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Abstract—Let C be a set of all structures (Sf , A) where S
is a semigroup, f is an endomorphism on S and A is a subset
of S. We define operation ⊗ on C and also prove (C,⊗) is
a semigroup. Similarly, we show D, the set of all endo-Caylay
sigraphs, is a semigroup under the tensor product. Moreover,
we find partial order relations in both C and D.

Index Terms—Endo-Cayley digraph, Partial order, Semi-
groups.

I. INTRODUCTION

LET (S1, ·) and (S2, ◦) be semigroups. We can create a
new semigroup from S1 and S2 as (S1 ×S2,×) where

(a, b)× (x, y) = (a · x, b ◦ y) for all (a, b), (x, y) ∈ S1 ×S2.
This semigroup is called as product semigroup. Clearly that
× is well-defined. Let (a, b), (s, t) and (x, y) be elements in
S1 × S2. We have that [(a, b) × (s, t)] × (x, y) = (a · s, b ◦
t) × (x, y) = (a · s · x, b ◦ t ◦ y) = (a, b) × (s · x, t ◦ y) =
(a, b) × [(s, t) × (x, y)]. Hence S1 × S2 with operator × is
a semigroup.

For any semigroup S, we denote End(S) for the set
of all endomorphisms on S. Let S be a semigroup and
f1, f2 ∈ End(S). We will show that f1 ◦ f2 ∈ End(S). Let
x and y be elements in S. Then f1 ◦f2(xy) = f1(f2(xy)) =
f1(f2(x)f2(y)) = f1(f2(x))f1(f2(y)) = (f1 ◦ f2(x))(f1 ◦
f2(y)). Hence f1 ◦ f2 ∈ End(S). As we know associate
property holds for functions composition, therefore End(S)
is a semigroup under function composition. In Theorem 1,
we show an example of an endomorphism on the product
semigroup.

Theorem 1. Let S1 and S2 be semigroups and f1 and f2 be
endomorphisms on S1 and S2, respectively. Define f1 × f2 :
S1 × S2 → S1 × S2 by f1 × f2(s1, s2) = (f1(s1), f2(s2)).
Then f1 × f2 ∈ End(S1 × S2).

Proof: Let (a, b), (x, y) ∈ S1 × S2. Then f1 ×
f2((a, b)(x, y)) = f1 × f2((ax, by)) = (f1(ax), f2(by)) =
(f1(a)f1(x), f2(b)f2(y)) = (f1(a), f2(b))(f1(x), f2(y)) =
(f1×f2(a, b))(f1×f2(x, y)). Hence f1×f2 ∈ End(S1×S2).

Let C = {(Sf , A)|S is a semigroup, A ⊆ S, f ∈
End(S)}. We say (Sf1 , A) = (Tf2 , B) if there exists a
function f : S → T such that S ∼=f T , f(A) = B and
f ◦f1 = f2◦f . We will show that = is an equivalent relation
on C.

Proposition 2. A relation = is an equivalent relation on C.

Proof: We show = preserve reflexive, symmetric and
transitive properties here.
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• To show = is reflexive, let (Sf , A) ∈ C. Clearly that
S ∼=I S, I(A) = A and If1 = f1 = f1I where I is an
identity function. So = is reflexive.

• To show = is symmetric, let (Sf1 , A) and (Tf2 , B) be
in C such that (Sf1 , A) = (Tf2 , B). Then there exists a
function f : S → T such that S ∼=f T , f(A) = B and
f ◦f1 = f2 ◦f . So f is a bijection and a bijection f−1 :
T → S exists. We obtain that T ∼=f−1

S, f−1(B) = A
and f−1f2 = f1f

−1. Therefore (Tf2 , B) = (Sf1 , A).
• To show = is transitive, let (Sf1 , A), (Tf2 , B) and

(Uf3 , C) be elements in C such that (Sf1 , A) =
(Tf2 , B) and (Tf2 , B) = (Uf3 , C). Then there exist
bijections f : S → T and g : T → U such that
S ∼=f T f(A) = B, ff1 = f2f and T ∼=g U
g(B) = C, gf2 = f3g. So g ◦ f is a bijection and also
S ∼=g◦f U . Next, g ◦f(A) = g(f(A)) = g(B) = C and
(g ◦f)◦f1 = g ◦ (f ◦f1) = g ◦ (f2 ◦f) = (g ◦f2)◦f =
(f3 ◦ g) ◦ f = f3 ◦ (g ◦ f). Hence (Sf1 , A) = (Uf3 , C).

