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Abstract—Understanding the magnetic field distribution in
the heart is crucial for interpreting electrocardiography (ECG)
and magnetocardiography (MCG) results. However, its math-
ematical model has been restricted by the cardiac fibre ori-
entation and has not been successful in some cases. In this
paper, a novel electromagnetic model of cardiac electric signal
propagation is proposed to provide a complete description of
the magnetic field in multidimensional cardiac tissue which can
be generated regardless of the cardiac fiber orientation. The
derived Maxwell’s equations, which are equivalent to those of
the generic two-variable model, are identical to the classical
electromagnetic field equations, but for a different medium,
and provide a unified macroscopic propagation description of
cardiac electric signal in multidimensional anisotropic space.

Index Terms—Cardiac action potential, FitzHugh-Nagumo
equations, Maxwell’s equations, Bioelectricity, Biomagnetism,
Electrocardiography, Magnetocardiography.

I. INTRODUCTION

The transverse current is the electric current flowing
orthogonal to the longitudinal current σ̂∇φ for a membrane
potential φ and an anisotropic tensor σ̂. This current has
attracted widespread attention because the electric current
that generates the magnetic field [3] [7] in the cardiac tissue
is known to be orthogonal to σ̂∇φ, contrary to the previous
longitudinal dipole hypothesis in which the magnetic current
distribution is parallel to σ̂∇φ [2] [31]. In the mathematical
modeling of cardiac action potential propagation, the electric
current density J has only been considered in the longitudinal
direction σ̂∇φ, in what is known as the longitudinal current
hypothesis. This hypothesis has been widely used together
with Ohm’s law for a static electric field E = −∇φ to obtain
[22] [28]

J = σ̂E = −σ̂∇φ. (1)

Thus, transverse current is intrinsically impossible in the
monodomain model, although it can occur in the bidomain
model if the conductivity tensor in the intracellular space,
denoted by σ̂i, is obliquely oriented with respect to the
conductivity tensor in the extracellular space, denoted by σ̂e.
Then, the current density has the form J = −σ̂i∇φi−σ̂e∇φe
as introduced by Roth and Woods to [32] represent the
magnetic field in the cardiac action potential propagation.
This bidomain model has been computationally tested and
clinically adapted for the interpretation of electrocardiogra-
phy (ECG) and magnetocardiography (MCG) [10] [17] [36]
[38].
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However, the bidomain model of the transverse current
sometimes results in erroneous regeneration of the existing
magnetic field [10]. The problem is that the electric current
is not purely orthogonal to σ̂∇φ, but can also be macro-
scopically parallel to σ̂∇φ. The present bidomain model of
the transverse current fails to provide the observed broad
distributions of the electric and pseudomagnetic currents far
from the wavefront. Understanding three-dimensional geo-
metric effect is also impossible. Moreover, it is problematic
to use the Biot-Savart law to derive the magnetic field
because the current may not be steady and one-dimensional
and because the generated magnetic field does not affect
the electric field or the membrane potential φ. Thus, it is
necessary to address the question of how the magnetic field
corresponding to cardiac excitation should be computed even
in multidimensional space to explain the similarity of the
patterns observed in ECG and MCG results?

In this paper, we propose a mathematical theory that
can solve the above-mentioned issues. Thinking of the
transverse current outside of the biologically unique bido-
main structure poses problems in classical electrodynamics.
Therefore, because biological problems are often treated as
physical problems, macroscopic cardiac electrophysiological
phenomena are herein considered in the context of clas-
sical electrodynamics. Such analysis can be performed by
considering the dynamics of cardiac propagation without
including the structure of the cardiac tissue through which
the wave propagates, because the macroscopic propagation of
an electromagnetic wave is often studied without considering
its medium, known as the aether [37].

The theory proposed in this paper provides mathematical
descriptions of bioelectricity in the context of biological
electric current dynamics in the heart, but the descriptions
can also be extended to bioelectromagnetics to incorporate
the effects of external electromagnetic fields on cardiac
action potential propagation. The main focus of this theory
is on the organ size scale. The two-variable excitable media
model, which is also called the generic model [6] [9], is used
to describe the qualitative propagation behaviour efficiently.
Thus, the proposed large-scale model of cardiac excitation
propagation could be viewed as being oversimplified with
respect to cellular-level modeling. However, this approach
has many unique advantages. For example, this model can
conveniently represent many multidimensional phenomena
in the heart especially those related to three dimensional
geometric effects on the electric current, such as fibrillation
and defibrillation in the atria and ventricles, which is almost
impossible to analyise in cellular-level modeling.

The objectives of this study were (i) to derive a set of
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Maxwell’s equations equivalent to those in the generic two-
variable model, (ii) to find a general expression for the
transverse current even in the monodomain, (iii) to determine
the fundamental mechanism that supplies the electric current
that generates the magnetic field, and (iv) to validate the
effect of the transverse current on the magnetic field in
comparison with that of the longitudinal current.

