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Abstract—We introduce the method of dynamic mode de-
composition (DMD) for robustly separating complex systems
into a hierarchy of multi-resolution time-scaled components.
The method includes a methodology for background (low-rank)
and foreground (sparse) separation of dynamical data. The
method involves a technique used for characterizing nonlinear
dynamical systems in an equation-free manner by decomposing
the state of the system into low-rank terms whose Fourier
components in time are known. DMD terms with Fourier
frequencies near the origin (zero-modes) are interpreted as
background (low-rank) portions of the given dynamics, and
the terms with Fourier frequencies bounded away from the
origin are their sparse counterparts. The DMD method is
demonstrated on video content where a time-frequency analysis
can be made of multiple time-scales in video.

Index Terms—dynamic mode decomposition, robust principal
components, background subtraction.

I. INTRODUCTION

ACURATE and real-time multi-scale separation algo-
rithms for complex, dynamical systems remains a

challenging research problem at the forefront of modern
data-analysis research. In the application of video surveil-
lance considered here, video frames can be thought of as
snapshots of some underlying complex/nonlinear dynamics.
The dynamic mode decomposition (DMD) yields oscillatory
time components of the video frames that have contextual
implications. Namely, those modes that are near the origin
represent dynamics that are unchanging, or changing slowly,
and can be interpreted as stationary background pixels, or
low-rank components of the data matrix. In contrast, those
modes bounded away from the origin are changing on O(1)
timescales or faster, and represent the foreground motion in
the video, or the sparse components of the data matrix. Thus,
by simply applying the dynamical systems DMD interpreta-
tion to video frames, an approximate RPCA technique can be
enacted at a fixed cost of a singular-value decomposition and
a linear equation solve. The innovation of multi-resolution
DMD (MRDMD) allows for further separation of dynamic
content in the video, thus allowing for the separation of com-
ponents that are happening on different time scales. Back-
ground/foreground separation is typically an integral step in
detecting, identifying, tracking, and recognizing objects in
video sequences. Most modern computer vision applications
demand algorithms that can be implemented in real-time,
and that are robust enough to handle diverse, complicated,
and cluttered backgrounds. Competitive methods often need
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to be flexible enough to accommodate changes in a scene
due to, for instance, illumination changes that can occur
throughout the day, or location changes where the application
is being implemented. Given the importance of this task,
a variety of iterative techniques and methods have already
been developed in order to perform background/foreground
separation [1], [2], [3], [4], [5] (See also, for instance, the
recent review [6] which compares error and timing of various
methods).

One potential viewpoint of this computational task is as a
matrix separation problem into low-rank (background) and
sparse (foreground) components. Recently, this viewpoint
has been advocated by Candès et al. in the framework of ro-
bust principal component analysis (RPCA) [5]. By weighting
a combination of the nuclear and the L1 norms, a convenient
convex optimization problem (principal component pursuit)
was demonstrated, under suitable assumptions, to recover the
low-rank and sparse components exactly of a given data-
matrix (or video for our purposes). It was also compared to
the state-of-the-art computer vision procedure developed by
De La Torre and Black [7]. We advocate a similar matrix
separation approach, but by using the method of dynamic
mode decomposition (DMD) [8], [9], [10], [11]. This method,
which essentially implements a Fourier decomposition of the
video frames in time, distinguishes the stationary background
from the dynamic foreground by differentiating between the
near-zero modes and the remaining modes bounded away
from the origin, respectively. Originally introduced in the
fluid mechanics community, DMD has emerged as a powerful
tool for analyzing the dynamics of nonlinear systems [8], [9],
[10], [11].

II. DYNAMIC MODE DECOMPOSITION

The DMD method provides a spatio-temporal decomposi-
tion of data into a set of dynamic modes that are derived
from snap shots or measurements of a given system in
time. The mathematics underlying the extraction of dynamic
information from time-resolved snapshots is closely related
to the idea of the Arnoldi algorithm, one of the workhorses
of fast computational solvers. The data collection process
involves two parameters:

N = number of pixels saved per snapshot (1a)
M = number of snapshots taken (1b)

Originally the algorithm was designed to collect data at
regularly spaced intervals of time. However, new innovations
allow for both sparse spatial and temporal collection of data
as well as irregularly spaced collection times. To illustrate the
algorithm, we consider regularly spaced sampling in time:

data collection times : tm+1 = tm + ∆t (2)
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Fig. 1. Illustration of the DMD method where snapshots (video frames) xj

are taken and a linear transformation A (Koopman operator) is constructed.
The DMD method constructs the best matrix A that minimizes the least-
square error for all transformations xj+1 = Axj with j = 1, 2, · · · ,m−1.

where the collection time starts at t1 and ends at tM , and the
interval between data collection times is ∆t. In the MRDMD
method, the number of snapshots will vary as the algorithm
extracts multi-timescale spatio-temporal structures. This will
be the central focus of the next section.