Therefore = is an equivalent relation on C.
Next, we define an operator on C, called ⊗ : C ×

C → C, as (Sf1 , A) ⊗ (Tf2 , B) = (S × T f1×f2 , A ×
B) for all (Sf1 , A) and (Tf2 , B) be elements in C. Let
(Sf1 , A), (Tf2 , B) ∈ C. It is clear by Theorem 1 that S × T
is a semigroup and f1 × f2 ∈ End(S × T ). Since A and B
are subset of S and T , respectively, we have A×B ⊆ S×T .
Therefore ⊗ is well-defined. Now, we show C with operator
⊗ is a semigroup.

Theorem 3. (C,⊗) is a commutative semigroup.

Proof: We already show ⊗ has a closed property. It
remains to show that ⊗ preserves an associate property. Let
(Sf1 , A), (Tf2 , B) and (Uf3 , C) be in C. Then

[(Sf1 , A)⊗ (Tf2 , B)]⊗ (Uf3 , C)

= (S × Tf1×f2 , A×B)⊗ (Uf3 , C)

= (S × T × Uf1×f2×f3 , A×B × C)

= (Sf1 , A)⊗ (T × Uf2×f3 , B × C)

= (Sf1 , A)⊗ [(Tf2 , B)⊗ (Uf3 , C)].

Therefore (C,⊗) is a semigroup. Next, we show (C,⊗) is
commutative. Let (Sf1 , A) and (Tf2 , B) be elements in C.
Define ϕ : S × T → T × S by ϕ(s, t) = (t, s) for all
(s, t) ∈ S × T . Let (s1, t1), (s2, t2) ∈ S × T . Then

ϕ((s1, t1)× (s2, t2)) = ϕ(s1s2, t1t2)

= (t1t2, s1s2)

= (t1, s1)(t2, s2)

= ϕ(s1, t1)× ϕ(s2, t2).

So ϕ is homomorphism. Clearly that ϕ is bijective. Hence ϕ
is isomorphism and also S×T ∼=ϕ T×S. Since ϕ is bijective,
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we have that ϕ(A×B) = B ×A. Let (s, t) ∈ S × T . Then

(ϕ ◦ f1 × f2)(s, t) = ϕ(f1(s), f2(t))

= (f2(t), f1(s))

= f2 × f1(t, s)

= (f2 × f1)(ϕ(s, t))

= ((f2 × f1) ◦ ϕ)(s, t).

Therefore (Sf1 , A)⊗ (Tf2 , B) = (Tf2 , B)⊗ (Sf1 , A).
Next, we present idempotent elements of C. We use E(C)

for the set of idempotent elemaent of C

Theorem 4. Let {e} be a trivial semigroup.
Then {({e}Id, {e}), ({e}Id, ϕ)} ∈ E(C). Moreover,
({e}Id, {e}) is an identity of C.

Proof: Clearly that

({e}Id, {e})⊗ ({e}Id, {e}) = ({(e, e)}Id×Id, {(e, e)}).

We will show that ({(e, e)}Id×Id, {(e, e)}) = ({e}Id, {e}).
Define f : {(e, e)} → {e} by f((e, e)) = e. We obtain that
{(e, e)} ∼=f {e}, f((e, e)) = e and f ◦ (Id × Id)(e, e) =
f((e, e, )) = e = Id(e) = Id(f((e, e))) = Id ◦ f((e, e)).

