
 

 
Abstract—This paper reports an evaluation of the 

performance of a Lee-Carter (LC) model which incorporated 
state space formulation (LC-SS model) in forecasting mortality 
rates. The parameters of the LC-SS model were estimated by 
maximum likelihood estimation (MLE) through an 
expectation-maximization (EM) algorithm. For this purpose, 
mortality data from Peninsular Malaysia for years 1980 to 
2009 were used. The mortality data were split according to 
gender. Separate LC-SS models were each fitted for the male 
and female population. The performances of the LC-SS models 
were examined in terms of the accuracy of prediction based on 
in-sample fitting and out-of-sample forecasts.  These 
performances were then compared with an original LC model 
estimated using the same data set. Comparisons were based on 
root mean square error (RMSE) and mean absolute percentage 
error (MAPE). The results indicate that the LC-SS model 
performs better than the original LC model.  
 

Index Terms— Expectation-maximum algorithm, Lee-
Carter model, mortality, state space model.  
 

I. INTRODUCTION 
ORTALITY rate is a determining factor of population 
growth. In the developed countries, the mortality rates 

have dropped, more or less continuously, since the start of 
the industrial revolution. Personal hygiene and improved 
sanitation have played a major role and preceded the impact 
of modern medicine and, in particular, the development of 
antibiotics capable of reducing death due to infection. The 
downward trend of the mortality rates is common to most 
countries, especially for developed countries and some of 
the developing countries. This change affects the population 
size and structure as well as national security. Hence, 
forecasts of mortality rates are important to areas such as 
demography, exclusively in population planning, social 
security, public health, policy making, directing 
pharmaceutical research, retirement and pension fund 
planning and life insurance. These beneficiaries benefit most 
from proper approach of forecasting mortality rates and 
have been attracting the interest of researchers in the last 
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decade. Over the past century, various methods to forecast 
mortality have been introduced; such as in [1]-[4]. These 
methods were used by demographers and actuaries up to the 
early 1990s before they found that it underestimated the 
downward trend of mortality rates [5]. This underestimation 
problem occurred because time effects were not taken into 
consideration and the decreasing trend in mortality was 
ignored. Further, models were estimated for a specific time 
period only.  

In 1992, a Lee-Carter (LC) model which considered the 
time effect in modeling and forecasting age-specific 
mortality was proposed [6]. Basically, the LC model 
involves a two-factor (age and time) model that is based on 
a log-bilinear form for age-specific mortality. The approach 
uses singular value decomposition (SVD) to extract a single 
time-varying mortality index which is then modeled as a 
time series, specifically, as random walk with drift. This has 
been seen as a significant milestone in demographic 
forecasting and has become the dominant approach used by 
actuaries, demographers and many other practitioners for 
forecasting age-specific mortality.  

A number of approaches were developed with 
modifications and extensions of the LC model such as in 
[7]-[12]. These also included the reformulation of the LC 
model as state space model. As shown by [13]-[15], state 
space models are able to overcome most of the problems in 
the LC methodology. The main reason why a state space 
formulation of the LC model was suggested is due to the 
fact that errors of the LC equations were estimated 
separately. The first equation is estimated by a combination 
of singular value decomposition (SVD) while the second as 
a time series model. Reference [13] highlighted the fact that 
the prediction of the LC model only accounts for the error of 
time series model while ignoring the errors in estimating the 
parameters and the variance of the error term in the first 
equation. In state space formulation, all the parameters in 
the LC model were estimated simultaneously. There have 
been numerous efforts to reformulate the LC model as a 
state space by integrating the two equations of the LC 
model. State space formulation of the LC model, can be 
found in [13] and [16]. Reference [13] used Bayesian 
framework in estimating the Lee-Carter state space, 
henceforth, LC-SS and applied the model to the United 
States (US) mortality data, while, [16] used maximum 
likelihood estimation (MLE) through direct optimization 
algorithm. In addition, [17] was estimated the LC-SS 
parameters using MLE via expectation-maximization (EM) 
algorithm by applying it to Malaysian mortality data of total 
population. However, [17] only evaluated the LC-SS using 
in-sample fitting without forecasting and did not evaluate 
using out-sample forecasts.  
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Thus, this study extends the work in [17] and evaluates 
the performance of LC-SS model on the Malaysian 
mortality data set, separated according to gender, with EM 
estimators. 