This paper is organized as follows. Section 2 explains the
differences between classical electrodynamics and the current
electrophysiological mathematical model. Section 3 presents
the derivation of the macroscopic Maxwell’s equations. Sec-
tion 4 describes the choice of gauge used to obtain the charge
density and corresponding current density. The derived set of
Maxwell’s equations is shown, and its important properties
are described in Section 5. Computational simulations for
one-dimensional and two-dimensional spaces are presented
in Sections 6 and 7, respectively. Discussion of the results
immediately follows in Section 8.

II. CLASSICAL ELECTRODYNAMICS IN CARDIAC
EXCITATION

When classical electrodynamics is applied to cardiac exci-
tation, it must first to be noted is that the longitudinal current
hypothesis of Eq. (1) is not electrodynamically correct.
Cardiac excitation is not a static phenomenon, but rather a
dynamic phenomenon in the sense that the electric charge
contained in charged ions propagates. From the dynamic
electric field equation E = −∇φ − ∂A/∂t, the current
density can be written as

J = σ̂E = −σ̂
(
∇φ+

∂A

∂t

)
, (2)

where A is the vector potential, which is defined as the
curl of the magnetic field B. In other words, A = ∇ ×B.
Because ∂A/∂t is not always aligned along the longitudinal
direction σ̂∇φ, transverse current naturally occurs, even in
the monodomain model, independent of the directions of σ̂e
and σ̂i.

TABLE I
COMPARISONS BETWEEN THE ELECTROMAGNETIC WAVE AND THE

CARDIAC ELECTRIC SIGNAL

Electromagnetic wave Cardiac excitation
Max. speed ≈ 3.0× 108 m/s ≈ 1.0 m/s

Medium outer space functional syncytium
Propagating object photons charged cations

Medium electron cardiac cell
Vacuum state void of matter cell in resting state

∂A/∂t has been disregarded in previous mathemati-
cal models of electrophysiology for several reasons. The
strongest justification for its exclusion is provided by the
experimental observation that cardiac electric signal prop-
agation is significantly slower than electromagnetic wave
propagation. The maximum electromagnetic wave speed is
approximately 3 × 108 m/s, but the cardiac signal speed
is only about 1 m/s, even in an anisotropic medium [15].
This slow speed is often used to justify the so-called quasi
magnetostatic assumption of biological phenomena in which
B ≈ 0 approximately implies that ∂A/∂t ≈ 0. This quasi-
magneto static assumption has proven to be successful for
many physical phenomena, even for cases in which the

electromagnetic wave speed is significantly faster than the
cardiac signal speed but notably slower than the speed of
light. Consequently, in order to validate the claim that the
dynamic version of Ohm’s law (2) should be adopted instead
of the static version (1), fundamental changes in cardiac
electric signal propagation theory seems to be required.

The key point of this study was that the functional
syncytium of cardiac tissues was considered as a medium
that delivers electrical signals, rather than as a dielectric
material that slows down electric waves. The propagation
of electromagnetic waves on the macroscopic scale can
be equivalently viewed as the continuous absorption and
emission of photons on the quantum scale. The maximum
electromagnetic wave speed is not an absolute constant,
but rather is determined by the medium through which
it is transmitted. Historically, this medium has often been
called aether [37]. For example, in Maxwell’s equations the
maximum speed of light should be constant in a vacuum, but
it does not have to be approximately 3.0×108 m/s unless the
electromagnetic wave of interest propagates in outer space
(Table I).

If the maximum speed of the electromagnetic wave speed
for a cardiac electric signal is approximately 1.0 m/s, then
the cardiac electric signal propagation through cardiac tissue
can be considered as signal delivery by a different form
of aether. This maximum speed differs by several orders
of magnitude from the speeds observed experimentally for
electromagnetic waves in the human body in the frequency
range of 1 ∼ 1000 Hz, which have wavelengths of sev-
eral kilometers [34]. However, the experimentally observed
speeds have been measured by regarding cardiac tissue as
a dielectric material, not a delivering aether. In this case,
the resting state of cardiac tissue is the vacuum state, corre-
sponding to the vacuum state in which electromagnetic waves
travel at 3.0×108 m/s. A cardiac signal’s propagation speed
can vary for many reasons, such as inhomogeneities in the
media through which it propagates, wavefront curvature, and
irregular pacing, but the signal’s speed is not small compared
to its maximum speed in the resting state.

If cardiac electric signal propagation is treated as the
continuous absorption and emission of charged cations by the
cardiac tissue in the resting state, the quasi-magneto static
assumption is not valid, because the velocity is still close
to the maximum speed of light in cardiac tissue in spite
of the aforementioned factors that can cause propagation
speed variations. Then, the derived electromagnetic fields
and potentials induced in cardiac tissue do not necessarily
are not qualitatively same as those of electromagnetic waves
in outer space. Without using the quasi-magneto static as-
sumption, an efficient method of modeling cardiac excitation
propagation in multidimensional space iinvolves deriving the
specific macroscopic Maxwell’s equations for the dynamics
of excitation propagation in cardiac tissue by choosing a
gauge and electric sources.

