
Abstract-This paper considers an approach to design a hybrid 

Particle Swarm Optimization Fuzzy Support Vector Machines 

(PSOFuzzySVM) to predict oil well gas lift performance and 

production optimization in a reservoir. The performance of a 

production well is a function of several variables. Examples of 

these variables are Productivity index, Tubing depth, Bottom 

Hole Flowing Pressure, Tubing Head Pressure, Gross liquid 

rate tubing size and choke size. Changing any of the variables 

will alter the performance of the well.  In continuous gas lift, 

gas injection pressure has a decided effect on the efficiency and 

operation of gas lift. Selection of a gas injection pressure that is 

too high can result in excessive investment in compression and 

other equipment, whereas low pressure can cause inefficient 

gas lift operation and failure to produce a well at full potential. 

Therefore, the determination of an optimal gas injection 

pressure is crucial to achieving the most profitable operation. 

The conventional methods of predicting well performance are 

many and include Poettmann and Carpenter, Baxendel, 

Baxendell and Thomas, Ros and Gilbert mathematical and 

graphical models. This paper discusses the determination of an 

optimal injection pressure, optimal Gas Liquid Ratio, 

compressor horsepower and injection rate for a continuous gas 

lift installation which yields the maximum oil production rate 

using particle swarm optimization approach. The Fuzzy 

Support Vector Machines (FuzzySVM), which is a method of a 

rule-based system extracted from SVM, was also developed for 

the oil well performance prediction. The motivation of the 

proposed method is the fact that the system neither requires 

the determination of number of rules in advance nor requires 

mathematical computation of inflow, vertical lift and choke 

performance but utilized extraction of knowledge from 

corporate databases. Simulation results demonstrate how the 

designed Particle Swarm Fuzzy support vector machines 

perform well production prediction. The paper therefore 

illustrates how Fuzzy support vector machines can be used to 

generate fuzzy rules from SVM for the purpose predicting the 

flow rate, as a vital parameter in determining the well 

performance.   

Index Terms: Support Vector Machines, Fuzzy Logic, Fuzzy 

Support Vector Machines, Oil well performance, Particle 

swarm optimization, choke size, Tubing Head Pressure, 

Productivity index, Fuzzy rules, Production rate 

 

I. INTRODUCTION 

 

In a naturally flowing well the energy stored in the reservoir 

to flow the produced fluid to the surface also decreases with 

time. Reservoir pressure and formation gas provide this 

energy in the flowing well. As a result of reduction of this 

energy, oil production rate from a production well also 

decreases with respect to time such that after some time it 

may reach an unprofitable level. When reservoir energy is 

too low for natural flow, or when the desired production 

rate is greater than the reservoir energy can deliver, it 

becomes necessary to put the well on some form of artificial 

lift. As of 2006, 90 % of the world’s oil wells are on some 

form of artificial lift according to Oilfield Review [1]. 

When an oil well flows naturally initially, it implies that the 

pressure at well bottom is sufficient to overcome the 

pressure losses in the well and flow line to the separator. In 

a situation where this condition can no longer be met due to 

decrease in bottom hole pressure, or pressure losses in the 

well become too great, the natural flow stops and the well 

eventually dies. The increased pressure losses in the well 

can as a result of increased overall density due to decreased 

gas production, increased water cut or mechanical problems 

like down hole restrictions (scale etc). In the present paper, 

an attempt is made to extract exact and fuzzy rules from the 

support vectors out of the trained datasets gas lift 

performance prediction. The paper also discussed the 

application of Particle Swarm Optimization(PSO) for 

design optimization of continuous gas lift.  Fuzzy logic has 

main disadvantage of “Curse of dimensionality” for high 

dimension input space. The hybrid FuzzySVM was 

proposed to proffer solution to this shortcoming. The 

motivation is the ability to predict oil well performance 

using the information gathered in various operational 

databases of the company. A model is derived from the 

trained dataset using SVM and fuzzy rules are extracted for 

oil well performance prediction purposes.   

