. Let $(u_1, v_1, w_1), (u_2, v_2, w_2) \in$

$$\begin{split} V(G_1 \times G_2 \times G_3) &\text{ be adjacent called as arec } e. \text{ Then} \\ e \in E(G_1 \otimes (G_2 \otimes G_3)) \\ \leftrightarrow (u_1, u_2) \in E(G_1), ((v_1, w_1), (v_2, w_2)) \in E(G_2 \times G_3) \\ \leftrightarrow (u_1, u_2) \in E(G_1), (v_1, v_2) \in E(G_2), (w_1, w_2)) \in E(G_3) \\ \leftrightarrow ((u_1, v_1), (u_1, v_2)) \in E(G_1 \otimes G_2), (w_1, w_2)) \in E(G_3) \\ \leftrightarrow e \in E((G_1 \otimes G_2) \otimes G_3). \end{split}$$

Hence $G_1 \otimes (G_2 \otimes G_3) = (G_1 \otimes G_2) \otimes G_3$. Let S be semigroup, f endo-morphism on S and A a

sebset of S. A endo-Cayley graph of semigroup S on endomorphism f with connecting set A, denoted by $endo - Cayley_f(s, A)$, is a graph whose vertex is element in S and there is an arc (u, v) if v = f(u)a for some $a \in A$.

In [2], the theorem about relation between tensor product of endo-Cayley graphs and product of semigroups are shown. We post here.

Theorem 11. Let S_1 and S_2 be semigroups, $A_1 \subseteq S_1$, $A_2 \subseteq S_2$ and endomorphisms f_1 and f_2 on S_1 and S_2 , respectively. Then

 $endo - Cay_{f_1 \times f_2}(S_1 \times S_2, A_1 \times A_2) = endo - Cay_{f_1}(S_1, A_1) \otimes endo - Cay_{f_2}(S_2, A_2).$

Proof: For convenient, we let $G_1 = endo - Cay_{f_1 \times f_2}(S_1 \times S_2, A_1 \times A_2), G_2 = endo - Cay_{f_1}(S_1, A_1)$ and $G_3 = endo - Cay_{f_2}(S_2, A_2)$. Let (u_1, v_1) be adjacent to (u_2, v_2) in G_1 . Then

 $\begin{array}{l} ((u_1, v_1), (u_2, v_2)) \in E(G_1) \\ \leftrightarrow (u_2, v_2) = (f_1(u_1)a_1, f_2(v_1)a_2), \ a_1 \in A_1 \ \text{and} \ a_2 \in A_2 \\ \leftrightarrow u_2 = f_1(u_1)a_1 \ \text{and} \ v_2 = f_2(v_1)a_2 \\ \leftrightarrow (u_1, u_2) \in E(G_2) \ \text{and} \ (v_1, v_2) \in E(G_3) \end{array}$

 $\leftrightarrow ((u_1, v_1), (u_2, v_2)) \in E(\underline{G}_2 \otimes G_3).$

Therefore $G_1 = \overline{G_2} \otimes G_3$. The proof was completed. Let \mathbb{D} be a category of endo-Cayley graphs. Clearly that \mathbb{D} have a commutative property. So we have the following theorem.

Theorem 12. (\mathbb{D}, \otimes) is a commutative semigroup.

Proof: It follows by Theorem 11 and 10.

Theorem 13. Define a relation \leq on \mathbb{D} as $G_1 \leq G_2$ if G_1 is embedded in G_2 . Then \leq is partial order on \mathbb{D} . Moreover, \leq is compatible.