Hence ({(e, e)}Id×Id, {(e, e)}) = ({e}Id, {e}). We can
prove that ({e}Id, ϕ) ⊗ ({e}Id, ϕ) = ({e}Id, ϕ). So
({e}Id, {e}), ({e}Id, ϕ) ∈ E(C).

Let (Sf , A) be an element in C. Define g : S → S × {e}
by g(s) = (s, e) for all s ∈ S. It is easy too see that g
is an isomorphism and g(A) = A × {e}. Let s ∈ S. Then
g ◦ f(s) = g(f(s)) = (f(s), e) = f × Id(s, e) = (f × Id) ◦
g(s). Hence (Sf , A) = (Sf , A) ⊗ ({e}Id, {e}). Because C
is commutative, so ({e}Id, {e}) is an identity.

Now, we have C is a commutative monoid. Our goal is to
define a partial order on C. We present that results in section
2. In [1], we see a relation between C and D where D is a
category of digraph. So we will find a partial order on D
with respond to a partial order on C showed in section 3.

II. PARTIAL ORDER ON C
This section, we present a partial order on C and also show

a compatible property of that partial order.

Theorem 5. Let ≤ be a relation on C × C defined by
(Sf1 , A) ≤ (Tf2 , B) if and only if there is a subsemigroup
H of T such that S ∼=f H , f(A) ⊆ B and f ◦ f1 = f2 ◦ f .
Then ≤ is a partial order on C.

Proof: We will show that ≤ preserves reflexive, anti-
symmetric and transitive properties.

• To show ≤ is reflexive, let (Sf1 , A) be an element in C.
Clearly that (Sf1 , A)

∼=idS (Sf1 , A), idS(A) = A and
idS ◦ f1 = f1 ◦ idS . Hence (Sf1 , A) ≤ (Sf1 , A).

• To show ≤ is anti-symmetric, let (Sf1 , A) and (Tf2 , B)
be elements in C such that (Sf1 , A) ≤ (Tf2 , B) and
(Tf2 , B) ≤ (Sf1 , A). Then there exist subsemigroups
H1 and H2 of S and T , respectively, such that S ∼=f

H2 and T ∼=g H1. So |S| = |H2| ≤ |T | and |T | =
|H1| ≤ |S|. Hence H1 = S and H2 = T . We have
S ∼=f T and f = g−1. Since f(A) ⊆ B and f−1(A) =
g(A) ⊆ A, we have f(A) = B. Finally, we have ff1 =
f2f , because (Sf1 , A) ≤ (Tf2 , B). Hence (Sf1 , A) =
(Tf2 , B).

• To show ≤ is transitive, let (Sf1 , A), (Tf2 , B) and
(Uf3 , C) be elements in C such that (Sf1 , A) ≤
(Tf2 , B) and (Tf2 , B) ≤ (Uf3 , C). Then we have S ∼=f

H1, f(A) ⊆ B and ff1 = f2f for all H1 < T and
T ∼=g H2, g(B) ⊆ C and gf1 = f2g for all H2 < U . So
g ◦ f : S → g(H1) is bijective. Since H1 < T and g is
a semigroup homomorphism, we have g(H1) < U . Let
s1, s2 ∈ S. Then we have g ◦ f(s1s2) = g(f(s1s2)) =
g(f(s1)f(s2)) = g(f1(s1))g(f1(s2)) = (g ◦ f)(s1)(g ◦
f)(s2). Hence g ◦ f is a homomorphism. Therefore
S ∼=g◦f g(H1). Since f and g are bijective, we have
f(A) ⊆ B imply that g ◦ f(A) ⊆ g(B) ⊆ C. Next, let
s ∈ S. Then we have ((g ◦ f)f1)(s) = g(f(f1(s))) =
g((ff1)(s)) = g((f2f)(s) = g(f2(f(s))) =
(gf2)(f(s)) = (f3g)(f(s)) = f3(g(f(s)) = f3((g ◦
f)(s)) = (f3(g ◦ f))(s). Hence (g ◦ f)f1 = f3(g ◦ f).
Therefore (Sf1 , A) ≤ (Uf3 , C).