II.         OVERVIEW OF SUPPORT VECTOR 

MACHINES 

Vapnik[2] proposed the support vector machines(SVMs) 

which was based on statistical learning theory. The 

governing principles of support vector machines is to map 

the original data x into a high dimension feature space 

through a non-linear mapping function and construct hyper 

plane in new space.  The problem of regression can be 

represented as follows. Given a set of input-output pairs Z = 

Predicting Oil Well Gas Lift Performance and 

Production Optimization Using hybrid Particle 

Swarm Optimization and Fuzzy Support Vector 

Machines  

 1Odedele T. O, 2Ibrahim H. D 

 

.Correspondences 
1,2Raw Materials Research & Development Council,(RMRDC) 

Abuja Nigeria 
1email-odedelermrdc@yahoo.comDeputyDirector(Computer 

Services Division) 
2email-hdibrahim2002@yahoo.co.uk Director General of Raw 

Materials Research & Development Council,(RMRDC) 

 

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

mailto:1email-odedelermrdc@yahoo.com
mailto:2email-hdibrahim2002@yahoo.co.uk


{(x1, y1), (x2, y2), . . . ,(xℓ, yℓ)}, construct a regression 

function f that maps the input vectors x € X onto labels y € 

Y . The goal is to find a classifier f €F which will correctly 

predict new samples. There are two main cases to consider 

when we use a separating hyper-plane: 

1. A linearly separable case 

2. The data might not be linearly separable. 

SVMs tackle the first problem by finding the hyper-plane 

that realizes the maximum margin of separation between the 

classes. [2] A representation of the hyper-plane solution 

used to classify a new sample xi is: 

                 Y=f(x)=wi(x)+b              (1) 

Where wi,(x)  is the dot-product of the weight vector w and 

the input sample, and b is a bias value. The value of each 

element of w can be viewed as a measure of the relative 

importance of each of the sample attributes for the 

prediction of a sample. Various research studies have shown 

that the optimal hyperplane can be uniquely constructed 

through the solution of the following constrained quadratic 

optimization problem [3,4] 

          Minimise1/2||w||+C ξ𝑙
𝑖=1 I (2a) 

 

subject to _ yi(||w||+ b) ≥ 1 − ξi, i= 1, . . . , ℓ 

ξi≥0,i=1,...,ℓ                                                                 (2b) 

In linearly separable problem, the solution minimizes the 

norm of the vector w which increases the flatness(or reduces 

the complexity) of the resulting model and hence the 

generalization ability is improved. With non-linearly 

separable hard-margin optimization, the goal is simply to 

find the minimum ||w|| such that the hyperplanef(x) 

successfully separates all ℓ samples of the training dataset. 

The slack variables ξi are introduced to allow for finding a 

hyperplane that misclassifies some of the samples (soft-

margin optimization) because many datasets are not linearly 

separable. The complexity constant C >0 determines the 

trade-off between the flatness and the amount by which 

misclassified samples are tolerated. A higher value of C 

means that more importance is attached to minimizing the 

slack variables than to minimizing||w||. Instead of solving 

this problem in its primal form of (2a) and (2b), it can be 

more easily solved in its dual formulation by introducing 

Langrangian multiplier α [3,4]: 

Maximize W(α)= αi𝑙
𝑖=1 +½ αiαjyiyj xi, xj  𝑙

𝑖 ,𝑗=1 (3a) 

Subject to C≥αi≥0, αiyi𝑙
𝑖=1 =0                                (3b) 

In this solution, instead of finding w and b the goal now is 

find the vector α and bias value b, where each αi represents 

the relative importance of a training sample I in the 

classification of a new sample. To classify a new sample, 

the quantity f(x) is calculated as: 

f(x)= αiyiK xi, xj sv
𝑖=1 +b                                    (4) 

where b is chosen so that yif(x) = 1 for any I with C > αi>0. 

Then, a new sample xs is classed as negative if f(xs) is less 

than zero and positive if f(xs) is greater than or equal to 

zero. Samples xi for which the corresponding αi are non-

zero are called as support vectors since they lie closest to the 

separating hyperplane. Samples that are not support vectors 

have no influence on the decision function.  

