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Abstract—This study provides analytical modeling of 

condition monitoring with periodic imperfect inspections of a 
stochastically deteriorating system. An inspection consists of 
checking the system state parameter against the critical 
threshold level in the upcoming time intervals. A new decision 
rule is proposed for inspecting the system condition, which is 
based on the comparison of the time of inspection with the 
estimated remainder of the time to failure. Based on this 
decision rule, general expressions are derived for calculating 
the probabilities of correct and incorrect decisions. The 
proposed approach is illustrated by deriving the probabilities 
of correct and incorrect decisions for a linear stochastic 
deterioration process model. Based on the derived expressions, 
the Bayes risk and minimum total error probability criteria 
are specified to determine the optimal threshold. A numerical 
example is given to illustrate the proposed approach for 
determining the optimal threshold when checking system 
suitability. 
 

Index Terms—Decision rule, functional failure level, 
imperfect inspection, measurement error of time to failure, 
threshold 

I. INTRODUCTION 

URRENTLY, condition-based maintenance (CBM) is 
considered to be a perspective approach to improve the 

operational reliability and reduce the operating costs of 
several military and civil engineering systems. The basic 
maintenance operation of this type is condition monitoring, 
which can be continuous or periodic. Continuous 
monitoring is impractical in some cases. It can be more 
practical to monitor the system periodically, for example, 
due to the cost reasons. Evidently, condition monitoring is 
preferred among other maintenance techniques in those 
cases where system deterioration can be measured, and 
wherein the system enters the failed state when the state 
parameter deteriorates beyond the level of functional failure. 
Over the past 10–15 years, many CBM models have been 
developed [1]-[5]. Among the existing CBM models, there 
are almost no models considering the probabilities of correct 
and incorrect decisions when inspecting the system 
condition. However, the condition monitoring data are 
always affected to some degree by measurement errors and 
noise, which may cause incorrect decisions. Some of the 
published models include measurement error, but they do 
not contain expressions to calculate the probabilities of 
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incorrect decisions. The inspection model considered in [6] 
includes the original deterioration process along with a 
normally distributed measurement error. Based on this 
model, a decision rule is analyzed, and optimal monitoring 
policies are found. The same approach is used in [7] to 
include measurement error in a Wiener diffusion process-
based degradation model. A similar approach is used in [8] 
to determine the likelihood function for more than one 
inspection. The authors propose a simple extension to the 
Bayesian updating model such that the model can 
incorporate the results of inaccurate measurements. In [9], 
the proposed degradation model uses a random effects 
Wiener process with measurement errors. A filtering 
algorithm is developed to estimate the joint distribution of 
the degradation rate and the current degradation levels. The 
traditional Wiener process with positive drifts compounded 
with Gaussian noises is investigated in [10]. A mixed effects 
model with measurement errors is developed. The model 
includes several existing Wiener processes as its limiting 
cases. In [11], a continuously degrading system that is being 
monitored at regular time intervals is considered assuming 
that maintenance is imperfect, and the system deteriorates 
according to a gamma process. An optimal threshold to 
perform maintenance and an optimal time interval for 
monitoring the system are determined. In [12], a model is 
considered under assumptions that the maintenance is 
imperfect and the degradation is a continuous-time Markov 
process. A proposed strategy combines both inspection and 
continuous monitoring to reduce unnecessary inspection and 
improve the system’s reliability. In [13], the research work 
is focused on imperfect inspection policy investigation 
when not all defects are identified during inspection action 
performance, and the probability of defect identification is 
not a constant variable. The two basic cases of imperfect 
inspection are analyzed. In the first case, the probability of 
defect detecting during inspection is constant. In the second 
case, this probability is increasing linearly according to the 
defect symptoms visibility increase. In [14], CBM policies 
with imperfect operability checks are considered. The 
proposed expressions for probabilities of correct and 
incorrect decisions depend on the deterioration process 
parameters and uncertainty errors. 
This paper presents a more general condition monitoring 
model with imperfect inspections, which assumes that the 
monitoring data are mixed with measurement errors or noise 
and that incorrect decisions can occur when checking the 
system suitability in the coming interval of operation. The 
probabilities of correct and incorrect decisions are 
determined based on such a concept as measurement error 
of time to failure. 
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II. DECISION RULE AND SPACE OF EVENTS 