III. FROM MICROSCOPIC TO MACROSCOPIC

Let πi be the set of spatial locations occupied by myocar-
dial cells, called the intracellular space. Let πo be the space
of the surrounding bath, called the interstitial space. πi and
πo are microscopically separable with a distinctive boundary
so that πi ∩πo = ø. The membrane πi ∩πo is considered to

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 1 June 2016) WCE 2016



be sufficiently thin so that every point in microscopic space
belongs to either πi or πo.

A cardiac cell in the surrounding bath is roughly 100 µm
long and 15 µm in diameter [15] [21]. If the microscopic
scale is defined as the micrometer scale, then a domain
consisting of a few cardiac cells is microscopic. Suppose
that the microscopic domain (i) is statically continuous so
that electric conductivity tensor is distributed smoothly and
(ii) consists of only πi and πo, while other structures such as
fibroblast can be neglected. For πi and πo, the microscopic
Maxwell’s equations can be written as

∇ · dk = %k, ∇× ek = −∂bk/∂t,
∇ · bk = 0, ∇× hk = ∂dk/∂t+ jk,

(3)

where the superscripts k = ‘i’ and ‘o’ to indicate that
the variable is defined in πi and πo, respectively. Let e,
d, h, b be the electric field, displacement field, h-field,
and magnetic field, respectively, on the microscopic scale.
ε0 is the permittivity constant and µ0 is the permeability
constant for the resting state in which the electric signal
speed is at its maximum of c ≈ 1 m/s, in which case
(εi0µ

i
0)−1/2 = (εo0µ

o
0)−1/2. % is the charge density due to

d and j is the current density corresponding to %. Note that
both %k and jk are not trivial because of the transmembrane
current between πi and πo. Even without an external energy
source, charged ions transferred through the membrane have
the same effects as a charge source would have on πi and
πo [27] [28].

Fig. 1. From microscopic quantity pi in πi and po in πo to macroscopic
quantity p̄i = p̄o in Π.

The shift from a microscopic quantity to a macroscopic
quantity follows the mean value approach used by H. A.
Lorentz [18] [25]. Relativistic transformation is not consid-
ered in this paper. The macroscopic scale is considered to be
on the order of centimeters so that a domain that consists of
hundreds or thousands of cardiac cells is macroscopic. For
example, the macroscopic quantities E and φ can be obtained
by averaging the integrals of the microscopic quantities e and
ϕ: For the volume of a sphere V centered at each point in
the microscopic domain

E ≡ 1

V

∫
edV, φ ≡ 1

V

∫
ϕV.

The macroscopic components (Ei, φi) are defined in the
macroscopic domain Πi that is constructed from πi by
increasing the size of the basic unit. Similarly, (Eo, φo)
is defined in Πo. However, Πi and Πo are geometrically
identical because a cardiac cell and its surrounding bath
are indistinguishable on the macroscopic scale. Thus, Π ≡
Πo = Πi. One macroscopic point corresponds to microscopic
points in both πi and πo. Consequently, each variable has

two distinctive values at every macroscopic point. For ex-
ample, for every point p ∈ Π, (Ei(p), φi(p)) coexists with
(Eo(p), φo(p)), and they do not interfere with each other
except at the membrane πi ∩ πo. The charge density (ρi,
ρo) and current density (Ji, Jo) can be similarly obtained.
For rigorous mathematical derivations of the mean value
procedure for Maxwell’s equations by a smooth function with
a compact support, refer to ref. [34].

Based on the dielectric properties of cardiac tissue, sup-
pose that the magnetic field B has a constant linear constitu-
tive relationship with the H-field that is given by B = µ0H
without magnetic polarization, as assumed in ref. [34]. On
the other hand, suppose that the displacement field D has a
tensor relationship with E that includes the electric polariza-
tion density P and can be expressed as

D = ε̂E + P, where ε̂ = ε0Î +
σ̂

iω
, (4)

where i =
√
−1, ω is the wave frequency, and Î is the unit

tensor. The construction of ε̂ reflects the structure of cardiac
tissue, in which the conductivity σ̂ is anisotropic and the
permittivity (ε0Î) is homogeneous and isotropic.

Because all of the fields and variables are in the same
macroscopic domain Π, the macroscopic Maxwell’s equa-
tions for πi can be subtracted from those for πo (3) to obtain

∇ · σ̂E = ρe, ∇×E = −∂B
∂t
, (5)

∇ ·B = 0, ∇×H = ε0
∂E

∂t
+ σ̂E + Je, (6)

where ρe is the charge density due to σ̂E, and Je is the
current density corresponding to ρe that satisifies Je = J +
∂P/∂t, which can be obtained from the equality ∇ · σ̂E =
∇·ε̂E. The new macroscopic fields and potentials are defined
by the differences between the two quantities in πi and πo.
The above Maxwell’s equations (5) and (6) cannot determine
the electromagnetic field because ρe and Je are unknown. In
the following section, ρe and Je are chosen accordingly so
that the macroscopic Maxwell’s equations (5) and (6) also
represent the dynamics of the two-variable excitable media
model of cardiac electric signal propagation.