So ≤ is a partial order relation on C.

Example 6. Let (Sf1 , A) and (Tf2 , {e}) be elements in
C where e is an idempotent of T . We have (Sf1 , A) ≤
(Sf1 , A) ⊗ (Tf2 , {e}). To prove this statement, define β :
S → S × {e} by β(s) = (s, e) for all s ∈ S. Clearly
that S × {e} < S × T and β is bijective. Hence S ∼=β

S × {e}. For any a ∈ A, β(a) = (a, e) ∈ A × {e}. Thus
β(A) ⊆ A × {e}. Let s ∈ S. Then βf1(s) = (f1(s), e) =
(f1 × f2)(s, e) = (f1 × f2)β(s). Hence βf1 = (f1 × f2)β.
Therefore (Sf1 , A) ≤ (Sf1 , A)⊗ (Tf2 , {e}).

Suppose that ((N,+)idN , {5}) ≤ (([5,∞), ·)idR , {5}).
Then there is an isomorphism f : N → H for some H <
[5,∞) and f(5) = 5. Since 5 = f(5) = f(1+1+1+1+1) =
f(1)5, we have f(1) = 5

√
5 /∈ [5,∞). This is a contradiction.

Hence ((N,+)idN , {5}) ̸≤ (([5,∞), ·)idR , {5}).

Proposition 7. For any (Sf , A) in C, (Sf , A) ≤ (Sf , A)⊗
(Sf , A).

Proof: Let (Sf , A) be an element in C. Clearly that∪
s∈S < (s, s) > is a subsemigroup of S × S. Define g :

S → S × S by g(s) = (s, s) for any s ∈ S. We leave to
show g is a isomorphism. For any s ∈ S, we have gf(s) =
(f(s), f(s)) = f × f(s, s) = ((f × f)g)(s). Hence gf =
(f × f)g. Let a ∈ A. Then g(a) = (a, a) ∈ A × A. So
g(A) ⊆ A×A. Therefore (Sf , A) ≤ (Sf , A)⊗ (Sf , A).

Theorem 8. ≤ is compatible.

Proof: We know (C,⊗) is commutative by Theorem 3.
It is sufficient to show ≤ is right compatible. Let (Sf1 , A),
(Tf2 , B) and (Uf3 , C) be elements in C such that (Sf1 , A) ≤
(Tf2 , B). Then there is a isomorphism f : S → H for some
H < T such that f(A) ⊆ B and ff1 = f2f . We will show
that (S × Uf1×f3 , A× C) ≤ (T × Uf2×f3 , B × C).

First, we define ϕ : S×U → H×U as ϕ(s, u) = (f(s), u)
for all (s, u) ∈ S × U . Clearly ϕ(s, u) ∈ T × U , since
f(s) ∈ H for all s ∈ S. So ϕ is well-defined. Let (s1, u1)
and (s2, u2) be elements in S × U . Then

ϕ((s1, u1)(s2, u2)) = ϕ(s1s2, u1u2)

= (f(s1s2), u1u2)

= (f(s1)f(s2), u1u2)

= (f(s1)u1)(f(s2), u2)

= ϕ(s1, u1)ϕ(s2, u2).
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So ϕ is a homomorphism. Let (h, u) ∈ H × U . Then
h ∈ H = Im(f). So there is s ∈ S such that f(s) = h
and also ϕ(s, u) = (h, u). Hence ϕ is onto. To prove ϕ is
one-to-one, let (s1, u1) and (s2, u2) be elements in S × U
such that (f(s1), u) = ϕ(s1, u1) = ϕ(s2, u2) = (f(s2), u).
Then f(s1) = f(s2) and u1 = u2. Since f is injective, we
have s1 = s2. Thus (s1, u1) = (s2, u2) and ϕ is injective.
Therefore S × U ∼=ϕ T × U .