In this study, a deteriorating system subjected to random 
failure is considered. It is assumed that the state of a system 
is completely identified by the value of one parameter X(t), 
which is a nonstationary stochastic process with continuous 
time. A system should be inspected at successive times tk (k 
= 1, 2, …), where t0 = 0. When the system state parameter 
exceeds its functional failure level FF, the system passes 
into the failed state. In the presence of measurement error in 
the inspection of the system state parameter, let Z(tk) be the 
measured value of X(tk) and relate to X(tk) by the following 
equation: 

     kkk tYtXtZ  ,                                                      (1) 

where Y(tk) is the measurement error of the system state 
parameter at time tk. 

We introduce the following decision rule when inspecting 
the system condition at time tk. If z(tk) < PF, the system is 
said to be suitable over the interval (tk, tk+1), where PF (PF < 
FF) is the critical threshold level equivalent to the potential 
failure level of the system state parameter X(t). If z(tk) ≥ PF, 
the system is said to be unsuitable, and it should not be used 
in the interval (tk, tk+1). Thus, this decision rule is aimed 
toward the rejection of systems that are unsuitable for use in 
the next operation interval. 

From the perspective of the system suitability for use in 
the interval (tk, tk+1) when checking the parameter X(t) at 
time t = tk , one of the following mutually exclusive events 
may appear: 
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where H1(tk, tk+1) is the joint occurrence of two events: the 
system is suitable for use over the interval (tk, tk+1) and 
judged to be suitable when checking at time point tk; H2(tk, 
tk+1) is the joint occurrence of two events: the system is 
suitable for use over the interval (tk, tk+1) and judged as 
unsuitable when checking at time tk; H3(tk, tk+1) is the joint 
occurrence of the following events: the system is operable at 
time tk but fails up to time tk+1; when checking the system at 
time tk, it is judged as suitable for using in the interval (tk, 
tk+1); H4(tk, tk+1) is the joint occurrence of the following 
events: the system is operable at time tk but fails up to time 
tk+1; when checking the system at time tk, it is judged as 
unsuitable for using in the interval (tk, tk+1); H5(tk, tk+1) is the 
joint occurrence of the following events: at time point tk, the 
system is inoperable and judged as suitable for using over 
the interval (tk, tk+1); and H6(tk, tk+1) is the joint occurrence of 
the following events: at time point tk, the system is 
inoperable and judged as unsuitable for using over the 
interval (tk, tk+1). 

The graph of decision making when checking system 
suitability at time tk is shown in Fig. 1. As seen from the 
graph in Fig. 1, the system a priori can be in one of the three 

states: state of suitability with probability P(tk+1), operable 
but not suitable state with probability P(tk ) − P(tk+1), and 
inoperable state with probability 1 − P(tk ), where P(t) is the 
system reliability function. 

Let us find the probabilities of events (2). Assume that a 
random variable Ξ (Ξ ≥ 0) denotes the failure time of a 
system with failure density function ω(ξ). We introduce two 
new random variables associated with the critical threshold 
level PF. Let Ξ0 denote a random time of a system 
operation until it exceeds the critical threshold level PF by 
the parameter X(t), and let Ξk denote a random assessment 
of Ξ0 based on inspection results at time tk. 

The random variables Ξ, Ξ0, and Ξk are determined as the 
smallest roots of the following stochastic equations: 

  0 FFtX                                                                  (3) 

  0 PFtX                                                                  (4) 

  0 PFtZ k                                                                 (5) 

From the definition of the random variable Ξk, it follows 
that 
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Based on (6), the previously introduced decision rule can 
be converted to the following form: the system is judged to 
be suitable at time point tk if ξk > tk; otherwise (i.e., if ξk ≤ 
tk), the system is judged to be unsuitable, where ξk is the 
realization of Ξk for the system under inspection. 