The data snapshots are arranged into an N ×M matrix

X = [x(t1) x(t2) x(t3) · · · x(tM )] (3)

where the vector x are the N measurements of the state
variable of the system of interest at the data collection
points. The objective is to mine the data matrix X for
important dynamical information. For the purposes of the
DMD method, the following matrix is also defined:

Xk
j = [x(tj) x(tj+1) · · · x(tk)] (4)

Thus this matrix includes columns j through k of the original
data matrix.

The DMD method approximates the modes of the so-
called Koopman operator. The Koopman operator is a linear,
infinite-dimentional operator that represents nonlinear dy-
namics without linearization [9], and is the adjoint of the
Perron-Frobenius operator. The method can be viewed as
computing, from the experimental data, the eigenvalues and
eigenvectors (low-dimensional modes) of a linear model that
approximates the underlying dynamics, even if the dynamics
is nonlinear. Since the model is assumed to be linear,
the decomposition gives the growth rates and frequencies
associated with each mode. If the underlying model is linear,
then the DMD method recovers the leading eigenvalues
and eigenvectors normally computed using standard solution
methods for linear differential equations.

Mathematically, the Koopman operator A is a linear, time-
independent operator A such that

xj+1 = Axj (5)

where j indicates the specific data collection time and A
is the linear operator that maps the data from time tj to
tj+1. The vector xj is an N -dimensional vector of the
data points collected at time j. The computation of the
Koopman operator is at the heart of the DMD methodology.
As already stated, the mapping over ∆ is linear even though
the underlying dynamics that generated xj may be nonlinear.
It should be noted that this is different than linearizing the
dynamics.

To construct the appropriate Koopman operator that best
represents the data collected, the matrix XM−1

1 is considered:

XM−1
1 = [x1 x2 x3 · · · xM−1] . (6)

Making use of (5), this matrix reduces to

XM−1
1 =

[
x1 Ax1 A2x1 · · · AM−2x1

]
. (7)

Here is where the DMD method connects to Krylov sub-
spaces and the Arnoldi algorithm. Specifically, the columns
of XM−1

1 are each elements in a Krylov space. This matrix
attempts to fit the first M − 1 data collection points using
the Koopman operator (matrix) A. In the DMD technique,
the final data point xM is represented, as best as possible,
in terms of this Krylov basis, thus

xM =
M−1∑
m=1

bmxm + r (8)

where the bm are the coefficients of the Krylov space vectors
and r is the residual (or error) that lies outside (orthogonal to)
the Krylov space. Ultimately, this best fit to the data using
this DMD procedure will be done in an L2 sense using a
pseudo-inverse.

Before proceeding further, it is at this point that the
data matrix XM−1

1 in (7) should be considered further. In
particular, our dimensionality reduction methods look to take
advantage of any low-dimensional structures in the data. To
exploit this, the SVD of (7) is computed:

XM−1
1 = UΣV∗ (9)

where ∗ denotes the conjugate transpose, U ∈ CN×K , Σ ∈
CK×K and V ∈ CM−1×K . Here K is the reduced SVD’s
approximation to the rank of XM−1

1 . If the data matrix is full
rank and the data has no suitable low-dimensional structure,
then the DMD method fails immediately. However, if the
data matrix can be approximated by a low-rank matrix, then
DMD can take advantage of this low dimensional structure
to project a future state of the system. Thus once again, the
SVD plays the critical role in the methodology.

Armed with the reduction (9) to (7), we can return to
the results of the Koopman operator and Krylov basis (8).
Specifically, generalizing (5) to its matrix form yields

AXM−1
1 = XM

2 . (10)

But by using (8), the right hand side of this equation can be
written in the form

XM
2 = XM−1

1 S + re∗M−1 (11)

where eM−1 is the (M − 1)th unit vector and

S =



0 · · · 0 b1

1
. . . 0 b2

0
. . . . . .