Proof: We ignore to show \leq is partial order. We show \leq is compatible by assuming G_1 , G_2 and G_3 are graphs such that $G_1 \leq G_2$. Then $G_1 \cong^f G_2$. Define $g: G_1 \times G_2 \to G_2 \times G_3$ as g(u, v) = (f(u), v). Clearly that g is bijective. Let vertices (u_1, v_1) and (u_2, v_2) in $G_1 \otimes G_3$ be adjacent. We have $(u_1, u_2) \in E(G_1)$ and $(v_1, v_2) \in E(G_3)$. So $(f(u_1), f(u_2)) \in E(G_2)$. Hence we have $((f(u_1), v_1), (f(u_2), v_2)) \in E(G_2 \otimes G_3)$. So g is a graph isomorphism. Therefore $G_1 \otimes G_3 \leq G_2 \otimes G_3$. Since \mathbb{D} is commutative, we can conclude that \leq is compatible.

Similarly to the converse of Theorem 8, if $G_1 \otimes G_3 \leq G_2 \otimes G_3$, it does not imply $G_1 \leq G_2$. We show here. We know that $k_n \otimes \bar{k_n} = \bar{k_{n^2}} = \bar{k_n} \otimes \bar{k_n}$ for any integer *n* but $k_n \not\leq \bar{k_n}$.

Theorem 14. Let $\beta : \mathbb{C} \to \mathbb{D}$ by $\beta((S_f, A)) = endo - Cay_f(S, A)$ for any $(S_f, A) \in \mathbb{C}$. Then β is homomorphism.

Proof: We show first that β is well defined. Let (S_{f_1}, A) and (T_{f_2}, B) be elements in \mathbb{C} such that $(S_{f_1}, A) = (T_{f_2}, B)$.

Proceedings of the World Congress on Engineering 2015 Vol I WCE 2015, July 1 - 3, 2015, London, U.K.

Then $S \cong^f T$, f(A) = B, and $ff_1 = f_2 f$. We show endo $-Cay_{f_1}(S, A) = endo - Cay_{f_2}(T, B)$ by proving that f is a graph isomorphism. Let $(s, f_1(s)a)$ be arc in endo $- Cay_{f_1}(S, A)$. Then $s \in S$ and $a \in A$. So $f(s) \in T$ and $f(a) \in B$. Hence $(f(s), f(f_1(s)a)) = (f(s), f(f_1(s))f(a))$ = $(f(s), (ff_1)(s)f(a))$ = $(f(s), (f_2f)(s)f(a))$ = $(f(s), f_2(f(s))f(a)) \in E(endo - Cay_{f_1}(S, A))$. Since f is bijective, we have f is a graph homomorphism. Therefore $endo - Cay_{f_1}(S, A) = endo - Cay_{f_2}(T, B)$ and also β is well defined. It is easy to see that β is an onto function. Theorem 11 shows β is a homomorphism.

The homomorphism β is not injective showed in following example.

Example 15. Let $S = (\mathbb{Z}_4, \cdot)$, $T = (\mathbb{Z}_2 \times \mathbb{Z}_2, \cdot)$, $A = \{0\}$ and $B = \{(0,0)\}$. Then $Id_S \in End(S)$, $Id_T \in End(T)$ and $(S_{Id_S}, A), (T_{Id_T}, B) \in \mathbb{C}$. The endo-Cay graph of (S_{Id_S}, A) and (T_{Id_T}, B) are showed as below.

 $endo - Cay_{Id_S}(S, A) \quad endo - Cay_{Id_T}(T, B)$

It is clear that endo $-Cay_{Id_S}(S, A) = endo - Cay_{Id_T}(T, B)$ but obviously $(S_{Id_S}, A) \neq (T_{Id_T}, B)$ because $\mathbb{Z}_4 \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 16. one vertex and one loop are exactly two idempotent element in \mathbb{D} . Moreover, an identity element in \mathbb{D} is an one loop.

Proof: By Theorem 4 and the existence of onto homomorphism between \mathbb{C} and \mathbb{D} .

Now, we have a partial order on \mathbb{C} and \mathbb{D} and also know relation between both semigroup. So it is possible to compare that both partial order. The result is showed in Theorem 17.

