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ABSTRACT - Cognitive systems aim to endow physical 

agents with higher levels of cognitive functions which enable 

them to reason, act and perceive in changing, incompletely 

known and unpredictable environments. Agents are typical 

implementations of cognitive entities. In fact, this paper 

introduces a framework suitable for supporting the distributed 

performing of cooperative actions in dynamical and complex 

multi-agent environments based on the knowledge involved in 

the agents’ situation. The framework allows agents to 

self-calculate their suitability rates to execute any proposed 

action. In this light, experimental results are obtained using 

the robot soccer simulator test bed. Such experiments show 

that the selected information to generate the knowledge used 

by agents is useful when such agents must perform actions in 

a suitable way or they must achieve trustworthy commitments. 

Conclusions emphasizing the advantages and usefulness of 

the introduced framework improving the multi-agent 

performance in coordinated task situations are presented.  

Key Words: Situated Agents, Cooperation, Environmental 

Conditions, Physical Knowledge, Trust Value. 

1. INTRODUCTION 

Most of the research into cooperative systems to date has 

concentrated on how to obtain desired dynamics interaction 

between autonomous agents [1]. In this sense, to solve complex 

problems, multi-agent systems require knowledge about each 

agent and their skills to perform individual actions in distributed 

and cooperative environments where entities share goals and 

their actions are beneficial to their teammates [2]. In this light, 

cognitive systems aim to endow physical agents with higher 

levels of cognitive functions which allow them to reason, act and 

perceive in changing, incompletely known and unpredictable 

environments. Such agents, for example, must be able to reason 

about goals and actions, the cognitive state of other agents, times, 

resources, collaborative task execution, etc. In short, cognitive 

robotics is concerned with integrating reasoning, perception, and 

action within a uniform theoretical and implementation 

framework (using methods drawn from logic, probability and 

decision support theory, reinforcement learning, etc). Methods 

for cooperative multi-agent decisions are therefore, in extensive 

cases, intensive software applications and highly sophisticated 

algorithms that use advanced design technologies to support  
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collective decisions. Besides, these systems have generally 

requirements that go beyond single disciplines (form control 

engineering to computer sciences). Over the past decade, there 

are some works towards combining artificial intelligence (AI) 

approaches with traditional control theories to obtain intelligent 

systems. Despite several researches in multi-agent systems, 

important theoretical aspects of cooperation have been 

untreatable [3]. In particular, some research trends have led to 

managing complex and cooperative problems using agents. 

Agents are defined as computer systems capable of flexible and 

autonomous actions in dynamic, unpredictable and typically 

cooperative environments [4]. One typical implementation of the 

agent technology is the physical agent paradigm. A physical 

agent is an intelligent entity which is embodied in some 

environment (i.e., has a physical representation) and which must 

take its decisions based on the capabilities of the physical body 

its must manages. Even when a single physical agent can achieve 

any given task, the possibility of deploying a physical agents’ 

team can represent a significant improvement in the performance 

of the overall systems. A huge single robot, no matter how 

powerful it is, will be spatially limited while smaller robots could 

achieve a given goal more efficiently [5]. In this sense, the 

control and coordination of multiple autonomous mobile agents 

(i.e., physical agents) is a challenging task; particularly in 

environments with multiple, rapidly changing conditions and 

agents [6]. So, a number of reasons exist for which cooperation 

among agents is necessary, and numerous issues have to be 

tackled to achieve efficient coordination. In fact, the objective of 

the cooperation is to maintain maximum utilization of 

multi-agent resources while ensuring job performance at the 

highest productive level. In this sense, the purpose of cooperative 

multi-agent systems is to increase the system performance in 

dynamic environments. But, a general theory of cooperation for 

multi-agents domains remains elusive [7]. However, the research 

effort into multi-agent systems is given by the assumption that 

multiple agents have advantages over single agents for the 

solution of some problems. In recent years, cooperation in 

multi-agent systems is an increasingly and essential element for 

managing systems with enormous amount of data to process and 

communicate, providing high performance, high confidence, and 

reconfigurable operation in the presence of uncertainties [8]. For 

example, different cooperative schemes of an individual agent 

can constrain the range of effective coordination regimes; 