IV. DERIVING ρe AND Je

By applying a sufficiently smooth and differentiable con-
ductivity tensor σ̂ and the divergence operator to the expres-
sion of the dynamic electric field expression, we can obtain

−∂(∇ · σ̂A)

∂t
= ∇ · σ̂∇φ+ ρe. (7)

In electromagnetics, ∇ · A is called the gauge choice and
can be chosen randomly, although it is widely considered
that the gauge choice should reflect the subatomic excitation
mechanism of the signal oscillator, as do the Coulomb
and Lorentz gauges for classical electrodynamic waves [18]
[19]. For the electrodynamics of cardiac action potential
propagation, a new gauge is proposed:

∇ · (σ̂A) = −φ. (8)

The meaning of the gauge choice (8) can be briefly
explained as follows. Consider an isotropic domain Ω ∈ Π.
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Combining Eq. (7) with Eq. (8) and the divergence theorem
yields ∫

Ω

∂(∇ ·A)

∂t
dx−

∫
∂Ω

∇φ · ndS =

∫
Ω

ρedx,

where n is the normal vector of the boundary ∂Ω. The
first component is zero for the Coulomb gauge and is also
negligible for the Lorentz gauge when φ varies sufficiently
smoothly. However, the first component is not trivial for our
gauge choice (8). The total charge can also be modified
by the time variation of φ, not just by the flux caused by
the gradient of φ through the boundary. Therefore, any new
energy source in the medium, such as the membrane current
expressed as dφ/dt in the mathematical model, contributes
to the changes in the total charge and, eventually, in the
electromagnetic field.

In fact, this gauge plays an important role in monodomain
and bidomain equations. If the dynamic electric field of Eq.
(2) is used instead of the static electric field of Eq. (1) to
determine the current density, then the monodomain equation
is modified becomes

∂φ

∂t
= ∇ · σ̂∇φ+

∇ · (σ̂A)

∂t
+ Iion.

The gauge choice (8) preserves the form of the diffusion-
reaction for cardiac excitation propagation, and the dynamic
electric field produces a model qualitatively identical to that
produced by the static electric field. This preservation is also
true for the Coulomb gauge, but not for the Lorentz gauge.
By directly applying calculus and the conservation of charge,
Je that is expressed as −ik/k2ρ̇eσ̂

−1 in the reciprocal space
is equivalently expressed in the physical space as

Je = − ε0

4π

∫
ρ̇e(r

′)σ̂−1 r− r′

|r− r′|3
d3r′ − σ̂E, (9)

where the dot indicates the time derivative. The values of ρe
and ρ̇e in two popular models are displayed in Table II. Je
can be computed by solving ∇ · σ̂Je = −ρ̇e or a Poisson
equation such as Je = −σ̂∇φs where the new potential φs,
called the reaction potential, satisfies ∇ · σ̂∇φs = ρ̇e. The
latter method is employed in this paper for simplicity.

The physiological meaning of Je can be elucidated by
using a simple FitzHugh Nagumo model. Consider ρe =
φ − φ3/3 − ψ and ψ̇ = φ − ψ [13] [14] [26]. Then, Je is
given by

Je =
∂σ̂A

∂t
+
ε0

4π

∫
φ2(r′)

[
φ̇(r′) +

φ(r′)

3

]
r− r′

|r− r′|3
d3r′.

The first component is the difference between σE and −σ̂∇φ
and is equal to the difference between the dynamic and
static electric fields. The second component is the additional
source with a magnitude of φ2(φ̇ + φ/3) that is caused
by the membrane current. Because Je = J + ∂P/∂t,
the electric polarization in the electrodynamics of cardiac
excitation represents the current density change that is caused
by the membrane current. In other words, the additional
membrane current source can be expressed as the electric
polarization in the derived Maxwell’s equations, similarly to
how it would be expressed in classical electrodynamics and
bioelectromagnetics [34].

V. ELECTROMAGNETIC MODEL OF CARDIAC EXCITATION

The previous derivations can be briefly summarized by the
following proposition.

Proposition 1: In a macroscopic domain Π, the general
two variable monodomain model

∂φ

∂t
= ∇ · σ̂∇φ+ ρe(φ, ψ), (10)

∂ψ

∂t
= G(φ, ψ) (11)

is equivalent to the Maxwell’s equations

∇×E = −∂B
∂t
, (12)

∇×H =
∂E

∂t
+∇φs, (13)

where the reaction potential φs is the solution of the Poisson
equation ∇ · σ̂∇φs = ρ̇e. Thus, the second term in Eq. (13)
can be regarded a gravitational field being caused by ρ̇e.

The above proposition implies that the cardiac electric
signal propagation can also be modeled as field equations
that are invariant under Lorentz transformation. Because
∇φs, representing the macroscopic current caused by the
membrane current, can be considered as an electric current,
the above equations (12) and (13) can be combined with Eqs.
(5) and (6) and expressed as

∂αF
αβ = Jβ , ∂[αFβγ] = 0,

where Fαβ and Jα are the electromagnetic field tensor and
the 4-current, respectively. Thus, the Lagrangian density is
the same and consequently the fundamental equations de-
scribing the particle dynamics should be the same. However,
the macroscopic cardiac excitation propagation mechanism is
not necessarily exactly the same as that of electromagnetic
waves, because the general properties of the medium, i.e.,
cardiac tissue, are not the same as those of a vacuum, as
expressed in the constitution equation Eq. (4).