From (5), it follows that Ξk is a function of random 
variables Ξ and Y(tk). The presence of Y(tk) in (5) leads to a 
random measurement error with respect to time to failure at 
time tk, which is defined as follows: 

...,2,1,  kkk                                                  (7) 

The additive relationship between random variables Ξ (0 
< Ξ < ∞) and Λk (−∞ < Λk < ∞) leads to −∞ < Ξk < ∞. 

Mismatch between the solutions of (3) and (5) results in 
the appearance of one of the following mutually exclusive 
events when inspecting system suitability at time tk: 

    kkkkk ttttH   111 ,                                   (8) 

    kkkkk ttttH   112 ,                                (9) 

    kkkkkk tttttH   113 ,                         (10) 

    kkkkkk tttttH   114 ,                         (11) 

    kkkkk ttttH 15 ,                                   (12) 

    kkkkk ttttH 16 ,                                   (13) 

 
Fig. 1. Graph of decision making when checking system suitability at time 
tk. 

Proceedings of the World Congress on Engineering 2015 Vol II 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-14047-0-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015



 

From (10) and (11), we see that in terms of system 
suitability over the interval (tk, tk+1), the event H3(tk) 
corresponds to the incorrect decision, and the event H4(tk) 
corresponds to the correct decision. When the event H3(tk) 
occurs, the unsuitable system is incorrectly allowed to be 
used over the time interval (tk, tk+1). From the viewpoint of 
system operability checking, the event H3(tk) corresponds to 
the correct decision, and the event H4(tk) corresponds to the 
incorrect decision. 

The event H2(tk) is further called a “false failure,” and 
events H3(tk) and H5(tk) are called “undetected failure 1” and 
“undetected failure 2,” respectively. Events H1(tk), H4(tk), 
and H6(tk) correspond to the correct decisions pertaining to 
system suitability and unsuitability. 

Note that even when Y(tk) = 0 (k = 1, 2, …), incorrect 
decisions are possible when checking system suitability. In 
fact, if Y(tk) = 0, expressions (8)−(13) are converted to the 
following form: 

    kkkk ttttH   0111 , ,                                (14) 

    kkkk ttttH   0112 , ,                              (15) 

    kkkkk tttttH   0113 , ,                       (16) 

    kkkkk tttttH   0114 , ,                       (17) 

  15 , kk ttH Ø,                                                             (18) 

    kkkk ttttH  016 , ,                                 (19) 

where Ø denotes the impossible event. 
The errors arising at Y (tk) = 0 are methodological in 

nature and nonremovable with the decision rule used herein. 

III. PROBABILITIES OF CORRECT AND INCORRECT 

DECISIONS 

Determination of probabilities (8)−(13) is based on the 
use of the well-known formula for calculating the 
probability of hitting a random point {Ξ, Ξk} to the known 
area. Denoting the joint probability density function (PDF) 
of random variables {Ξ, Ξk} as ω0(ξ, ξk), it is easy to 
determine that 
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As seen from (20)−(25), to determine the probabilities of 
correct and incorrect decisions, we need to know the joint 
PDF ω0(ξ, ξk). We denote the conditional PDF of random 
variable Λk as f0(λk|ξ) under the condition that Ξ = ξ. The 
following statement allows us to express PDF ω0(ξ, ξk) 
using PDFs ω(ξ) and f0(λk|ξ). 