II. METHODOLOGY 

A. Lee-Carter Model 
Let ݉௫,௧ the mortality rates for a group of ݔ ages in year ݐ 

with ݔ = 1, … … , (ܰ) and ݐ = 1, … … . , (ܶ). LC model 
actually analyzes the linear relationship between logarithm 
of original ݉௫,௧ and two factors that are age ݔ and year ݐ. 
The model is presented as 

 
൫݉௫,௧൯݈݃ = ௫ߙ + ௫݇௧ߚ + ௫ߝ ,௧ ,              (1) 
 
where ߙ௫ is the age pattern of log mortality rates averaged 
across year; ߚ௫ is the first principal component reflecting 
relative change in the ݈݃൫݉௫,௧൯ at each age; ݇௧ is the first 
set of principal score by year ݐ known as mortality index 
that measures the general level of the ݈݃൫݉௫,௧൯ and ߝ௫,௧  is 
the error term that assumed homoskedastic. The model was 
estimated using SVD with two constrains to ensure it is 
identifiable. The two constrains are ∑ ݇௧ = 0்

௧ୀଵ   and 
∑ ௫ߚ = 1.ே
௫ୀଵ   
In addition, the LC method adjusts ݇௧ by refitting it to the 

total number of deaths. The purpose of this adjustment is to 
give more weight to high rates [18]. The adjusted ݇௧ was 
then extrapolated using autoregressive integrated moving 
average (ARIMA) method [19],[20], specifically, ARIMA 
(0,1,0) as in the original paper of [6]. The ARIMA (0,1,0) is 
a random walk with drift model that is expressed as follow, 

 
݇௧ = ݇௧ିଵ + ߠ + ௧ݑ ݐ															 = 1, … … ,ܶ,         (2) 
 
where ߠ is a drift parameter that measure the constant 
annual change in the series of ݇௧ and ݑ௧ is the error terms.  
The procedures of LC method can be summarized as follow. 
1) Estimating ߙ௫, ߚ௫ and ݇௧using historical age specific 

mortality rates. 
2) The estimated ݇௧ was adjusted to ensure equality 

between the observed and estimated number of deaths 
in a certain period.  

3) The series of adjusted ݇௧ is then extrapolated as 
 ARIMA.  

4) Finally, the forecasted values of adjusted ݇௧ and the 
estimated ߙ௫ and ߚ௫ had substituted into (1) to get the 
forecasted values of ݈݃(݉௫,௧). Then, convey back the 
forecasted ݈݃(݉௫,௧) to the original scale in order to get 
forecast mortality rates.  Thus, the ℎ-step forecast of 
݉௫,்ା 	is 
 
ෝ݉௫,்ାଵ = exp൫ߙො௫ + መ௫ߚ ෨்݇ା൯.                  (3) 

 

B. State Space Lee-Carter Model  
In order to overcome the weakness of the LC model in 

forecasting mortality, we employ LC-SS model. Let ௧ be 
the vector of N log mortality rates for year  ,ݐ௧ =
(݉ଵ௧ ,݉ଶ௧ , … ,݉ே௧)ᇱ where ݉௧  is the value of the ith 

mortality rates at time ݐ, (݅ = 1, … ,ܰ and ݐ = 1, … ,ܶ). 
Thus, the LC-SS model can be expressed by  

 
௧ = ࢻ + ௧݇ࢼ + ௧ࢿ 		with		ࢿ௧~ܸܰܯ(,ࡾ)  
݇௧ = ݇௧ିଵ + ߠ + ௧ݑ 		with			ݑ௧~ܰ(0,ݍ),             (4) 
 
where ࢻ = ,ଶߙ,ଵߙ) … ࢼ ,ே்)ᇱߙ, = ଵߚ) ,ଶߚ, …  ே்)ᇱ andߚ,
௧ࢿ = ଵ௧ߝ) , ଶ௧ߝ , … ,  ே௧)ᇱ is a vector of error terms that areߝ
assumed to be independent. A random walk with drift is 
assumed for the state vector.  The error for the state ݑ௧ is 
assumed to be independent and identically normally 
distributed with zero mean and constant variance q. The LC-
SS model for the log mortality rates provides a joint 
distribution for the N age groups at any given time. It 
assumes that the observation noise is independent across 
time where ࢿ௧ are independent identically and normally 
distributed with  × 1 variance vector, R. The errors ࢿ௧ and 
 ௧ are uncorrelated. The unknown parameters in the modelݑ
are denoted as ࢾ =  were estimated {,߮ܽ,ߠ,ݍ,ࡾ,ࢼ,ࢻ}
using MLE under the assumption that the initial state is 
normal that is ݇~ܸܰܯ(ܽ,Σ). The following is the joint 
log-likelihood function of the observations ଵ,ଶ, … . .  ்,
and the trend components ݇,݇ଵ, … . . , ்݇ , 

