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Abstract—Quasistatic deformation processes in aging vis-
coelastic spherical bodies formed by accretion in a central
self-gravity field are considered. Inertial effects are neglected,
and the strains are assumed to be small. The stress-strain
state evolution in the growing ball before the beginning of
growth, at the continuous growth stages and in the pauses
between them, and after the end of growth is studied. The
mathematical theory of growing solids is used to state initial–
boundary value problems describing the deformation process
at all of these stages. Closed-form analytic solutions of these
problems are constructed. The stress-strain state evolution in
a growing spherical body is computed numerically for various
growth modes. Completely new mechanical effects specific to
growing solids are discussed. One main application of this work
is to estimate the gravitational stresses in the Earth.

Index Terms—accretion, spherical solid, viscoelasticity, stress-
strain state, self-gravity

INTRODUCTION

IN many natural phenomena and technological processes,
the bodies involved become larger and undergo shape

changes owing to the addition of extra material. When
studying such processes, one should simultaneously take into
account the gradual influx of matter to the surface of the
growing body and the loads applied to the body. This cannot
in principle be done adequately in the framework of classical
mechanics of solids even if one considers the traditional
equations and boundary conditions in a time-varying field.
The fact that problems concerning the mechanical behavior
of growing solids generally have a number of peculiarities
and form a specific class of problems in solid mechanics
was understood in the pioneering paper [1], which was the
first to indicate explicitly that it is wrong to use the strain
compatibility conditions when calculating the stress state of
a growing body and that this state is fundamentally different
from the state of the same body loaded after the end of
growth.

Bulk forces often occur as mechanical loads in the above-
mentioned processes. These forces include those resulting
from the action of external physical fields on the body
(gravitational and Coulomb forces), inertia forces (primarily,
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the centrifugal force) caused by rigid motions of the body in
space, and self-gravity forces of material particles.

It is well known that many artificial and natural materials
(e.g., concrete, polymers, ice, rocks, soils, and wood) exhibit
pronounced creep and aging properties. This means that their
strain state may vary even under a constant load, and their
mechanical characteristics experience changes caused by
physicochemical mechanisms. We consider growth processes
for such materials.

I. STATEMENT OF THE PROBLEM AND DESCRIPTION
OF THE APPROACH

A. Aim of research

Models of accretion formation of massive cosmic objects
owing to the influx of additional external substance to the
surface in general take into account the forces of interaction
between material particles as well as the centrifugal forces of
inertia due to rotation of the object. However, the latter are
neglected compared with gravitational forces in the present
paper. This is the right thing to do, at least in the first
approximation, because we deal with quasistatic deformation
processes in aging viscoelastic spherical bodies formed by
accretion in a central self-gravity field; in this setting, the
velocity of rotation of cosmic bodies is relatively low, while
the influence of the gravitational forces on the body is
enormous on a cosmic scale.

B. Applications to geomechanics and geophysics

The main application of our results is to the problem of
estimating the self-gravitational stress distributions inside the
Earth. A careful analysis shows that the classical mechanical
approach, in which the Earth is treated as a ball of constant
radius under self-gravity, leads to wrong results in this
problem. Indeed, the corresponding solution exhibits strong
circumferential contraction stresses on the surface of the self-
gravitating body, which contradicts our everyday experience
and motivates the development of a new approach.

This contradiction is caused by the assumption that there
exists a “natural” (that is, stress-free) configuration of the
whole body. This assumption underlies all classical state-
ments of problems in mechanics of solids, but it is plainly
not true in our setting. The absence of such a natural
configuration for the Earth experiencing deformation under
self-gravity is explained by the fact that the Earth has not
been formed instantaneously. It has been formed by gradual
surface accretion of additional matter from the outside over a
long period of time. Owing to the force of gravity, the newly
accreted matter exerts additional pressure on the earlier-
formed central part of the body, hence causing a change in
the stress-strain state of the latter.
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Thus, we arrive at the natural conclusion that the study
of the gravitational stress state of the Earth should be based
on a model in which the body is gradually growing under
self-gravity rather than exists in final form from the very
beginning. In other words, the problem should be considered
in the framework of mechanics of growing solids. The studies
carried out in the present paper lead to a geomechani-
cal/geophysical model based on these principles.