The medium through which the electric signal is
transmitted can be categorized according to the following
properties [29]: (1) nonlinearity, (2) dissipativity, (3) isotropy,
(4) reciprocality, (5) uniformity, and (6) dispersiveness.
These properties are well expressed by the real and
imaginary components of the permittivity and permeability.
Each of these properties is significantly different for a
vacuum and cardiac tissue.

1) Nonlinearity and dissipativity The strong nonlinear-
ity of cardiac electric signal propagation causes energy
degradation due to dissipation. Nonlinearity is related
to the imaginary component of permittivity, i.e., the
conductivity tensor.

2) Anisotropy: Another unique characteristic of cardiac
tissue is its strong anisotropy. The ratio of the prop-
agational velocities along the fiber, sheet, and normal
direction can be as large as 4:2:1 [39]. However, unlike
in electrodynamic anisotropic phenomena such as bire-
fringence and natural optical activity, the anisotropic
propagation is expressed by the conductivity tensor,
rather than by the anisotropic real component of the
permittivity tensor.

3) Reciprocality: The most well-known non-reciprocal
properties of electromagnetic waves are the consistency
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of the speed of light even in a moving medium, known
as the Fresnel Fizeau effect, and the dielectric and
magnetic rotation of the polarization plane, known
as the Faraday effect. The existence of the same
reciprocality in cardiac tissue is not known, but other
reciprocalities, such as (i) one-way propagation (ii) the
absence of any significant reflected waves, and (iii)
the lack of wave superposition, have been clinically
observed and studied in the cardiology community.
These phenomena are all related to the existence
of a refractory area that results in nonsymmetric
propagation in space and time.

The unique propagation mechanism in the cardiac tissue can
also be explained by the current density ∇φs which depends
on the temporal and spatial variations. If ρe is constant in
time or in space, then Maxwell’s equations (12) and (13)
are under conservation laws without any additional energy
source. The additional charge source, i.e., the membrane
current, is present when the distribution of ρe is nonuniform
in space and time. If ρ̇e > 0, then the presence of ρ̇e corre-
sponds to a medium with a source that contributes additional
charge. If ρ̇e < 0, then the presence of ρ̇e corresponds
to a medium with a sink that decreases the charge. This
mathematical deduction is consistent with biological effects
of the membrane current that is physiologically achieved by
ion channels, ion pumps, and exchanger current.

In the following sections, to relate the distribution of the
electromagnetic field to the propagation of the membrane
potential φ in one- and two-dimensional space, numerical
solutions to Maxwell’s equations (12) and (13) are presented.
For detailed numerical schemes and convergence tests, see
Appendix A.

VI. 1D PROPAGATION

Consider a one-dimensional domain of length 500 (which
corresponds to a real length of approximately 50 cm), and
let the cardiac electric signal propagate from the left wall
at x = 0. Two monodomain models are considered: the
FitzHugh Nagumo model and the Rogers McCulloch model.
Only the former has a hyperpolarization period in which the
membrane potential φ is below its value in the resting state.
The values of ρ and ρ̇ are displayed in Table II.

In Fig. 2, to the distributions of φ and ψ (first row), the
electromagnetic field (E,B) (second row), the displacement
field and the vector potential (D,A) (third row), and the re-
action potential and the time rate change of reaction (φs, ρ̇e)
(last row) are displayed in both of the aforementioned
models. Contrary to the Gaussian-like distributions of φ and
ψ with a compact support, the electric field E is immediately
affected by the instantaneous force term ρ̇e of the Poisson
equation (17) and is distributed smoothly throughout the
domain. However, the magnetic field B remains zero for one-
dimensional propagation. The shape of the displacement field
is similar to that of the membrane potential, which implies
that the signal propagates in form of the electric field and the
electric polarization. The fact that the maximum magnitude
of the vector potential A occurs near the action potential
suggests the maximum absorption and emission also occur
in that region, which is physiologically true. The reaction

FitzHugh-Nagumo Rogers-McCulloch

Fig. 2. One-dimensional distribution of the potentials and fields for the
original FitzHugh-Nagumo model and the Rogers-McCulloch model.

Fig. 3. One-dimensional distribution of (φ(|), ψ(:)) and (E(|), B(:)) when
σx = 0.25 (top) and σx = 4.0 (bottom) for x > 250.

potential φs is distributed smoothly according to the force
distribution of the almost point-wise charge ρ̇e.

The propagation of E is directly affected by the electric
conductivity σ̂, because the source of E is the gradient of
the reaction potential φs and because the reaction potential
φ depends on σ̂. This phenomenon is verified by Fig. 3. The
magnitude of E is approximately inversely proportional to
the magnitude of σ̂.