 
log ܮ ,ଶ,ଵ) … . . ், , ݇,݇ଵ, … . . , ்݇) = 
 

−
1
2 log	(߮) 	−

1
2߮

	(݇ −  )ଶߤ

 

−
T
2 log(ݍ)−

1
ݍ2

(݇௧ − ݇௧ିଵ − ଶ(ߠ


୲ୀଵ

 

 

−
T
2 log|ࡾ| + constant 

 

−
1
2
(௧ ௧݇ࢼ− (ࢻ−


୲ୀଵ

௧)	ିࡾ ௧݇ࢼ−  .	(ࢻ−

 
This likelihood function is maximized numerically using 

the method of numerical maximizing, the EM algorithm as 
in [17] which was originally adopted from [21], [22]. It was 
maximized using the Kalman filter (KF) and smoother (KS). 
The EM algorithm involved the following steps [22], [23]. 
1) Setting an initial estimates of parameters, ࢾ. 

On iteration j, (j = 0,1,2,…..): 
2) Compute the incomplete-data likelihood and perform 

the E-Step. Based on initial parameters ࢾ, the expected 
values of ݇௧ conditioned on all the observed data ݉ଵ

் 
were calculated. 

3) Perform the M-Step.  A new set ࢾା was computed by 
finding the parameters that maximize the expected log-
likelihood function with respect to ࢾ.  

4) Repeat step 2 and 3 for convergence. New expectations 
are computed using	ࢾ , then a new set of 
parameters	ࢾା is generated. This process is continued 
until the log likelihood stops increasing at a specified 
tolerance level. 
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The overall procedures involved in EM were regarded as 
simply alternating between the KF and KS recursions. LC-
SS forecasts the observables using KF recursion based on 
the MLEs that were obtained from the above recursive 
procedure.  

III. DATA  
The data sets used in this study is an all-cause mortality 

data for Malaysia. Mortality was measured by age-specific 
death rates (ASDR) provided by the Department of 
Statistics, Malaysia (DOSM). Data for Peninsular Malaysia 
for the period of 1980 to 2009 for both males and females 
were used. It consists of annual number of deaths and 
populations for 17 age groups which were organized into 5-
year intervals; 0-4, 5-9, ..., 80+. Deaths with unknown age 
groups are not included in the analysis. The ASDR in a 

single calendar year were calculated as ݉௫,௧ = ൬ௗೣ,
ೣ,

൰ where 

݀௫,௧  is the number of deaths for a group of ݔ ages in year ݐ 

and ௫,௧ is the observed population for a group of ݔ ages in 
year ݐ.	 The observed population is estimated by taking a 
mid-year population for a group of ݔ ages. We used the 
years 1980 to 2005 to fit the models and do out-of-sample 
validation on the last 4 years. 

Figure 1 and Fig. 2 respectively; show the ASDR over 
time for male population and female population for year 
1980 to 2009. The ASDR fluctuated over this period. 
Mortality has decreased considerably in almost all age 
groups during the past 30 years and is much lower for 
females than for males. The decline in the female ASDR is 
steadier than those of the males.  Notice that the male data 
appears much noisier than that for females. These data were 
then transformed to the logarithm (natural logarithm) due to 
the exponential nature in trend of ASDR. In addition, it is 
necessary to transform the raw data by taking logarithms in 
order to stabilize the high variance associated with high age-
specific rates.  

 

Fig. 1  Plot of the Malaysian males ASDR 

 
Fig. 2 Plot of the Malaysian females ASDR 
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IV. EMPIRICAL RESULTS 
In this section, we report the forecasting ability of the LC-

SS model compared to the LC model. Malaysian ASDR 
were fitted and forecasted separately for males and females 
using the two models. For the LC-SS model, following [23], 
the KF with initial mean 0 and variance 5 for initial setting 
of the state vector ݇ was used as in [17].  