Brown and Goodman [2] were apparently the first to solve
the deformation problem for an accreted self-gravitating
spherical shell. They assumed the shell material to be linearly
elastic and considered a quasistatic growth process in the
small strain approximation. The deformation problem for
a rotating growing ball was solved in [3] under the same
assumptions.

Note that, theoretically, the statement of geometrically
linear quasistatic problems describing the growth (even non-
linear) of a continuous elastic body does not encounter
any fundamental difficulties, because the rate of change in
the stress–strain state of the body is completely determined
by instantaneous characteristics of the growth and loading
processes. The situation for hereditary materials is different
in that the changes in the stress–strain state of the growing
body at any time instant depend on the entire preceding
deformation history of each material element (including the
elements already existing in the body before the beginning
of growth). Stating the problem is a real challenge from the
mathematical viewpoint in this case.

A mathematical theory of growing solids in the framework
of the linear theory of viscoelasticity was developed in
[4]. In this theory, a general nonclassical boundary value
problem is stated for a piecewise continuously growing
viscoelastic aging body subjected to arbitrary surface and
bulk forces. The problem is solved by reduction to a sequence
of boundary value problems coinciding in form with classical
boundary value problems of linear elasticity with a time
parameter. After solving this sequence of problems, one can
reconstruct the true stress–strain state of the growing solid
by using the decoding formulas provided by the theory. We
discuss the existence and uniqueness of the solution of the
boundary value problem for a growing body and consider a
model accretion problem for a body made of a viscoelastic
aging material with self-gravity taken into account.

II. BOUNDARY VALUE PROBLEMS AND THEIR SOLUTIONS

A. Description and a mechanical model of the process
Consider a substance distributed in some region of space

and subjected to the stationary gravitational field of a pre-
existing ball-shaped core whose formation is assumed to have
been stress-free. The force of gravity attracts the substance
particles to the core. As a result, a solid spherical body begins
to grow from the original core by continuous accretion of
new substance particles attracted to its surface (Fig. 1).

All material elements of the growing body continually
experience mutual gravitational attraction. This attraction
results in the onset and development of time-varying stress
and strain fields. The stress–strain state of this growing self-
gravitating ball at any time instant is fundamentally different
from the state that would occur in the same ball if it were
formed by mechanical forces alone and only then placed in
the self-gravity force field.

Fig. 1. Basic scheme of the accretion process

The response of a viscoelastic material to mechanical loads
depends on the load duration and the material age. Therefore,
the final state of a body gradually grown from such a material
in a force field crucially depends on the nature and rate of
the entire growth process.

Assume that the ball grows in its own gravitational field
by influx of stress-free material to the surface. Consider the
original homogeneous ball (core) of radius a0 in the centrally
symmetric force field [5]

f(r) = −ercr, c =
4

3
πγgrd

2, r = |r|, er =
r

r
,

where r is the position vector with respect to the ball center,
γgr is the gravitational constant, and d is the mass density.

Assume that the original ball is formed at time t = t0 from
the above-mentioned isotropic linearly viscoelastic aging
material with zero onset time and, starting from some time
t = t1 ≥ t0, undergoes N successive stages of continuous
growth by uniform influx of the same material to the surface.
These intervals alternate with time intervals on which the
material influx is absent and the ball surface is not loaded.
Before the beginning and after the end of growth, the ball
surface is not loaded either.

Neglecting inertial effects and assuming that the strains
are small, we study the stress–strain state evolution in the
ball before growth, at continuous growth stages and in the
pauses between them, and after the end of growth.