In the collision of multiple cardiac waves, the principle of
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Fig. 4. Collision of two cardiac excitations at T = 800 (top), T = 1000
(middle), and T = 1300 (bottom). Upper lines in each plot are (φ(|), ψ(:))
and lower lines are (E(|),B(:)). T = 1 corresponds to 0.63 ms.

superposition was previously thought to be violated, causing
the propagation to be nonlinear. However, the principle of
superposition can be applied to explain the collision of
cardiac waves. The time-series field distribution for the
collision of two cardiac waves is displayed in Fig. 4, in which
waves that are initiated at the ends propagate towards one
another and meet in the middle. As soon as the two humps
of φ merge into a single hump at a computational time T
of 1200, the reaction potential φs for E becomes a smooth
Gaussian curve and loses its sharp gradient. This change
indicates that the source of E is significantly weakened and
becomes negligible. Nevertheless, the sink remains active
independent of φ. Thus, E diminishes as it travels further into
the tail end of the other wave. Moreover, E in the backside
of the other wave has a magnitude similar to that of the
diminishing E, but the opposite sign. Therefore, the total E,
which is the sum of the diminishing E and the backside E,
becomes zero, and the wave is annihilated (at T > 1300)
according to the principle of superposition.

VII. TWO-DIMENSIONAL PROPAGATION

For two-dimensional modeling, the transverse electric (TE)
mode was chosen considering the anisotropy of the electric
conductivity in cardiac tissue.

A. Isotropic plane

Consider a two-dimensional square of length 100 (equiv-
alent to a real length of 10 cm). Let the propagation be
circularly initiated from the top left corner in the isotropic
medium with σ̂ = Î . Fig. 5 displays the distribution of vector
field distribution corresponding to φ at computational time
T = 500 (equivalent to a real time of 0.32 s). The electric
field E is in the same direction as the displacement field D.
Bu,t the main difference is that the electric field is distributed

Fig. 5. Isotropic plane with σ̂ = Î . Vector variables (E, D, A, J) by
arrows and scalar variables (φs, φHz , θ) by colour. θ is the angle between
J and D. The lines represent the isopotential contour of φ.

over a larger area including the depolarizing area, whereas
the displacement field is mostly not trivial in the depolarizing
area. The (J, θ) plot displays the angular difference between
E and D that is mostly significant especially along the
wavefront.

The yellow region in the (J, θ) plot of Fig. 5 displays this
transverse current corresponding to the transverse component
of E. Only in the yellow region, the current density J has an
angle of approximately 30◦ with respect to the displacement
field D. In the yellow region, the direction of E changes
dramatically, so ∇ × E is not zero. Therefore, a magnetic
field is generated in the yellow region according to Faraday’s
law (Eq. (12)), as shown in the (A,Hz) plot of Fig. 5. The
existence of a magnetic field in the absence of a cardiac fiber
σ̂, although its magnitude remains relatively weak, was not
predicted by the previous bidomain model.

Fig. 6. Plane with straight anisotropy σ̂ = 4x̂ + ŷ. Vector variables (E,
A, J) by arrows and scalar variables (φs, Hz , θ, U) by colour. θ is the
angle between J and D. The lines represent the isopotential contour of φ.

B. Anisotropic plane with straight cardiac fibre

Consider the same plane with the cardiac fiber aligned
along the x-axis, as was used in ref. [17]. Then, the conduc-
tivity tensor can be expressed as σ̂ = 4x̂ + ŷ. Suppose that
the propagation is initiated point-wise in the top-left corner,

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 1 June 2016) WCE 2016



at (x, y) = (−75, 75). In this case, the direction of E differs
significantly from that of D, especially in the depolarizing
zone where the propagation occurs along the fibre direction.
This difference is a direct consequence of the fact that the
contour of φ is not coincident with the contour of φs. The
area in which the angle between J and D is larger than 40◦

is significantly broader than that for the isotropic plane, as
indicated by the yellow region in the (J, θ) plot of Fig. 6.
Consequently, the magnetic field emerges in a broader region
near the wavefront, as shown in the (A,Hz) plot of Fig. 6.

Comparison of this result with Fig. 4 of ref. [17] confirms
that the magnetic field is aligned along the wavefront of the
cardiac action potential. However, the (J, θ) plot of Fig. 6
shows that the transverse current only appears in the yellow
area. This observation is in contrast to the previous claim
that a pure transverse current J only induces a magnetic
field in [17]. It was suggested in ref. [11] that the existence
of a pure transverse current is questionable because there are
multiple interpretations of the magnetic field created by the
longitudinal current along a cardiac fiber.

Another important characteristic of in Fig. 6 is that the
magnetic field depends on the angle between J and σ̂. In
the left part of the wavefront, the direction of J slowly
shifts toward the orange region in the repolarization zone
to form an oblique angle with the cardiac fiber σ̂ where
the magnetic field is generated. However, in the right part
of the wavefront, the direction of J remains along the x-
direction, parallel to the cardiac fiber, and the magnetic field
is negligible as shown in the (A,Hz) plot of Fig. 6. This
observation confirms the prediction of the previous bidomain
model that the magnetic field depends on the angle between
the current density flow and the cardiac fiber [32].

Fig. 7. Plane with circular anisotropy σ̂ = 4θ̂ + r̂ where r2 = x2 +
(y+ 120)2. Vector variables (E, A, J) by arrows and scalar variables (φs,
Hz , θ) by colour. θ is the angle between J and D. The lines represent the
isopotential contour of φ.