...
. . . . . . 0 bM−2

0 · · · 0 1 bM−1


. (12)

Recall that the bj are the unknown coefficients in (8).
The key idea now is the observation that the eigenvalues

of S approximate some of the eigenvalues of the unknown
Koopman operator A, making the DMD method similar to

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



the Arnoldi algorithm and its approximations to the Ritz
eigenvalues. Schmid [8] showed that rather than computing
the matrix S, we can instead compute the lower-rank matrix

S̃ = U∗XM
2 VΣ−1 (13)

which is related to S via a similarity transformation. Recall
that the matrices U, Σ and V arise from the SVD reduction
of XM−1

1 in (9).
Consider then the eigenvalue problem associated with S̃:

S̃yk = µkyk k = 1, 2, · · · ,K (14)

where K is the rank of the approximation we are choosing
to make. The eigenvalues µk capture the time dynamics of
the discrete Koopman map A as a ∆t step is taken forward
in time. These eigenvalues and eigenvectors can be related
back to the similarity transformed original eigenvalues and
eigenvectors of S in order to construct the DMD modes:

ψk = Uyk . (15)

With the low-rank approximations of both the eigenvalues
and eigenvectors in hand, the projected future solution can
be constructed for all time in the future. By first rewriting
for convenience ωk = ln(µk)/∆t (recall that the Koopman
operator time dynamics is linear), then the approximate
solution at all future times, xDMD(t), is given by

xDMD(t) =
K∑

k=1

bk(0)ψk(x) exp(ωkt) = Ψdiag(exp(ωt)b

(16)
where bk(0) is the initial amplitude of each mode, Ψ is the
matrix whose columns are the eigenvectors ψk, diag(ωt) is a
diagonal matrix whose entries are the eigenvalues exp(ωkt),
and b is a vector of the coefficients bk.

It only remains to compute the initial coefficient values
bk(0). If we consider the initial snapshot (x1) at time zero,
let’s say, then (16) gives x1 = Ψb. This generically is not
a square matrix so that its solution

b = Ψ+x1 (17)

can be found using a pseudo-inverse. Indeed, Ψ+ denotes
the Moore-Penrose pseudo-inverse that can be accessed in
MATLAB via the pinv command. As already discussed in the
compressive sensing section, the pseudo-inverse is equivalent
to finding the best solution b the in the least-squares (best fit)
sense. This is equivalent to how DMD modes were derived
originally.

Overall then, the DMD algorithm presented here takes
advantage of low dimensionality in the data in order to make
a low-rank approximation of the linear mapping that best
approximates the nonlinear dynamics of the data collected
for the system. Once this is done, a prediction of the future
state of the system is achieved for all time. Unlike the POD
method, which requires solving a low-rank set of dynamical
quantities to predict the future state, no additional work is
required for the future state prediction outside of plugging
in the desired future time into (16). Thus the advantages
of DMD revolve around the fact that (i) no equations are
needed, and (ii) the future state is known for all time (of
course, provided the DMD approximation holds).

III. MULTI-RESOLUTION ANALYSIS

The MRDMD is inspired by the observation that the slow-
and fast-modes can be separated for such applications as
foreground/background subtraction in videos feeds [12]. The
MRDMD recursively removes low-frequency content from
a given collection of snapshots. Typically, the number of
snapshots M are chosen so that the DMD modes provide
an approximately full rank approximation of the dynamics
observed. Thus the M is chosen so that all high- and
low-frequency content is present. In the MRDMD, M is
originally chosen in the same way so that an approximate
full rank approximation can be accomplished. However, from
this initial pass through the data, the slowest m1 modes are
removed and DMD is once again performed with now only
M/2 snapshots. Again the slowest m2 modes are removed
and the algorithm is continued until a desired termination.