Let (a, c) be an element in A × C. Then ϕ(a, c) =
(f(a), c) ∈ B × C. Hence ϕ(A× C) ⊆ B × C.

The last part of proof, we need to show that ϕ(f1×f3) =
(f2 × f3)ϕ. Let (s, u) ∈ S × U . Then

ϕ(f1 × f3)(s, u) = ϕ(f1(s), f3(u))

= (f(f1(s)), f3(u))

= (ff1(s), f3(u))

= (f2f(s), f3(u))

= (f2 × f3)(f(s), u)

= (f2 × f3)(ϕ(s, u))

= (f2 × f3)ϕ(s, u).

Hence ϕ(f1 × f3) = (f2 × f3)ϕ.
By all of above, we can conclude that (S × Uf1×f3 , A×

C) ≤ (T × Uf2×f3 , B × C). Therefore ≤ is compatible.

Corollary 9. For any (Sf , A) in C, (Sf , A) ≤ (Sf , A)n for
all integer n.

For any endomorphism f on Z4, f(0) = 0. So
(Z4Id , {0}) ̸≤ (Z4Id , {1}). Next, (Z4Id , {0}) ⊗ (Z4Id , ϕ) =
((Z4 × Z4)Id×Id, ϕ) = (Z4Id , {1}) ⊗ (Z4Id , ϕ). Hence
converse of Theorem 8 is not true.

III. PARTIAL ORDER ON THE SET OF ENDO-CAYLEY
GRAPHS

We begin this section by giving some definitions used
in this paper. Let G1 and G2 be digraphs. We call H as
subgraph of G1, if V (H) ⊂ V (G1) and E(H) ⊆ E(G1).
A subgraph H is induce, if whenever vertices u and v in
V (H) are joined by arc e in G, then e is in E(H). Assume
V ⊆ V (G1). We refer G1[V ] as a induce subgraph with
vertex set is V . A homomorphism between G1 and G2 is
a function f : V (G1) → V (G2) such that if (x, y) ∈ E(G1),
then (f(x), f(y)) ∈ E(G2). We call a homomorphism which
is bijective as isomorphism. If there is an isomorphaim
between G1 and G2 denoted by G1

∼= G2, we refer as
G1 = G2. We call G1 is embedded in G2, if G1

∼= H
for some subgraph H of G2.

The tensor product of G1 and G2, denoted by G1 ⊗G2,
is a graph with vertex set V (G1)×V (G2) where (u1, v1) is
adjacent to (u2, v2) if and only if u1 is adjacent to u2 and
v1 is adjacent to v2.

We note here that G1⊗G2 = G2⊗G1 for any graphs G1

and G2, because G1 ⊗G2
∼= G2 ⊗G1.

Theorem 10. Let G1, G2 and G3 be graphs. Then G1 ⊗
(G2 ⊗G3) = (G1 ⊗G2)⊗G3.

Proof: Clearly that V (G1 ⊗ (G2 ⊗ G3) = G1 × G2 ×
G3 = V ((G1 ⊗ G2) ⊗ G3). Let (u1, v1, w1), (u2, v2, w2) ∈

V (G1 ×G2 ×G3) be adjacent called as arec e. Then

e ∈ E(G1 ⊗ (G2 ⊗G3))

↔ (u1, u2) ∈ E(G1), ((v1, w1), (v2, w2)) ∈ E(G2 ×G3)

↔ (u1, u2) ∈ E(G1), (v1, v2) ∈ E(G2), (w1, w2)) ∈ E(G3)

↔ ((u1, v1), (u1, v2)) ∈ E(G1 ⊗G2), (w1, w2)) ∈ E(G3)

↔ e ∈ E((G1 ⊗G2)⊗G3).

Hence G1 ⊗ (G2 ⊗G3) = (G1 ⊗G2)⊗G3.
Let S be semigroup, f endo-morphism on S and A a

sebset of S. A endo-Cayley graph of semigroup S on endo-
morphism f with connecting set A, denoted by endo −
Cayleyf (s,A), is a graph whose vertex is element in S and
there is an arc (u, v) if v = f(u)a for some a ∈ A.