B. Constitutive equations

We use the following constitutive equations to describe the
mechanical behavior of the viscoelastic aging material of the
growing solid [6]:

T(r, t) = G(t)(I +Nτ0(r))[2E(r, t) + (κ− 1)1trE(r, t)],

I +Ns = (I − Ls)−1, κ = (1− 2ν)−1 = const.

Lsf(t) =

∫ t

s

f(τ)K(t, τ) dτ, Nsf(t) =

∫ t

s

f(τ)R(t, τ) dτ,

K(t, τ) = G(τ)
∂∆(t, τ)

∂τ
,

∆(t, τ) = G(τ)−1 + ω(t, τ) = (I − Lτ )G(t)−1.

Here t is the time variable, r is the position vector, T is the
stress tensor, E is the linear strain tensor, 1 is the unit tensor,
τ0(r) is the instant of stress origination at a point of the body,
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Ls and Ns are Volterra integral operators with a parameter s,
I is the identity operator, K(t, τ) is the creep kernel, R(t, τ)
is the relaxation kernel, ω(t, τ) is the shear creep function
(t ≥ τ ≥ 0), G(t) is the elastic shear modulus, and ν is the
constant Poisson ratio.

We approximate the mechanical characteristics of the body
by the formulas

ω(t, τ) = Ω(τ)[1− e−γ(t−τ)],
G(t) = G∞ −∆Ge−αt, Ω(t) = Ω∞ + ∆Ωe−βτ ,

where γ > 0 is the time scale factor, Ω(τ) = ω(+∞, τ) is
the aging function, α/γ = 2, ∆G/G∞ = 0.5, β/γ = 31/60,
G∞ω∞ = 0.5522, G∞∆Ω = 4, and ν = 0.1. These data
correspond to the experimental creep curves of concrete [6].

C. Boundary value problem for the pre-accretion period

Using the mathematical theory of growing solids [4], one
can state initial–boundary value problems describing the
deformation process for the objects in question in any time
period.

Before the beginning of accretion, the process is described
by the classical boundary value problem of linear viscoelas-
ticity [6],

∇ ·T = ercr, 0 < r < a0, t0 ≤ t ≤ t1,

T = G(I +Nt0)[2E + (κ− 1)1trE], E =
∇u +∇uT

2
,

er ·T = 0, r = a0; u→ 0, r→ 0.

Here u(r, t) = eru(r, t) is the displacement field for the
original ball (core). Note that the distribution τ0(r) of stress
origination instants is uniform at the points of the original
body and equals to the time t0 at which the core was loaded.

We construct a closed-form analytic solution of this prob-
lem by using the well-known correspondence principle in
linear viscoelasticity [6] and the solution of the correspond-
ing boundary value problem of linear elasticity (e.g., see [7],
[8]),

u = − cr

10(κ+ 1)

(
5κ+ 1

3κ− 1
a20 − r2

)
∆(t, t0),

σr = −c(5κ+ 1)(a20 − r2)

10(κ+ 1)
,

σϑ = −c[(5κ+ 1)a20 − (5κ− 3)r2]

10(κ+ 1)
.

Here σr and σθ are the radial stress and the circumferential
stress in any direction tangent to the central sphere, respec-
tively. The other stress tensor components in the spherical
coordinate system are zero.

Note that the stresses in the original body are independent
of time until accretion begins. This is consistent with general
theorems in linear viscoelasticity [6].

D. Boundary value problem for the accretion period

In the framework of the general mathematical theory of
aging viscoelastic growing bodies [4], we can prove that the
stress–strain state evolution in the ball under self-gravity after
the beginning of accretion (i.e., at each stage of continuous
material influx), in the pauses between the stages, and during

an arbitrary long period after the material influx terminates
is described by the nonclassical boundary value problem

∇ · S = ercr
∂ω(t, τ0(r))

∂t
, 0 < r < a(t), t > t1,

S = 2D + (κ− 1)1trD, D =
∇v +∇vT

2
,

er · S = −erq(t), r = a(t); v→ 0, r → 0.