Mathematically, the MRDMD separates the DMD approx-
imate solution (16) in the first pass as follows:

xDMD(t) =
M∑
k=1

bk(0)ψ
(1)
k (x) exp(ωkt) (18)

=

m1∑
k=1

bk(0)ψ
(1)
k (x) exp(ωkt)+

M∑
k=m1

bk(0)ψ
(1)
k (x) exp(ωkt)

(slow modes) (fast modes)

where the ψ(1)
k (x) represent the DMD modes computed from

the full M snapshots.
The first sum in this expression (19) represents the slow-

mode dynamics whereas the second some is everything else.
Thus the second sum can be computed to yield the matrix:

XM/2 =

M∑
k=m1

bk(0)ψ
(1)
k (x) exp(ωkt) . (19)

The DMD analysis outlined in the previous section can now
be performed once again on the data matrix XM/2. However,
the matrix XM/2 is now separated into two matrices

XM/2 = X
(1)
M/2 + X

(2)
M/2 (20)

where the first matrix contains the first M/2 snapshots and
the second matrix contains the remaining M/2 snapshots.
The m2 slow-DMD modes at this level are given by ψ

(2)
k ,

where they are computed separately in the first of second
interval of snapshots.

The iteration process works by recursively removing slow
frequency components and building the new matrices XM/2,
XM/4,XM/8, · · · until a desired/prescribed multi-resolution
decomposition has been achieved. The approximate DMD
solution can then be constructed as follows:

xDMD(t) =

m1∑
k=1

b
(1)
k ψ

(1)
k (x) exp(ω

(1)
k t)

+

m2∑
k=1

b
(2)
k ψ

(2)
k (x) exp(ω

(2)
k t) (21)

+

m3∑
k=1

b
(3)
k ψ

(3)
k (x) exp(ω

(3)
k t) + · · ·

where the ψ
(k)
k and ω

(k)
k are the DMD modes and DMD

eigenvalues at the kth level of decomposition, the b(k)k are

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



Fig. 2. Demonstration of the foreground/background separation of videos
using the DMD algorithm. The example problem is motivated by a surveil-
lance problem which tries to identify moving cars and pedestrians from
stationary/parked cars in a video feed.

the initial projections of the data unto the time interval
of interest, and the mk are the number of slow-modes
retained at each level. The advantage of this method is readily
apparent: different spatial-temporal DMD modes are used to
represent key multi-resolution features. Thus there is not a
single set of modes that dominates the SVD decomposition
and potentially marginalizes features at other time scales.

IV. FOREGROUND AND BACKGROUND SEPARATION

Using the Advanced Video and Signal based Surveillance
(AVSS) Datasets, specifically the “Parked Vehicle - Hard”
video, the DMD separation procedure can applied. The
original videos are converted to grayscale and down-sampled
in pixel resolution to n = 120 × 96 = 11520, in order to
make the computational memory requirements manageable
for personal computers. Also, the introductory preambles to
the surveillance videos, which constitute the first 351 frames
of each video, are removed because they are irrelevant for
the following illustrations. The video streams are broken into
segments of m = 30 frames each. Frame numbers 500, 1000,
and 2000 of the entire video stream are depicted in Fig. 2,
along with the separation results for easy comparison. For
enhanced contrast and better visibility, the sparse results are
artificially brightened by a factor of 10. The AVSS “Parked
Vehicle” surveillance video, which generally shows various
vehicles traveling along a road, with a traffic light (not
visible) and a crosswalk (visible) near the bottom of the
frame, and with an occasional vehicle parking along side the
road. Sometimes, In the distance, moving vehicles become
difficult to perceive with the naked-eye, due to limitations
of the pixel resolution. For all three frames, the DMD
method seems to eliminate more spurious pixels in its sparse
results that may pertain to the background when compared
to the RPCA’s sparse results. A good background/foreground
separation such as this can form the basis of surveillance
techniques which are real-time using limited computation.

V. CONCLUSIONS

Overall it has been demonstrated that the method of
dynamic mode decomposition, typically used for evaluat-
ing the dynamics of complex systems, can be used for
background/foreground separation in videos with visually
appealing results and excellent computational efficiency.
The separation results produced by the DMD method are
on par with the quality of separation achieved with the
RPCA method for realistic video scenarios. However, the
results are achieved orders of magnitude faster. Indeed, we
demonstrate that DMD is viable as a real-time solution
to foreground/background video separation tasks even with
laptop-level computing platforms. The additional innovation
around MRDMD also allows one to separate objects that are
dynamic on different time scales. It is a principled technique
by which such data surveillance can achieved in real-time
using well established ideas of multi-resolution analysis.
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