In [2], the theorem about relation between tensor product
of endo-Cayley graphs and product of semigroups are shown.
We post here.

Theorem 11. Let S1 and S2 be semigroups, A1 ⊆ S1,
A2 ⊆ S2 and endomorphisms f1 and f2 on S1 and S2,
respectively. Then
endo − Cayf1×f2(S1 × S2, A1 × A2) = endo −
Cayf1(S1, A1)⊗ endo− Cayf2(S2, A2).

Proof: For convenient, we let G1 = endo −
Cayf1×f2(S1 × S2, A1 ×A2), G2 = endo−Cayf1(S1, A1)
and G3 = endo − Cayf2(S2, A2). Let (u1, v1) be adjacent
to (u2, v2) in G1. Then
((u1, v1), (u2, v2)) ∈ E(G1)
↔ (u2, v2) = (f1(u1)a1, f2(v1)a2), a1 ∈ A1 and a2 ∈ A2

↔ u2 = f1(u1)a1 and v2 = f2(v1)a2
↔ (u1, u2) ∈ E(G2) and (v1, v2) ∈ E(G3)
↔ ((u1, v1), (u2, v2)) ∈ E(G2 ⊗G3).
Therefore G1 = G2 ⊗G3. The proof was completed.
Let D be a category of endo-Cayley graphs. Clearly that

D have a commutative property. So we have the following
theorem.

Theorem 12. (D,⊗) is a commutative semigroup.

Proof: It follows by Theorem 11 and 10.

Theorem 13. Define a relation ≤ on D as G1 ≤ G2 if G1

is embedded in G2. Then ≤ is partial order on D. Moreover,
≤ is compatible.

Proof: We ignore to show ≤ is partial order. We
show ≤ is compatible by assuming G1, G2 and G3 are
graphs such that G1 ≤ G2. Then G1

∼=f G2. Define
g : G1 × G2 → G2 × G3 as g(u, v) = (f(u), v). Clearly
that g is bijective. Let vertices (u1, v1) and (u2, v2) in
G1 ⊗ G3 be adjacent. We have (u1, u2) ∈ E(G1) and
(v1, v2) ∈ E(G3). So (f(u1), f(u2)) ∈ E(G2). Hence we
have ((f(u1), v1), (f(u2), v2)) ∈ E(G2 ⊗ G3). So g is a
graph isomorphism. Therefore G1 ⊗ G3 ≤ G2 ⊗ G3. Since
D is commutative, we can conclude that ≤ is compatible.

Similarly to the converse of Theorem 8, if G1 ⊗ G3 ≤
G2 ⊗ G3, it does not imply G1 ≤ G2. We show here. We
know that kn ⊗ k̄n = ¯kn2 = k̄n ⊗ k̄n for any integer n but
kn ̸≤ k̄n.

Theorem 14. Let β : C → D by β((Sf , A)) = endo −
Cayf (S,A) for any (Sf , A) ∈ C. Then β is homomorphism.

Proof: We show first that β is well defined. Let (Sf1 , A)
and (Tf2 , B) be elements in C such that (Sf1 , A) = (Tf2 , B).
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Then S ∼=f T , f(A) = B, and ff1 = f2f . We
show endo − Cayf1(S,A) = endo − Cayf2(T,B)
by proving that f is a graph isomorphism. Let
(s, f1(s)a) be arc in endo − Cayf1(S,A). Then
s ∈ S and a ∈ A. So f(s) ∈ T and f(a) ∈ B.
Hence (f(s), f(f1(s)a)) = (f(s), f(f1(s))f(a)) =
(f(s), (ff1)(s)f(a)) = (f(s), (f2f)(s)f(a)) =
(f(s), f2(f(s))f(a)) ∈ E(endo−Cayf1(S,A)). Since f is
bijective, we have f is a graph homomorphism. Therefore
endo − Cayf1(S,A) = endo − Cayf2(T,B) and also β is
well defined. It is easy to see that β is an onto function.
Theorem 11 shows β is a homomorphism.