Theorem 1. The following formula holds for the joint 
PDF of random variables Ξ and Ξk: 

     ξξξξωξ,ξω 00  kk f                                         (26) 

Proof. Using the multiplication theorem of the PDFs, we 
can write 

     ξξωξωξ,ξω 10 kk  ,                                             (27) 

where ω1(ξk|ξ) is the conditional PDF of random variable 
Ξk under the condition that Ξ = ξ. When Ξ = ξ, random 
variable Ξk can be represented as Ξk = ξ + Λk. By virtue of 
the additive relationship between random variables Ξ and 
Λk, the following equality holds: 

   ξξξξξω 01  kk f                                                  (28) 

Substituting (28) in (27), we obtain (26). 
The substitution of (26) to (20) gives 
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Assuming that gk = uk − ϑ in (29), we have 
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Carrying out a similar change of variables in (21)−(25), 
we obtain 
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As seen from (30)−(35), to calculate the probabilities of 
correct and incorrect decisions, we need to know the PDFs 
ω(ξ) and f0(λk|ξ). Note that expressions (30)−(35) are 
general, i.e., they can be used with any type of a random 
process X (t). 

IV. DETERIORATION PROCESS MODELING 

Let us consider a deteriorating system in which its 
degradation behavior is assumed to be described by the 
following monotonic stochastic function: 

  tAatX 10  ,                                                             (36) 

where a0 is the initial parameter value and A1 is the 
random rate of parameter deterioration defined in the 
interval from 0 to ∞. Note that a linear model of stochastic 
deterioration process was used in many previous studies for 
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describing real physical deterioration processes. For 
example, a linear regressive model studied in [15] describes 
a change in radar supply voltage with time, and a linear 
model was used in [8] for representing a corrosion state 
function. 

The following theorem allows us to find conditional PDF 
f0(λk|ξ) for the stochastic process given by (36). 

Theorem 2. If Y(tk) and Ξ are independent random 
variables and the system deterioration process is described 
by (36), then 
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where φ(yk) is the PDF of the random variable Y(tk) at 
time tk. 

Proof. Let us denote Yk = Y(tk) (k = 1, 2, …). Solving the 
stochastic equations 

FFAa  Ξ10                                                               (38) 

PFYAa kk  Ξ10                                                     (39) 

gives 

  10 AaFF                                                           (40) 

  10 AaYPF kk                                                 (41) 

Substituting (40) and (41) in (7) results in 

  1AYFFPF kk                                               (42) 

By combining (40) and (42), we determine that 

   0aFFYFFPF kk                                (43) 

For any value Yk = yk and Ξ = ξ, the random variable Λk 
with probability 1 has only one value, and the conditional 
PDF of Λk with respect to Yk and Ξ is the Dirac delta 
function: 

      0ξλδξ,λ aFFyFFPFyf kkkk              (44) 

Using the multiplication theorem of PDFs, we find the 
joint PDF of the random variables Λk, Yk, and Ξ 

       ξ,λξ,ξ,,λ kkkkk yfyfyf  
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Integrating the PDF (45) with variable yk gives 
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Since random variables Yk and Ξ are independent, 

     ξωξ, kk yyf                                                      (47) 

Considering (47), PDF (46) is transformed into 
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Using the shifting property of the Dirac delta function, 
PDF (48) is represented as follows: 
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Finally, by applying the multiplication theorem of PDFs 
to (49), we get 
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To determine the probabilities of correct and incorrect 
decisions, we substitute PDF (37) in (30)−(35); after 
mathematical manipulations, we obtain 
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V. OPTIMAL THRESHOLD VALUE 

The problem of determining the optimum threshold value 
PF depends on the selected optimization criterion. Let us 
consider some optimization criteria. 

The minimum Bayes risk criterion can be formulated as 
follows: 

    1211 ,β,αmin   kkkk
PF

opt ttCttCPF ,                 (57) 

where α(tk, tk+1) and β(tk, tk+1) are the probabilities of the 
“false failure” and “undetected failure” when checking 
system suitability at time tk, respectively, and C1 and C2 are 
the losses due to the “false failure” and “undetected failure,” 
respectively. The probabilities of “false failure” and 
“undetected failure” are as follows: 

    121 ,,α   kkkk ttHPtt                                           (58) 