Training an SVM entails solving the quadratic programming 

problem of (3a) and (3b). There are many standard methods 

that are be applied to SVMs, these include the Newton 

method, conjugate gradient and primal-dual interior-point 

methods, but this study used the Sequential Minimal 

Optimization. [5]. In SVMs, kernel functions are used to 

map the training data into a higher dimensional feature 

space via some mapping φ(x) and construct a separating 

hyperplane with maximum margin. This yields a non-linear 

decision boundary in the original input space. Typical types 

of kernels are: 

− Linear Kernel: K(x, z) =  x, z  
− Polynomial Kernel: K(x, z) = (1 +  x, z )d 

− RBF Kernel: K(x, z) = exp(−||x−z||2/2σ2 ) 

− Sigmoid Kernel: K(x, z) = tanh(γ* x, z  − θ) 

This condition ensures that the solution of (3a) and (3b) 

produces a global optimum. The functions that satisfy 

Mercer’s conditions can be as kernel functions. As 

promising as SVM is compared with ANN as regards 

generalization performance on unseen data, the major 

disadvantage is its black box nature. The knowledge learnt 

by SVM is represented as a set numerical parameters value 

making it difficult to understand what SVM is actually 

computing. 

 

III.          FUZZY LOGIC OVERVIEW 

 

Fuzzy Logic which was introduced by Lotfi A. Zadeh was 

based on fuzzy sets in 1965 [6,7,8]. The basic concept of 

fuzzy logic is to consider the intermediate values between 

[0,1] as degrees of truth in addition to the values 1 and 0. 

The following sections will briefly discuss the general 

principles of fuzzy logic, membership functions, linguistic 

variables, fuzzy IF-THEN rules, combining fuzzy sets and 

fuzzy inference systems (FISs). 

 

A.  Fuzzy Inference System 

 

Fuzzy inference systems (FISs) are otherwise known as 

fuzzy-rule-based systems or fuzzy controllers when used as 

controllers. A fuzzy inference system (FIS) is made up of 

five functional components. The functions of the five 

components are as follows: 

1. A fuzzification is an interface which maps the crisp inputs 

into degrees of compatibility with linguistic variables. 

2. A rule base is an interface containing a number of fuzzy 

if-then rules. 

3. A database defines the membership functions (MFs) of 

the fuzzy sets used in the fuzzy rules. 

4. A decision-making component which performs the 

inference operation on the rules. 

5. A defuzzification interface which transforms the fuzzy 

results of the inference into a crisp output. The qualified 

consequents are combined to produce crisp output according 

to the defined methods such as: centroid of area, bisector of 

area, mean of maximum, smallest of maximum and largest 

of maximum etc. This final step is also known as 

defuzzification[9,10,11,12]. The major disadvantage of 

standard fuzzy logic is the curse of dimensionality nature for 

high dimensional input space. For instance, if each input 

variable is allocated m fuzzy sets, a fuzzy system with n 

inputs and one output needs on the order of mn rules. 

 

IV. EXTRACTING FUZZY RULES FROM 

SUPPORT VECTOR MACHINE 

 

In this fuzzy SVM section, we will first give an insight into 

how to extract fuzzy rules from Support Vector Machine 

(SVM), and then explain the process of optimizing the fuzzy 

rules system and highlight an algorithm that will convert 
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SVM into interpretable fuzzy rules. This method has both 

good generalization performance and ability to work in high 

dimensional spaces of support vector machine algorithm 

with high interpretability of fuzzy rules based models. As 

mentioned earlier, Support vector machine (SVM) is a 

useful method of classifying dataset. This is a new machine 

learning method based on the Statistical Learning.  

Suppose a set of training dataset denotes the input space 

patterns. Their main concept is to construct a hyperplane 

that acts as a decision space such that the margin of 

separation between positive and negative samples is 

maximized. This is generally referred as the Optimal 

Hyperplane". This property is achieved as the support vector 

machines are an approximate implementation of the method 

of structural risk minimization[13]. Despite the fact that a 

support vector machine does not provide domain-specific 

knowledge, it provides good generalization ability, a unique 

property among the different types of machine learning 

techniques. Instead of solving this problem in its primal 

form of (2a) and (2b), it can be more easily solved in its dual 

formulation by introducing Langrangian multiplier α [14]: 

as highlighted in section II. The crucial step in fuzzy SVM 

is to build a reliable model on training samples which can 

correctly predict class label and extract fuzzy rules from 

SVM. On the other hand, fuzzy rule-base which consists of 

set of IF-THEN rules constitutes the core of the fuzzy 

inference [13,14,15]. Suppose there are m fuzzy rules, it can 

be expressed as following forms: 