The homomorphism β is not injective showed in following
example.

Example 15. Let S = (Z4, ·), T = (Z2 × Z2, ·), A = {0}
and B = {(0, 0)}. Then IdS ∈ End(S), IdT ∈ End(T )
and (SIdS , A), (TIdT , B) ∈ C. The endo-Cay graph of
(SIdS

, A) and (TIdT
, B) are showed as below.

endo− CayIdS (S,A) endo− CayIdT (T,B)

It is clear that endo − CayIdS (S,A) = endo −
CayIdT

(T,B) but obviously (SIdS
, A) ̸= (TIdT

, B) because
Z4 ̸∼= Z2 × Z2.

Theorem 16. one vertex and one loop are exactly two
idempotent element in D. Moreover, an identity element in D
is an one loop.

Proof: By Theorem 4 and the existence of onto homo-
morphism between C and D.

Now, we have a partial order on C and D and also know
relation between both semigroup. So it is possible to compare
that both partial order. The result is showed in Theorem 17.

Theorem 17. Let (Sf1 , A) and (Tf2 , B) be in C. If
(Sf1 , A) ≤ (Tf2 , B), then endo − Cayf1(S,A) ≤ endo −
Cayf2(T,B).

Proof: Assume that (Sf1 , A) ≤ (Tf2 , B). Then S ∼=f H
for some H < T , f(A) ⊆ B and ff1 = f2f . We claim that
endo− Cayf1(S,A) ∼=f endo− Cayf2(T,B)[H].

We first prove that f is a graph homomorphism. Let
(s, f1(s)a) be an arc in endo − Cayf1(S,A) for some
s ∈ S and s ∈ S. Then s ∈ S and f1(s)a ∈ S.
So f(s) ∈ S and also f2(f(s))f(a) = (ff1(s))f(a) =
f(f1(s)a) ∈ H . By assumption, we have f(a) ∈ B and
arc (f2(f(s)), f2(f(s))f(a)) in E(endo − Cayf2(T,B)).
Since both f2(f(s)) and f2(f(s))f(a) are vertices in
H , we have that (f2(f(s)), f2(f(s))f(a)) ∈ E(endo −
Cayf2(T,B)[H]). We have f is bijective by assumption.
So that claim is proved. Therefore endo − Cayf1(S,A) ≤
endo− Cayf2(T,B).

The converse of Theorem 17 is not true shown in Example
15.

We recall a natural partial order, Mitsch order. Let S be a
semigroup and a, b elements in S. The natural partial order

≤ is defined by a ≤ b if and only if a = xb = by and xa = a
for some x, y ∈ S1. Next Theorem, we generalize elements
in C with respect to a natural partial order.

Theorem 18. Let (Sf1 , A) and (Tf2 , B) be in C. (Sf1 , A) ≤
(Tf2 , B) where ≤ is a natural partial order if and only if
(Sf1 , A) = (Tf2 , B).

Proof: Clearly that if (Sf1 , A) = (Tf2 , B), then it
follows that (Sf1 , A) ≤ (Tf2 , B). Suppose (Sf1 , A) ≤
(Tf2 , B). Then (Sf1 , A) = (Xg1 , U)⊗(Tf2 , B) = (Tf2 , B)⊗
(Yg2 , V ) and (Xg1 , U) ⊗ (Sf1 , A) = (Sf1 , A) for some
(Xg1 , U), (Yg2 , V ) ∈ C. So we have |X| = 1 which
implies that (Xg1 , U) is an identity of C. Hence (Sf1 , A) =
(Xg1 , U)⊗ (Tf2 , B) = (Tf2 , B).

Corollary 19. A partial order relation on C and a partial
order relation on D cover the Mitsch order.
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