different procedures for communication and interaction have 

implications for behavioral coherence [9]. Coherence refers to a 

global (or regional) property of the multi-agent systems that 

could be measured by the efficiency, quality, and consistency of 

a global solution (system behavior). Generally speaking, one the 

most transcendent topic in the literature is the coordinated task 

problem-solving algorithm. Agents can improve cooperation 

by planning the execution of complex 
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problems. Planning for a single agent is a process of 
constructing a sequence of actions considering only goals, 
suitability rates, capabilities, and environmental constraints. 
However, planning the execution of a coordinated task in a 
multi-agent environment also considers the constraints that the 
other agents’ activities place on an agent’s choice of actions, 
the constraints that an agent’s commitments to others place on 
its own choice of actions, and the unpredictable evolution of 
the world caused by other agents or changes occurred during 
the action’s process [10]. Specifically, these information 
elements are directly estimated from three points of view, 
called decision axes. 
• Agents’ environmental conditions (world), composed by 

information about the state of the environment, directly 
involved in the performance of a cooperative action. 

• Agents’ physical knowledge (awareness) meaning the 
specification, the structure and other relevant details 
related to the agents’ physical skills and characteristics. 

• Agents’ trust value (interaction) related to the capability of 
an agent to communicate, to interact and other relevant 
details to work together with other agents. 

Explicitly, the lack of the appropriate reasoning on the 
information provided by the decision axes reflects in a lower 
cooperative performance between agents, mainly in complex 
problems performed in situations, such as, coordinated task or 
task allocation. In this sense, a proper alternative is that agents 
can communicate such information aiming to achieve a 
successful cooperative agents’ performance. Indeed, such lack 
represents a significant impediment to reduce complexity and 
to achieve appropriate levels of coordination and autonomy in 
multi-agent systems [10]. 
 
1.1 Related Approaches to Coordinated Tasks 
 
Most early work in distributed artificial intelligence (DAI) has 
dealt with groups of agents pursuing common goals (e.g., Jung 
[11]; Simmons [12]). In this sense, agents’ interaction is 
guided by cooperation strategies meant to improve their 
collective performance. Most work on multi-agent 
cooperative planning assumes an individual sophisticated agent 
architecture that enables them to do rather complex reasoning. 
Several recent works on distributed planning took the approach 
of complete planning before action. To produce a reasoned 
plan, the agents must be able to be aware of sub-goal 
interactions and avoid them or resolve them. Another direction 
of research in cooperative multi-agent planning has been 
focused on modeling team-work explicitly. Explicit modeling 
of team-work is particularly helpful in dynamic environments 
where team-members might fail or be presented with new 
opportunities, such in [13]. In such situations, it is necessary 
that teams monitor their performance and reorganize based on 
the situation. Agents within a multi-agent scenario need to have 
wide-ranging knowledge to improve their decisions and to 
achieve sure commitments within a temporal agent group. For 
instance, reference [14] introduces dynamical aspects that 
consider a physical body in the design of agents. Empirical 
results are obtained when the physical agent systems try to 
solve dynamic-world problems using knowledge about their 
physical bodies’ capabilities. Other related examples of this 
approach are presented in [15] [16] where the agents are able to 
analyze their physical bodies using introspective reasoning 
techniques to know which tasks they can perform with their 
physical capabilities. Some results are drawn to show how 
these approaches are effective when a team of agents must 
achieve cooperative actions. 