Rule j: If x1 isAj1 AND x2 isAj2 AND ………xnis. Ajn THEN 

bj                                                                         (5) 

Where xk is the input variables; bj is the output variable of 

the fuzzy system; and Ak are linguistic terms characterized 

by fuzzy membership functionsaj
k

. If we choose product as 

the fuzzy conjunction operator, addition for fuzzy rule 

aggregation, and height defuzzification, then the overall 

fuzzy inference function is 

    F(x) =

 bj  aj
kn

k=1
m
j=1 (xk )

  aj
kn

k=1
m
j=1 (xk )

            (6) 

Where F(x) 

is the output value when the membership function achieves 

its maximum value. 

If on the other hand, the input space is not wholly covered 

by fuzzy rules, equation(5) may not be defined. To avoid 

this situation, Rule0 can be added to the rule base 

   Rule0: If A01 AND A02 AND ………. A0n THEN b0  
 

    F(x)=

b0+ bj  aj
kn

k=1
m
j=1 (xk )

1+  aj
kn

k=1
m
j=1 (xk )

       (7) 

 

In a binary classification, sign(F(x)) shows the class label of 

each input x and since the denominator is always positive, 

class label of  each input is computable by 

Label(x) =sign(b0 +  bj  aj
kn

k=1
m
j=1  xk         (8) 

In order to let equation (4) and (8) are equivalent, at first we 

have to let the kernel functions in (4) and the membership 

functions in (8) are equal. The Gaussian membership 

functions can be chosen as the kernel functions to satisfy the 

Mercer condition[13, 14, 15]. Besides, the bias term of the 

expression (4) should be zero. If the Gaussian function is 

chosen as the kernel function and membership functions, 

and the number of rules equals the number of support 

vectors then (4) and (8) becomes equal and then output of 

fuzzy system (8) is equal to the output of SVM (4). A 

membership function 𝞵(x) is reference function if and only 

if 𝞵(x)=𝞵(-x) and 𝞵(0)=1. A reference function with 

location transformation has the following property for some 

locations mj€R 

aj
k xk = ak(xk − mj

k) 

A translation invariant kernel k is given by 

K(x,mj)= ak(xk − mj
k)n

k=1  

Examples of reference functions are as shown in Table I 

 
Table I. 

REFERENCE FUNCTIONS 

 

V. OVERVIEW OF PARTICLE SWARM 

OPTIMIZATION (PSO) 

Particle swarm optimization (PSO) is an evolutionary 

computation technique, first introduced by Kennedy and 

Eberhart.[16,17,18,19,20] The main idea is used to model a 

group social behavior such as the way birds travel when 

trying to find sources of food, or fish schooling. In PSO, 

there are no operators inspired by natural evolution applied 

to extract a new generation of possible solutions. Instead of 

mutation, the behavior is modeled in such way is that the 

"particles" inside the "swarm" (or population) are treated as 

solutions to a given problem with exchange of information. 

And as such, each particle will adjust its movement towards 

its own previous best position and global best previous 

position.  The flowchart of the method is given in Fig. 1. c1 

and c2 are two positive constants, called the cognitive and 

social parameter respectively; ri1 and ri2 are random numbers 

uniformly distributed within the range [0, 1]. In each 

iteration, Eq. (9) is used to determine the i-th particle's new 

velocity, while Eq. (10) provides the new position of the i-th 

particle by adding its new velocity, to its current position. 

The performance of each particle is measured according to a 

fitness function, which depends on the problem. In 

optimization problems, the fitness function is usually 

identical with the objective function under consideration. 

The role of the inertia weight w is considered important for 

the PSO's convergence behavior. The inertia weight is 

employed to control the impact of the previous history of 

velocities on the current velocity. Thus, the parameter w 

regulates the trade-off between the global (wide-ranging) 

and the local (nearby) exploration abilities of the swarm. A 

large inertia weight facilitates exploration (searching new 

areas), while a small one tends to facilitate exploitation, i.e. 