       15131 ,,,β   kkkkkk ttHPttHPtt               (59) 
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The criterion of minimum total error probability is 
represented as follows: 

    11 ,β,αmin   kkkk
PF

opt ttttPF                       (60) 

VI. NUMERICAL EXAMPLE 

As shown in [15], if the output voltage of a certain type 
of radar transmitter exceeds the threshold FF = 25 kV, it 
needs maintaining to avoid break-down. Let us determine 
the optimal value of the threshold PF, which minimizes the 
total error probability. Assume that the output voltage of 
radar transmitter is described by the model (36), and A1 is a 
normal random variable. In this case, the PDF of the random 
variable Ξ is given by [16] 
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where m1 = E[A1] and Var[A1] = σ1
2. 

When calculating probabilities (51)−(56), we use some 
initial data given in [15]. The data are a0 = 19.645 kV, m1 = 
0.0028 kV/h, σ1 = 0.0012 kV/h, and σy = 0.2 kV. 

Assuming tk = 1000 h and tk+1 = 1500 h, the plot of total 
error probability versus threshold PF is shown in Fig. 2. As 
seen, the optimal threshold value is 23.3 kV and ()min = 
0.045. Note that when PF = FF = 25 kV, the total error 
probability is 0.28. Thus, the use of the optimal threshold 
PF significantly reduces the total error probability. 

Let us consider how optimal threshold PFopt depends on 
system operating time. The plot of total error probability 
versus threshold PF when tk = 2000 h and tk+1 = 2500 h is 
shown in Fig. 3. As can be seen in Fig. 3, the optimal 
threshold value is 24 kV, which is greater by 0.7 kV the 
value corresponding to the plot shown in Fig. 2. Thus, we 
can conclude that PFopt increases toward FF with an 
increase in system operating time. 

In Fig. 4, the dependence of the minimum value of total 
error probability versus the mean square deviation of 
measurement uncertainty is shown. As can be seen in Fig. 4, 
the total error probability almost linearly depends on the 
mean square deviation of measurement uncertainty. 
Therefore, to reduce (α + β), it is necessary to reduce the 
mean square error of measurement. 

In Fig. 5, the dependence of the minimum value of total 
error probability versus the mean square deviation of 
random variable A1 is shown. As can be seen from Fig. 5, 
the dependence has a maximum at σ1 = 6 × 10−4 [kV/h]. 

 
Fig. 2 Total error probability versus threshold PF when tk = 1000 h and tk+1 
= 1500 h. 

 
Fig. 3 Total error probability versus threshold PF when tk = 2000 h and tk+1 

= 2500 h. 

 
Fig. 4 Minimum value of the total error probability versus σy [kV] when tk = 
1000 h and tk+1 = 1500 h. 

 
Fig. 5 Minimum value of the total error probability versus σ1 [kV/h] 

when tk = 1000 h and tk+1 = 1500 h. 
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VII. CONCLUSION 

In this study, we have introduced a new decision rule 
when checking system suitability over coming interval of 
operation. The decision rule is based on the determination of 
the residue of operating time to system failure. It has been 
shown that even in the case of perfect inspections, the 
probabilities of incorrect decisions are nonzero when 
checking system suitability. Such errors are methodological 
in nature and nonremovable with the decision rule used 
herein. It has been shown that when checking the suitability 
of the system, a priori can be in one of the three states: state 
of suitability, state of operability, and state of inoperability. 
It has been also shown that due to the measurement 
uncertainty when checking system suitability, a random 
error may occur in the estimation of time to failure. The 
joint PDF of time to failure and random assessment of time 
to failure have been derived, which allows us to determine 
the general equations of the probabilities of correct and 
incorrect decisions when checking system suitability. To 
make optimal inspection decisions, the Bayes risk and 
minimum total error probability criteria have been 
formulated. The proposed general expressions for the 
probabilities of correct and incorrect decisions have been 
illustrated by the derivation of the corresponding 
probabilities for a monotonically increasing linear stochastic 
deterioration process. 
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