Since Brooks proposed the Sub-sumption architecture [17], 
many other coordination mechanisms for robotic systems have 
been proposed. This fact demonstrates that coordination 
mechanisms for autonomous robots are necessary to improve 
the performance of the above systems. Such mechanisms allow 
these systems to perform cooperative tasks to improve their 
interactions and make sure decisions within an agent 
cooperative system. In this direction, several authors have 
studied the problem to cooperative actions planning, especially 
in multi-robot environments, based on different kinds of 
coordination mechanisms. However, an approach based on the 
proposed decision axes has not been completely carried out. 
For instance, architecture to explicitly coordinate actions for 
multiple robots is presented in [12] where market-based 
techniques are used to assign tasks at the planning level. In 
particular, this architecture describes a multi-robot extension to 
the traditional three-layered architecture allowing direct 
communication with its peer layers in other robots. For 
instance, reference [11] proposes architecture for behavior-
based agents. This architecture provides a distributed planning 
capability with task-specific mechanisms to perform 
cooperative joint-planning and communication in 
heterogeneous multi-robot systems. In particular, the 
architecture above expresses the behavior of a system by 
implementing two modules which represent an agent’s 
knowledge both in terms of the agent’s position and the 
physical agent’s capabilities. 
Reference [18] presents an adaptive architecture in an in-city-
drive example domain that involves cognition but in which 
“perception and action” play central roles. This approach is 
concerned with intelligent behavior in physical scenarios. In 
the same way, authors such as: [19], [20], and [21] show 
similar alternatives to perform the coordination process of their 
systems. Moreover, in [22] a multi-agent approach is 
implemented in a navigation system. This approach proposes a 
model of cooperation and competition based on a bidding 
mechanism. Thus, the agents must coordinate among 
themselves to manage resources and information such as 
motion and vision for the navigation system. 
Reference [23] shows a multi-robot architecture for planetary 
rovers. It is designed to be able to accommodate diverse and 
usually conflicting behavior related to physical robot 
capabilities and the relationship among them. Results are 
presented using two real robots to perform a cooperative task 
(i.e., transport an object from one point to another avoiding 
obstacle). 
Reference [24] presents architecture to express robot social 
embodiment in autonomous mobile robotics. In particular such 
architecture address the issue of embodiment in two distinct 
robots attributes: the internal representation of beliefs, desires 
and intentions; and the external consideration of the physical 
agent on the environment. 
In references [25], [26] knowledge regarding to the agent’s 
situation inside the environment has been vaguely 
implemented. In particular, these approaches use the 
geographical current position of the agents at moment in which 
such agents decide the actions that they might perform. Some 
results are present to show how these systems response due to 
the changes that happen in the environment conditions. In 
addition, in [27] software architecture to coordination of 
heterogeneous robots is presented showing result with three 
robots in a high-precision docking tasks. Such robots are able 
both to interact with the other robots as to identify its physical 
configuration. Other related approach is implemented in [28] 
where agents’ interaction and physical agents’ capabilities are 
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the information that the agents have used to express a certain 
level of awareness to perform cooperative behavior. 
Architecture that allows teams of heterogeneous robots that 
dynamically adapt their actions over time is present in [29]. In 
this sense, the robots are able to perform their actions over long 
periods of time requiring the robot ability to be responsive to 
continual changes in the capabilities of its team-mates and to 
changes in the state of the environment or the proposed goals. 
Early work by [30], [31], [32] have present approaches focused 
on the design and implementation of models of trust to multi-
agent systems. In fact, agents may operate jointly because they 
are able to relate with other agents using information involved 
in the result of their above interactions. The afore-mentioned 
works present suitable approaches to represent and to include 
the knowledge related to physical features of agent systems. 
However, it is still difficult to choose the needed and enough 
information to include in the agents’ decision-making. In this 
light, it is possible to assume that such knowledge must be 
directly related to the information of the three decision axes 
previously introduced: 
• The agents’ environment conditions that directly affect in 

the performance of their selected actions. 
• The agents’ physical knowledge related to the physical 

features and dynamic of their bodies when they take 
decisions. 

• The agents’ trust value allowing them to work jointly with 
other team-mates. 

Thus, reliable information must be extracted from the decision 
axes to obtain an appropriate knowledge of the agents’ 
situation. In this sense, such knowledge can be represented by 
means of specific features focused mainly on the decision axes 
as it will be show in the next section. 
 

2. IMPLEMENTING THE COORDINATED 
PROBLEM-SOLVING ALGORITHM 

 
The execution of any coordinated task performed by a group of 
multiple autonomous and situated agents2 will be inexact for a 
number of reasons, including interaction faults, general 
uncertainty and environmental changes. These unavoidable 
characteristics of the multi-agent scenarios will necessarily 
limit the efficiency with which coordination can be achieved. 
In this sense, scientific research and practice in cooperative 
multi-agent systems, which in the past has been called 
distributed artificial intelligence, focuses on the development 
of computational techniques and methods for constructing, 
describing, implementing and analyzing the patterns of 
interaction and coordination in both large and small agent 
societies [33]. In this sense, distributed intelligence on 
computer science is, currently, focused on generate systems of 
software agents, robots, sensors, computer systems, and even 
people that can work together with the same level of efficiency 
and expertise as human teams [34]. 
 