 Reference functions 

Symmetric Triangle 𝞵(x)=Max(1- 𝑔 |x|,0)   𝑔>0 

Gaussian 𝞵(x)=𝑒−𝑔𝑥2
𝑔>0 

Cauchy 𝞵(x)=
1

1+𝑔𝑥2 𝑔>0 

Laplace 𝞵(x)=𝑒−𝑔|𝑥|𝑔>0 

Hyperbolic Secant 𝞵(x)=
2

𝑒𝑔|𝑥 |+𝑒−𝑔|𝑥 | 𝑔>0 
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fine-tuning the current search area. A proper value for the 

inertia weight w provides balance between the global and 

local exploration ability of the swarm, and, thus results in 

better solutions.  PSO is initialized with a group of random 

particles (solutions) and then searches for optima by 

updating generations. In every iteration, each particle is 

updated by following two "best" values. The first one is the 

best solution (fitness) it has achieved so far. (The fitness 

value is also stored.) This value is called pbest. Another 

"best" value that is tracked by the particle swarm optimizer 

is the best value, obtained so far by any particle in the 

population. This best value is a global best and called gbest. 

When a particle takes part of the population as its 

topological neighbors, the best value is a local best and is 

called lbest. After finding the two best values, the particle 

updates its velocity and positions with following equations 

(9) and (10). 

 

v[n+1] = v[n] + c1 * rand() * (pbest[n] - X[n]) + c2 * 

rand()*(gbest[n]-X[n])                                    (9)   

 

X[n+1]=X[n]+v[n+1]                                     (10)  

 

v[n] is the particle velocity, X[n] is the current particle 

(solution). pbest[n] and gbest[n] are defined as stated before.  

 

 
 

Fig1.  Flow diagram illustrating the particle swarm 

optimization algorithm

rand () is a random number between (0,1). c1, c2 are 

learning factors. usually c1 = c2 = 2. 

The procedure describing proposed PSO approach is as 

follows. 

1.Initializing PSO with population size, inertia weight and 

generations. 

2. Evaluating the fitness of each particle. 

3. Comparing the fitness values and determines the local 

best and global best particle. 

4. Updating the velocity and position of each particle till 

value of the fitness function converges. 

 

VI.  METHODOLOGY 

 

The system is divided into two parts: as it makes use of 

different systems for gas lift design optimization and 

prediction of gas lift performance. 

a. Gas lift design and production optimization using 

Particle Swarm Optimization(PSO). 

b. Predictions of gas lift performance using 

FuzzySVM 

In order to analyze the performance of a completed flowing 

well, it is important to recognize three different components 

which are linked together. These components are the inflow 

performance, the vertical lift performance and the choke 

performance[21,22,23,24]. The inflow performance 

represents the flow of oil, water and gas in porous media 

into the bottom of the well. The vertical lift performance 

involves the analysis of pressure two-phase mixture of gas 

and liquid.   

The inflow performance represents the flow of oil, water 

and gas in porous media into the bottom of the well. The 

vertical lift performance involves the analysis of pressure 

two-phase mixture of gas and liquid.   

In mathematical formulation, gas lift performance can be 

modeled as a two parameter family of ordinary differential 

equation (ODE) representing the energy equation along the 

tubing. 

 

144
Δ𝑝

Δ
= 𝜌 +

𝐾

𝜌 
                                                  (11) 

with initial conditions 

P(0) = Pwh,  

where  𝜌 =overall density of fluid column in the tubing Ib/ft3 

Δ𝑝 =Pressure drop over vertical interval Δ, ft 

𝐾 =
𝑓𝑞2𝑀2

7.413𝑥1010𝐷5                                                 (12)                            

            q=Liquid production rate bbl/day 

            M= total mass of gas and liquid associated with 1 bbl 

of stock tank liquid (Ib) 

 

    D= Inside diameter of the tubing ft 

            f= Energy loss factor 

Similarly, the Inflow Performance Relationship(IPR) is 

expressed as  

J=
𝑞

∆𝑃
                                                                 (13)                         

where J=Productivity Index bbl/day.Psi 

 

∆𝑃 =Pws-Pwf 

Pws=Reservoir pressure, psi    Pwf=Bottom-hole flowing 

pressure, psi The values of q and Pwf are obtained from the 

solutions of the equations(11) and (13). 