C. Anisotropic plane with circular fiber

The proposed electrodynamic model also demonstrates
that it is possible for the magnetic field to appear in regions
far from the wavefront. Consider a circularly anisotropic
plane centered at (0,−120) in the same domain so that the
conductivity tensor can be defined as σ̂ = 4θ̂ + r̂, where
r2 = x2 + (y + 120)2.

In Fig. 7, the distributions of φ, E, D are similar to those
for the linearly anisotropic fiber σ̂ = 4x̂ + ŷ. However,
the distribution of J differs significantly, mainly due to
the change in the distribution of φs that is caused by the
different direction of the circularly-distributed cardiac fiber.
This change can be observed by comparing the (J, θ) plots
of Figs. 6 and Fig. 7. Consequently, a significant amount
of the magnetic field is generated for the circular fibre in
a large area far from the depolarization zone, as shown in
the (H,U) plot of Fig. 7. However, the different distribution
of the magnetic field does not directly imply the different
distribution of ∇×J for the current source for the magnetic
field according to the Biot-Savart equation.

Fig. 8 displays the distributions of ∇ × J, which is the
magnetic field source, and the Poynting vector S, which
is defined by S ≡ (1/µ0)E × B, to represent the energy
flux density. Both plots shows the distribution of ∇ × J is
along the wavefront independent of the cardiac fibre direction
and the magnetic field. Consequently, using the Biot-Savart
equation should yield the same distribution of the magnetic
field, which contradicts our simulation. This is because ∇×J
is not a one-dimensional line segment in the two-dimensional
space; in principle the magnetic field should be computed
as a field variable from the electric field. The different
magnitude and direction of the Poynting vector demonstrates
the different directional energy flows caused by the different
magnetic field. This model explains the broad distribution of
the magnetic field, including the separation of the axis of the
MCG results from the wavefront, which has been conjected
to be caused by the longitudinal dipole hypothesis [10].

Fig. 8. Distribution of the Poynting vector (S) (arrow) and ∇×J (colour
contour) for the straight cardiac fibre (σ̂ = 4x̂ + ŷ) (left) and the circular
cardiac fibre (σ̂ = 4θ̂ + r̂) (right). The lines represent the contour of the
membrane potential φ.

VIII. DISCUSSION

In the electromagnetic field theory of cardiac electric
signal propagation, the transverse current induces the mag-
netic field because the transverse current causes dramatic
changes in the electric current, while the longitudinal current
is everywhere. The transverse current causes ∇ × J to be
nontrivial, and a magnetic field is consequently generated
according to Faraday’s law, not the Biot-Savart law. However,
a non-negligible transverse current is not a necessary and
sufficient condition for a magnetic field to exist.

Furthermore, the magnetic field does not have to appear
only along the wavefront; instead, it may appear in other
regions depending on the electric current propagation and
the cardiac fiber direction. The correlation between the
transverse current and the magnetic field is generally weak,
but it could be strong for certain geometric alignments of the
cardiac fiber. Nevertheless, it is true that the magnetic field
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H in Eqs. (12) and (13) may not be the same as the magnetic
field from the source of ∇×J as detected by MCG. In other
word, the former magnetic field exists in the cardiac media
and the latter magnetic field exists in the space. We assume
that these two magnetic fields are strongly correlated, which
may not be true in reality.

The disadvantages of this electromagnetic field theory are
as follows. (i) The computational cost of evaluating (E, B) is
higher than that of solving the diffusion-reaction equations.
In addition to the diffusion-reaction equations, Maxwell’s
equations and one Poisson equation should be solved for each
time step. The additional cost increases quadratically with
dimensions. (ii) The electromagnetic model inherits most of
the drawbacks of general two-variable excitable models [5]
[6] [9] [24]. However, the electromagnetic model can also
be combined with other cell models, such as the Luo-Rudy
model [33]

One benefit that compensates for the large computational
cost or the proposed model is the fundamental information
that it yields about complex cardiac electrophysiological
phenomena that could not be obtained by using two-variable
diffusion-reaction equations on the macroscopic scale. It
could yield many tools that would be useful for mathematical
studies, such as geometric interpretations of propagation
trajectories, Lagrangian and Hamiltonian approaches, and
simpler Eikonal equations. The electric current can easily
be computed from the electric field, and the magnetic field
can be displayed to facilitate the analysis of MCG results.
The energy flux and density can be used to understand
the flow of charged ions in cardiac tissue. The geometric
model of cardiac restitution and the bioelectromagnetics
of defibrillation will be studied from the perspective of
electrodynamics in the near future [4] [12] [40] [41].