Here v(r, t) = erv(r, t) is the displacement rate field in the
time-varying spatial domain occupied at time t by the entire
growing ball of radius a(t) > a0,

q(t) =
ca(t)a′(t)

G(t)
,

D is the strain rate tensor, and S is the operator stress rate
tensor, S = ∂T◦/∂t, where

T◦(r, t) = (I − Lτ0(r))
[
T(r, t)

G(t)

]
is the operator stress tensor.

The above-mentioned proof is too long to be presented
here.

We obtain the following closed-form analytic solution of
the problem in terms of characteristics rates of the stress–
strain state:

v = −r
[
Ψ(r, t) + Φ(r, t) +

4Ψ(a(t), t) + q(t)

3κ− 1

]
,

Sr,ϑ = mr,ϑΨ(r, t)− (3κ− 1)Φ(r, t)− 4Ψ(a(t), t)− q(t),
mr = 4, mϑ = −2.

Here we have used the functions

Φ(r, t) =
c

3(κ+ 1)

∫ a(t)

r

ξ
∂ω(t, τ0(ξ))

∂t
dξ,

Ψ(r, t) =
c

3(κ+ 1)

∫ r

0

ξ
∂ω(t, τ0(ξ))

∂t

(
ξ

r

)3
dξ,

which depend on the entire accretion history of the body as
well as on the gravitational, creeping, and aging properties
and the Poisson ratio of the material.

E. Relations for the true stresses

Having solved the boundary value problems describing
the process before and after accretion begins, we need to
reconstruct the evolution of true stresses at every point r of
the body starting from the beginning of the evolution, that
is, from the time τ0(r), and until arbitrarily large time.

First, we can reconstruct the evolution of the tensor field
T◦(r, t) by integrating the rate values obtained for this tensor
over time,

T◦(r, t) = T◦(r, τ1(r)) +

∫ t

τ1(r)

S(r, τ) dτ,

t ≥ τ1(r), where we have introduced the auxiliary time
instant distribution

τ1(r) =

{
t1, 0 < r < a0,

τ0(r), r > a0.

For the original solid (0 < r < a0), we have

T◦(r, τ1(r)) ≡ T◦(r, t1) = T0(r)∆(t1, t0),
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where T0(r) is the stationary stress tensor field in the
original solid (core) in the pre-accretion period (see subsec-
tion C). For the additional part of the solid formed during
the accretion process (r > a0), we have

T◦(r, τ1(r)) ≡ T◦(r, τ0(r)) ≡ 0,

because the accretion process considered here has the prop-
erty that the material particles entering the growing body
owing to the substance influx to the surface are stress-free.

After we have reconstructed the entire evolution of the
operator stress tensor T◦ at any point r of the growing body,
we can reconstruct the evolution of the true stress tensor T
at this point by solving the corresponding tensor Volterra
integral equation of the second kind

T(r, t)

G(t)
−
∫ t

τ0(r)

T(r, τ)

G(τ)
K(t, τ) dτ = T◦(r, t).

One can write out the solution of this integral equation in
the resolvent form

T(r, t)

G(t)
= T◦(r, t) +

∫ t

τ0(r)

T◦(r, τ)R(t, τ) dτ.

But it is much more efficient to solve it numerically, for
example, by using the trapezoid rule [9].

III. CONCLUSIONS

We carry out numerical computations of the stress–strain
state evolution in a growing body at all stages of the
deformation process for various growth modes. We estimate
how the parameters of the growth process affect the stress–
strain state in the course of evolution and the final stress–
strain state. The final state of the accreted body is compared
with the state obtained by solving the classical problem
of mechanics of solids for an object similar in geometry
and properties without taking into account the force and
kinematic peculiarities of the growth process.

We reveal new mechanical effects specific to growing
solids. Let us indicate some of the results obtained.