As expected, the compressor horsepower decreases as 

injection pressure increases and the cost of a compressor 

installation naturally goes up with the horsepower. Part of 

the objectives of this paper is to use the concept of particle 

swarm optimization to obtain an optimal injection pressure, 

Gas injection rate, compressor horse-power and GLR that 

will facilitate a more profitable gas lift installation 

[25,26,27,28,29,30]. 

The expression for compression horsepower is given by 

equation (14) 

Power=0.223M{(P2/P1)
0.2-1} hp                             (14)                                                 

where  hp=horse power 

            M=Gas rate mcf/day at standard conditions. 
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            P1=Compressor input pressure, Psia 

P2= Compressor output pressure, Psia (Injection Pressure) 

M=q(optimum GLR-formation GLR)                    (15) 

A numerical scheme based on particle swarm optimization 

is constructed. Computation procedure could be written as 

follows: Using 4th order Runge Kutta method, ∆𝑃 could be  

computed from equation(11) and using equation(13) q and 

Pwf are obtained [31].  

Step1: Initializing PSO with population size, inertia weight 

Step 2: Compute fitness of each particle using equations(14) 

& (15)  

Step 3: Obtain Pbest and Gbestfor each particle 

Step 4: Update P2 and optimum GLR using(9)&(10) 

Step 5: Return to step 2 until convergence criteria are 

satisfied 

 

VII.  APPLICATION EXAMPLE 

This section gives an example of continuous gas lift design. 

Consider a well with characteristics as shown in TableII. 
 

 

Table II 

TYPICAL CONTINUOUS GAS LIFT DESIGN WELL DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is required to determine an optimum gas injection pressure 

that will optimize gas injection rate in order to obtain 

maximum production rate. 

 

VIII.   RESULTS AND DISCUSSION 

 

Here, some numerical results are shown for hypothetic data 

which is given in Table III. The following are computational 

results using Particle Swarm Optimization Algorithm. The 

computation process is conducted for two hundred 

generations with the numerical optimum points given in 

Table III. 

 
Table III. 

RESULTS USING PARTICLE SWARM OPTIMIZATION 

 

Injection 

Pressure 

GLR   GasInjection 

Rate  Rate        Rate scf/day 
HorsePower 

1761.0594     7536.19         1612247.6362                211.1198 

1705.9680      2854.30         610553.90                       67.7998 

1645.1764      9797.95        2096152.36                    270.0864 

1686.9164      6693.93       1432046.019                   181.4530 

1799.0081      8761.33       1874367.58                     251.0575 

1767.6094      8352.17       1786827.48                     236.3530 

1699.0185      7299.478     1561603.04                     200.1832 

1604.1212      5921.34       1266749.28                     154.3676 

1797.5579      3674.55       786046.60                         94.8267 

1668.0494      1273.55       272351.43                         20.3321 

1739.4542      5546.16       1186480.13                     149.7240 

1756.2504      9163.88       1960493.46                     260.1894 

1634.0085      2321.43       496545.36                         50.7229 

 

The results in Table III., show that the optimal parameters 

for the gas lift installation are: Injection 

pressure=1668.05Psi. GLR=1273.55Scf/Stb, Gas Injection 

rate=272351.43Scf/day, Horsepower=20hp 

The sample data used for training are as shown in Table IV 

while those samples for testing are as shown in Table V. 

The proposed model shows a high accuracy in predicting 

production rate with a stable performance, and achieved 

lowest root mean square error. 

The results of testing (external validation check were 

summarized in Table VI. The predicted production rate is as 

listed in Table VII. We observe from these results that the 

hybrid Fuzzy-support vector machines modeling scheme 

performs satisfactorily for predictive correlations. 