APPENDIX

In a two-dimensional plane Ω, let E = Exx + Eyy and
Hz = H · z. Then, the TE mode of (12) and (13) can be
written in a normalized form such as

∂Ex
∂t

=
∂Hz

∂y
− ∂φs

∂x
, (14)

∂Ey
∂t

= −∂Hz

∂x
− ∂φs

∂y
, (15)

∂Hz

∂t
=
∂Ex
∂y
− ∂Ey

∂x
, (16)

where the reaction potential φs is the solution of the Poisson
solver
∂

∂x

(
σx
∂φs
∂x

)
+
∂

∂y

(
σy
∂φs
∂y

)
= ρ̇e(φ, ψ)−

∫
Ω

ρ̇edx. (17)

with the pure Neumann boundary conditions such that

∂E

∂n
= 0,

∂Hz

∂n
= 0,

∂φ

∂n
= 0,

∂φs
∂n

= 0, on ∂Ω,

(18)

where n is a parameter in the direction of the edge normal
vector on ∂Ω. Note that ρe is a function of φ(x, y, t)
and ψ(x, y, t), which are updated by solving the diffusion-
reaction equations (10) and (11). To obtain effective solu-
tions, the average of the force term in the Poisson equation
can be made zero by adding −

∫
Ω
ρ̇edx. φs is not unique and

in fact can have infinitely many values because it includes an
arbitrary constant, but it does not affect the uniqueness of Ex
and Ey because only the gradient of φs is used. Moreover, to
compare the longitudinal flow with the transverse flow, the
displacement field D must also be computed, by using

∂Dx

∂t
=
∂Hz

∂y
− σx

∂φ

∂x
, (19)

∂Dy

∂t
= −∂Hz

∂x
− σy

∂φ

∂y
. (20)

For the computational simulations, the above equations
were solved in the context of the discontinuous Galerkin
(DG) method. The computational code was implemented
in nektar++, a C++ object-oriented spectral/hp library
[35]. For the numerical flux, the upwind flux was used
for Maxwell’s equations [16] and conservation laws [20].
Also, the hybrid flux [23] was used for the diffusion-reaction
equations (10) - (11) and the Poisson equation (17). For
the time integration, the implicit explicit (IMEX) Runge
Kutta third-order scheme was used in order to increase the
maximum size of stable time step size, which was strongly
restricted by the elliptic operator. For the maximum edge
length of 10.0, a time step of 0.1 was used. Moreover,
to represent the anisotropic conductivity tensor efficiently
with different orientations, the method of moving frames
was employed [8]. All of the computations were performed
on a Macbook Pro personal laptop with 4GB of memory.
The actual program contained 11 variables (Ex, Ey , Hz ,
Dx, Dy , Ax, Ay , φ, ψ, φs), but all of the computations
presented in this paper were obtained in less than half a day
of computation time.

Any charge density ρe and G in (10) could be used,
provided that they accurately represent the cardiac excita-
tion propagation accurately. In this study, their values were
adapted from the Rogers McCulloch model [30], unless
stated otherwise. However, other generic two-variable models
such as the Aliev Panfilov model [1] are expected to produce
qualitatively similar results.

The numerical scheme for the above equations was tested
by considering the domai Ω(x, y) = [−1, 1]× [−1, 1] and an
arbitrary conductivity tensor σ̂ = σxx + σyy, in which case
the following functions are the exact solutions of Eqs. (14)
- (18):

φ = cosπx cosπy cosωt,

φs = (ω sinωt+ cosωt) cosπx cosπy,

ρe = π2(σx + σy) cosπx cosπy cosωt− ω cosπx cosπy sinωt,

Ex =
1√
2

sinπx cosπy((1− ω) cosωt+ sinωt),

Ey =
1√
2

cosπx sinπy(−(1 + ω) cosωt+ sinωt),

Hz = − sinπx sinπy sinωt,

where ω =
√

2π. In Fig. (9), plots of the spectral L2

convergence versus the polynomial order p are displayed for
the isotropic case, in which σx = 1 for all x, and for the
anisotropic case, in which σx = 4 for x ≥ 0 and σx = 1
otherwise. For both cases, σy = 1 for all x.
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Fig. 9. Spectral L2 convergence of the test problem for σx = 1 for all
x (left) and σx = 4 for x ≥ 0 and σx = 1 otherwise. For both cases,
σy = 1 for all x.

TABLE II
FITZHUGH-NAGUMO:

a = 0.12, b = 0.011, c1 = 0.175, c2 = 0.03, d = 0.55.
ROGERS-MCCULLOCH:

a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1, d = 1.0 [30].
cφ = −3c1φ2 + 2(c1(a+ 1))φ− ac1

ρe, ρ̇e, ψ̇
FitzHugh- ρe = c1φ(φ− a)(1− φ)− c2ψ
Nagumo ρ̇e = cφφ̇− c2ψ̇

ψ̇ = b(φ− dψ)
Rogers- ρe = c1φ(φ− a)(1− φ)− c2φψ
McCulloch ρ̇e = cφφ̇− c2(φ̇ψ + φψ̇)

ψ̇ = b(φ− dψ)
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Revised version

This paper is revised to the current form on 1st June, 2016.
The original version shows an non-symmetric distribution
of the reaction potential φs due to the wrong boundary
implementation for pure Neumann condition. This bug yields
slightly different distribution of the electromagnetic field,
thus all the figures of electromagnetic field distributions are
regenerated with the correct algorithm. However, the main
conclusion of the original version is still valid.
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