The results were first summarized by presenting the fitted 
values from both models compared to the original ASDR 
that were presented in Fig. 3 for male population and Fig. 4 
for female population. Based on these values, the 
performance of the two models in fitting historical data was 

almost identical. It was also found that both models fit 
female data better than males. However, for certain age 
groups of males, both models were able to give good fit with 
the LC-SS performed better than the LC for age group 0-4, 
whereas, LC gives a good fit for age group 60-64. While, in 
the female case, both models performed well for all age 
groups except the 65-69 and 75-79 groups. Further, roughly, 
it can be seen that the LC-SS performed better than the LC 
in almost all of the age groups. These indicate that the 
estimated ASDR produced by both models vary. However, 
there does not appear to be a clear pattern of over or 
underestimation from these two models.   

 

 
Fig. 3 Plot of the fitted model for the Malaysian males ASDR 

 
Fig. 4 Plot of the Fitted models for the Malaysian females ASDR 

Fitted 
LC-SS 

Fitted 
LC  

Observed    

Fitted 
LC-SS 

Fitted 
LC  

Observed    

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



 

The models were then evaluated based on the goodness of 
fit for in-sample fitting and out-sample forecast of the 
ASDR. Commonly, in time series forecasting, the 
performance of in-sample fit is different from the out-of-
sample fit.  The better forecasting model is the one that 
performs well in out-of-sample fit [24]. Two different error 
measures were used; the root mean square error (RMSE) 
and mean absolute percentage error (MAPE). The 
performance evaluations of both models were carried out for 
each age group and overall performance for males and 
females respectively. In evaluating the performance 
according to each group, these measures of accuracy were 
averaged over years, whereas, for overall performance, these 
measures were averaged over different ages and years. 

The results of the goodness of fit based on in-sample 
fitting respectively for both males and females are 
summarized in Table I and II. It is clear that the RMSE and 
MAPE for each age group for both males and females 
exhibit similar patterns.   

 
TABLE I 

 IN-SAMPLE EVALUATION FOR MALES 

Age 
LC LC-SS 

RMSE MAPE RMSE MAPE 
0-4 0.00059 14.279 0.00031 6.680 
5-9 0.00005 9.019 0.00004 6.752 

10-14 0.00002 3.459 0.00005 6.083 
15-19 0.00018 10.593 0.00016 9.567 
20-24 0.00017 7.878 0.00018 8.267 
25-29 0.00016 7.323 0.00015 6.620 
30-34 0.00023 7.969 0.00016 5.835 
35-39 0.00031 9.129 0.00022 6.598 
40-44 0.00028 6.429 0.00028 6.284 
45-49 0.00029 4.170 0.00030 4.412 
50-54 0.00044 4.066 0.00038 3.277 
55-59 0.00062 3.478 0.00060 3.111 
60-64 0.00080 2.584 0.00119 3.751 
65-69 0.00163 3.744 0.00117 2.577 
70-74 0.00267 3.719 0.00273 3.572 
75-79 0.00611 6.040 0.00706 6.940 
80+ 0.00981 5.272 0.00864 4.693 

Overall 0.00292 6.421 0.00282 5.590 
 

TABLE II 
 IN-SAMPLE EVALUATION FOR FEMALES 

Age LC LC-SS 
RMSE MAPE RMSE MAPE 

0-4 0.00043 12.464 0.00021 4.55560 
5-9 0.00004 9.735 0.00003 6.22823 

10-14 0.00003 5.181 0.00004 7.00285 
15-19 0.00008 13.107 0.00002 3.35079 
20-24 0.00008 10.394 0.00003 3.45963 
25-29 0.00007 7.269 0.00004 4.01614 
30-34 0.00009 7.290 0.00006 4.06241 
35-39 0.00012 6.871 0.00006 3.46180 
40-44 0.00015 6.492 0.00009 3.16586 
45-49 0.00020 4.842 0.00014 3.60272 
50-54 0.00029 4.502 0.00023 3.30710 
55-59 0.00114 6.721 0.00028 2.66469 
60-64 0.00061 3.041 0.00072 3.37273 
65-69 0.00138 3.974 0.00123 3.48001 
70-74 0.00217 3.665 0.00240 4.22917 
75-79 0.00653 8.138 0.00723 8.94480 
80+ 0.00945 5.865 0.00781 4.92844 

Overall 0.00288 7.0324 0.00267 4.34312 
 
 
 
 

In males, both measures indicate that the error for the LC-
SS model is smaller than the LC in almost all the age groups 
except for age groups 10-14, 20-24, 45-49, 60-64 and 75-79. 
In the case of females, the LC-SS performed better for most 
of the age groups with the LC-SS more dominant for the 
young and middle age groups, while, the LC performed well 
for the elderly age groups. However, if we refer to the 
overall performance, the LC-SS performed better than the 
LC for both males and females with the former having 
smaller values in both measures. 