 A plot of the experimental and predicted data versus the 

input data is as shown in Fig 2. The study develops a 

fuzzySVM to predict gas lift performance. The membership 

functions for a regression fuzzySVM are restricted to a 

category of membership functions generated from location 

transformation of reference function. higher potential to 

increase accuracy drastically. The predictive accuracy is 

90.9% with complexity parameter C=1.35, gamma=2.0 and 

RMSE=26.4 

 

A. PSO Parameters for Gas Lift Problem 

 

C1=1.2, C2=0.8, w=0.5, number of particles=20, 

iterations=200 

 Fitness function=Power=0.223M{(P2/P1)
0.2-1} hp 

M=q(optimumGLR –formationGLR) 

 

 

 

Well Depth ( ft)    5000.00 

Tubing size (in)                            2.5 

WOR  0.2 

Producing GOR 650 

Oil Production rate (q)  bbl/day    302 

Water gravity  1.15 

Oil gravity 42.3 

Gas gravity 0.816 

Water Gravity 0.1 

Productivity Index(J) bbl/day*Psi 0.333 

Reservoir Pressure Psi 2500 

Compressor input pressure, Psi   150 

Tubing Head Pressure THP    150 

Surface Temperature 0F 70 

Bottom Hole Temperature 0F 200 

Oil formation volume factor  (Bo)            1.25 
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Well Name Reservoir 

Name 

Productivity 

Index 

Tubing 

Head 

Pressure 

GLR Choke Pressure Gas Injection 

Rate scf/day 

Production 

Bbl/d 

Eyak2 Eyak 0.4 100 0.27 46 2200        472350 130 

Eyak2 Eyak 0.3 235 0.27 21.5 2000 420400 140 

Eyak2 Eyak 0.4 170 0.4 44 2000 280100 170 

Etim1 Etim 0.3 235 0.27 21.5 2000 420250 210 

Eyak2 Eyak 0.54 170 0.8 46 1380 190150 260 

Eyak2 Eyak 0.4 400 0.8 27 1820 290150 180 

Eyak3 Eyak 0.3 235 0.27 21.5 2000 260340 310 

Eyak2 Eyak 0.35 100 0.75 46 2000 150260 150 

Eyak2 Eyak 0.3 235 0.27 21.5 1900 250000 230 

Eyak2 Eyak 0.45 200 0.2 45 1950 295200 220 

Well Name Reservoir 

Name 

Productivity 

Index 

Tubing 

Head 

Pressure 

GLR Choke Pressure Gas Injection 

Rate scf/day 

Production 

Bbl/d 

Eyak2 Eyak 0.4 100 0.27 46 2200        472350 130 

Eyak2 Eyak 0.3 235 0.27 21.5 2000 420400 140 

Eyak2 Eyak 0.4 170 0.4 44 2000 280100 170 

Etim1 Etim 0.3 235 0.27 21.5 2000 420250 210 

Eyak2 Eyak 0.54 170 0.8 46 1380 190150 260 

Eyak2 Eyak 0.4 400 0.8 27 1820 290150 180 

Eyak3 Eyak 0.3 235 0.27 21.5 2000 260340 310 

Eyak2 Eyak 0.35 100 0.75 46 2000 150260 150 

Eyak2 Eyak 0.3 235 0.27 21.5 1900 250000 230 

Eyak2 Eyak 0.45 200 0.2 45 1950 295200 220 

Eyak2 Eyak 0.55 100 0.3 45 2150           200190 ? 

Eyak2 Eyak 0.4 150 0.25 36 2050 270340 ? 

Eyak2 Eyak 0.35 200 0.2 44 2000 540240 ? 

Table IV 

TRAINING SAMPLES 

 

Table V 

TESTING SAMPLES 
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Table VI 

GAS LIFT PERFORMANCE PREDICTION RESULTS 

 

 
Table VII. 

 PREDICTED PRODUCTION RATE(FUZZYSVM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. A plot of the experimental and predicted data versus 

the input data  
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Gas Injection rate scf/day 

 

Production rate bbl/day 

200190 132.86 

270340 205.57 

540240 70.91 

Method Samples Fuzzy 

rules 

C Gama RMS

E 

Accur

acy% 

SVM 11 7 1.35 2.0 109.3 45.98 

Fuzzy SVM 11 7 1.35 2.0 26.4 90.9 
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