A. Some comments to the plots

Figures 2–4 show the normalized (by the gravitational
factor c) dimensionless radial and circumferential stresses
and the tangential stress intensity σ̄r, σ̄ϑ, and T̄ , against
the dimensionless radial coordinate r̄. We use the following
notation for dimensionless variables:

stress =
stress

ca20
, length =

length

a0
, time = γ · time.

For the numerical illustration of the results, we assume
that the original ball (core) is loaded at time t̄0 = 0.1, and
the material influx to its surface begins at time t̄1 = 0.6.
Recall that the material itself is assumed to be formed at
time t = 0.

The dashed lines in the figures show the radial distributions
of the above-mentioned stress state characteristics in an
instantly formed self-gravitating ball, both in the original
core from which the considered growth process starts and
in the fictitious nonaccreted ball of the final size. These
distributions are found by solving the corresponding classical
linear problem of viscoelasticity.

Fig. 2. Radial stress distribution

Fig. 3. Circumferential stress distribution

Fig. 4. Shear stress intensity distribution

The solid lines in the figures correspond to the single-stage
growth process (N = 1, see Subsection 3A) with the constant
rate of increase in the radius a(t) due to material influx.
In case (a), the process is sufficiently rapid; the accretion
terminates at the time instant t̄2 = 1.2. In case (b), the
process is similar to that in case (a) except that it is four
times slower; the accretion terminates at time t̄2 = 3.0.

Bold solid lines depict the final distributions (at infinite
time).

B. New detected effects

Let us discuss the main features of the numerical results.
There is a typical jump in the circumferential stress

distribution diagrams at the interface between the original
part of the ball and the part formed due to growth. It is
also clear that the radial stress distribution diagrams are
discontinuous at this interface.

Both the radial and the circumferential stresses increase
in absolute value at all points of the body until the final
termination of accretion, after which the absolute value of
the radial stress decreases at each point to a steady-state
value, and the circumferential stress is redistributed from the
initial material to the added one and tends to a certain final
distribution as well.
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The final radial and circumferential stress distributions
depend on the material influx rate. The more rapid the
accretion process, the higher the extent to which the radial
stresses have time to decrease and the circumferential stresses
have time to be redistributed, and the more uniform the
final load of the added portion of the material is. The limit
circumferential stress on the surface of the finally formed
body can be higher (if the accretion process is sufficiently
rapid) or lower (if the accretion process is relatively slow)
than the initial value on the surface of the original body.
However, the absolute value of the circumferential stress
on the surface of the accreted body is always less than the
circumferential stress on the surface of a similar solid that
is not accreted.

The shear stress intensity is discontinuous on the com-
mon interface of two components of the ball as well. The
tangential stress intensity diagram is independent of time in
the original part of the body and always coincides with the
intensity distribution in the intersection of this part with a
nongrowing ball of arbitrary radius. This is a consequence of
the following fact theoretically established in our investiga-
tion: the evolution of the stress deviator at any point of a self-
gravitating ball is determined only by the deformation history
of the latter until the time at which the point in question was
incorporated in the solid.

It also follows from the above-mentioned theoretical fact
that, in the case of a purely elastic material (which is a special
case of the viscoelastic material considered in the present
paper), the entire additional part of the ball formed by growth
is loaded as a perfect fluid; i.e., it has a spherical stress state.

In the general viscoelastic case, the tangential stress in-
tensity in the additional part of the ball is nonzero and
develops into some limit dependence whose shape substan-
tially depends on the growth rate. Its maximum value in the
additional part of the ball can be larger (for sufficiently rapid
growth processes) or smaller (for relatively slow accretion)
than the maximum in the original part (kernel). However, the
global intensity maximum in the growing ball is always less
than in an instantly manufactured ball of the same size, in
which the maximum is always attained on the surface.

One can also find the recent developments in the theory
of growing solids with applications in [10]–[22].
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