Similar results are obvious if we look at the overall 
performance of the models in out-sample prediction (Table 
III and Table IV) in which the LC-SS performed better than 
the LC for both males and females with both error measures 
of the LC-SS being smaller than of the LC. The same was 
evident if we look at the performance of the models for each 
of the age group for both males and females. A majority of 
the age groups show smaller values of RMSE and MAPE 
for the LC-SS model compared to the LC. 

 
TABLE III 

 OUT-SAMPLE EVALUATION FOR MALES  
Age LC LC-SS 

 RMSE MAPE RMSE MAPE 
0-4 0.00096 51.480 0.00031 16.275 
5-9 0.00008 27.167 0.00001 4.368 

10-14 0.00006 13.448 0.00002 8.907 
15-19 0.00040 37.581 0.00001 2.485 
20-24 0.00039 29.488 0.00003 4.905 
25-29 0.00048 31.761 0.00002 3.922 
30-34 0.00052 23.814 0.00007 8.856 
35-39 0.00048 17.273 0.00006 4.880 
40-44 0.00008 1.7000 0.00009 5.350 
45-49 0.00069 12.452 0.00012 3.724 
50-54 0.00143 16.524 0.00017 2.638 
55-59 0.00105 7.102 0.00018 2.092 
60-64 0.00145 6.879 0.00071 5.954 
65-69 0.00072 1.691 0.00236 11.381 
70-74 0.00655 12.843 0.00217 5.129 
75-79 0.00397 5.386 0.00775 12.228 
80+ 0.03026 25.486 0.01737 14.262 

Overall 0.00760 18.946 0.00707 6.903 
 

TABLE IV 
 OUT-SAMPLE EVALUATION FOR FEMALES  

Age LC LC-SS 

 RMSE MAPE RMSE MAPE 
0-4 0.00060 37.837 0.00031 16.275 
5-9 0.00005 22.331 0.00001 4.368 

10-14 0.00002 6.795 0.00002 8.907 
15-19 0.00003 8.620 0.00001 2.485 
20-24 0.00005 10.200 0.00003 4.905 
25-29 0.00007 12.853 0.00002 3.922 
30-34 0.00016 21.331 0.00007 8.856 
35-39 0.00015 13.307 0.00006 4.880 
40-44 0.000251 14.879 0.00009 5.350 
45-49 0.00031 10.720 0.00012 3.724 
50-54 0.00050 10.443 0.00017 2.633 
55-59 0.00041 5.240 0.00018 2.092 
60-64 0.00047 3.852 0.00071 5.954 
65-69 0.00120 5.795 0.00236 11.381 
70-74 0.00137 3.030 0.00217 5.129 
75-79 0.00820 12.940 0.00775 12.228 
80+ 0.02276 18.835 0.01737 14.262 

Overall 0.00622 12.883 0.00468 6.9030 
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V. CONCLUSION 
We have modeled an extension of the LC model known 

as LC-SS model for forecasting mortality.  Since the aim of 
this paper is to introduce an alternative approach to 
modeling and forecasting mortality rates, we did not 
compare the proposed approach with other competitive 
methods. Here, the performance of the LC-SS model was 
compared with the LC model only. Evaluations were carried 
out using in-sample and out-sample fit. Overall, it may be 
concluded that the LC-SS model fit Malaysian ASDR 
reasonably well for males and females in both evaluations 
with smaller errors measures compared to the LC model. 
Even though for certain age groups, the LC model produced 
estimated ASDR with lower error, it was found that the LC-
SS model outperforms LC model for almost all age groups.  
Hence, for fitting the current data set, we can conclude that 
the performance of the LC-SS model is better than the LC 
model. 

Further work for examining the LC-SS model with 
heterogeneous variance assumption for the age groups needs 
to be carried out. This extension should be considered 
because it is evident that in observed ASDR data, some age 
groups exhibit higher variability than others. Particularly, it 
was found in the elderly age groups which LC-SS model did 
not fit well with high variance are evident. 
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