Theorem 17. Let (S_{f_1}, A) and (T_{f_2}, B) be in \mathbb{C} . If $(S_{f_1}, A) \leq (T_{f_2}, B)$, then endo $-Cay_{f_1}(S, A) \leq endo - Cay_{f_2}(T, B)$.

Proof: Assume that $(S_{f_1}, A) \leq (T_{f_2}, B)$. Then $S \cong^f H$ for some H < T, $f(A) \subseteq B$ and $ff_1 = f_2 f$. We claim that $endo - Cay_{f_1}(S, A) \cong^f endo - Cay_{f_2}(T, B)[H]$.

We first prove that f is a graph homomorphism. Let $(s, f_1(s)a)$ be an arc in $endo - Cay_{f_1}(S, A)$ for some $s \in S$ and $s \in S$. Then $s \in S$ and $f_1(s)a \in S$. So $f(s) \in S$ and also $f_2(f(s))f(a) = (ff_1(s))f(a) = f(f_1(s)a) \in H$. By assumption, we have $f(a) \in B$ and arc $(f_2(f(s)), f_2(f(s))f(a))$ in $E(endo - Cay_{f_2}(T, B))$. Since both $f_2(f(s))$ and $f_2(f(s))f(a)$ are vertices in H, we have that $(f_2(f(s)), f_2(f(s)))f(a)) \in E(endo - Cay_{f_2}(T, B)[H])$. We have f is bijective by assumption. So that claim is proved. Therefore $endo - Cay_{f_1}(S, A) \leq endo - Cay_{f_2}(T, B)$.

The converse of Theorem 17 is not true shown in Example 15.

We recall a natural partial order, Mitsch order. Let S be a semigroup and a, b elements in S. The natural partial order

 \leq is defined by $a \leq b$ if and only if a = xb = by and xa = a for some $x, y \in S^1$. Next Theorem, we generalize elements in \mathbb{C} with respect to a natural partial order.

Theorem 18. Let (S_{f_1}, A) and (T_{f_2}, B) be in \mathbb{C} . $(S_{f_1}, A) \leq (T_{f_2}, B)$ where \leq is a natural partial order if and only if $(S_{f_1}, A) = (T_{f_2}, B)$.

Proof: Clearly that if $(S_{f_1}, A) = (T_{f_2}, B)$, then it follows that $(S_{f_1}, A) \leq (T_{f_2}, B)$. Suppose $(S_{f_1}, A) \leq (T_{f_2}, B)$. Then $(S_{f_1}, A) = (X_{g_1}, U) \otimes (T_{f_2}, B) = (T_{f_2}, B) \otimes (Y_{g_2}, V)$ and $(X_{g_1}, U) \otimes (S_{f_1}, A) = (S_{f_1}, A)$ for some $(X_{g_1}, U), (Y_{g_2}, V) \in \mathbb{C}$. So we have |X| = 1 which implies that (X_{g_1}, U) is an identity of \mathbb{C} . Hence $(S_{f_1}, A) = (X_{g_1}, U) \otimes (T_{f_2}, B) = (T_{f_2}, B)$. ■

Corollary 19. A partial order relation on \mathbb{C} and a partial order relation on \mathbb{D} cover the Mitsch order.

ACKNOWLEDGMENT

The authors would like to thank the Faculty of Applied Sciences, King Mongkul's University of Technology North Bangkok for financial support.

REFERENCES

- C. Promsakon, S. Panma, "Functorial Properties of Endo-Cayley Constructions," *Far East Journal of Mathematical Sciences*, vol. 51, no. 1, pp. 1-15. 2011.
- [2] C. Promsakon, S. Panma, "Connectedness of endo-Cayley Digraphs of Right(Left) Zero Union of Semigroups," *International Journal of Pure* and Applied Mathematics, vol. 77, no. 1, pp. 51-61. 2012.
- [3] Peter M. Higgins, "The Mitsch order on a semigroup," Semigroup Forum, vol. 49, no. 1, pp. 261-266. 1994.