2.1 Coordination Aspects 
 
Let us suppose that a supervisor agent SA is an omnipresent 
and omniscient agent which is in-charge both to supervise the 
development and execution of the actions and to validate the 
final performance of such actions. In this sense, the supervisor 

                                                
2 A situated agent refers to a cognitive agent which has a physical 

body and is placed on a real environment. In fact, such agent must base 
its decisions on reasoning and including all knowledge involved in the 
execution of any action [10]. 

knows the goals of the system. Let us define that a goal Gγ 
means the general target of a specific region of the 
environment. In particular, tasks are assigned to a specific 
region of the environment, here called scenes3. Thus,  

GG)S(GGG|)S(GG,G jiji ⊆∧≠∈∃ αα  
Such goal generally must involve more than one task for its 
achievement. Hence, a task Tβ is part of a set of cooperative 
activities that must be performed to efficiently solve the 
expected goal. Such fact limits the range of operatively of the 
tasks to its assigned scene Sα. Thus, 

TT)S(TTT|)S(TT,T jiji ⊆∧≠∈∃ αα  
}T,...,T,T,T{)S(T,where p321=α  

In fact, let us define that a role Rϕ is part of a set of actions that 
must be fulfillment to achieve a specific task Tβ in any 
determined region of the environment. Thus, 

RR)S(R)T(RRR|)T(RR,R jiji ⊆⊆∧≠∈∃ αββ  
}R,...,R,R,R{)T(R,where q321=β  

Particularly, roles are physical and executable actions that must 
be performed to change the settings on the environment. Such 
actions only can be executed by situated agents which are 
physical and cognitive entities capable to work in a real 
scenario. Let us define a situated agent PAj as an intelligent 
entity with a physical representation on the environment and 
through which the multi-agent system can realize physical 
actions in the environment. Such situated agents are embodied 
by considering the knowledge involved in their capability to 
execute an action within their knowledge base. Let us suppose 
that a PAj is part of a cooperative group of physical agents GPA. 
A group of physical agents must generally involve more than 
one physical agent for the fulfillment of a task. 

QGPAPA|GPA,PA PAjiPAji ⊆∧≠∈∃  
}PA,...,PA,PA,PA{G,where m321PA =  

In this sense, to situate an agent is used the knowledge 
provided by three dimensions, here called decision axes, where 
each axis provides situated agents with knowledge related to its 
capability to execute any determined action in particular kind 
of knowledge. The agents’ environmental conditions EC (axis 
1) are composed by information related to the state of the 
environment, directly involved in the performance of a 
cooperative action. The agents’ physical knowledge PK (axis 
2) meaning the specification, the structure and other relevant 
details related to the agents’ physical skills and characteristics. 
Finally, the agents’ trust value TV (axis 3) related to the 
capability of an agent to communicate, to interact and other 
relevant details to entrust in other agents. In this light, the 
situated agent’s knowledge base KB is therefore founded on 
the combination of the three above parameters (EC, PK and 
TV) directly implicated in the execution of any action, such as 
is described by (1)  

 
)1()]PA(TV)PA(PK)PA(EC[)R,PA(KB jjjj ∪∪=ϕ  

In particular the situated agent’s knowledge base for the 
execution of a specific role Rφ in a given time t in any 
determined scene Sα is given by (2).  

 

                                                
3 A scene refers to a spatial region where agents must interact and 

cooperate to perform some set of action in order to satisfy the whole 
system’s goal. 
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=∃∈∀
α

ϕ StjPAj )R,PA(KBGPA
 

)2(])R,PA(TV)R,PA(PK)R,PA(EC[
SSS tjtjtj
ααα

ϕϕϕ  

In particular, this paper assumes that each situated agent is 
capable to evaluate its aptitude to execute of any action. Such 
estimation is performed by a match which include two aspects 
to calculate the suitability rate of each physical agent to execute 
any proposed action, such as, 
•  the capabilities of the physical agents (i.e., their situation) 
taking into account the information provided by the decision 
axes, to perform any proposed action. 
•  the influence degree that each axes has over the execution of 
any determined action. 
In particular, the influence degree Ψ refers to the relevance that 
decision axes have in the execution of a determined action in a 
particular scene. Such influence aims to calculate critically the 
suitability of a physical agent to execute any action in a 
successful and reliable way. In this sense, such influence 
degree Ψ is represented as is described by the duple (3). 
 

)3(]TVPKEC[)T(R ΨΨΨ=Ψ β  
]1,0[TV,PK,EC,where ∈ΨΨΨ  

Where ΨEC is the relevance of the environmental conditions, 
ΨPK is the relevance of the physical knowledge and ΨTV is 
the relevance of the trust value. In particular the influence 
degree for the development of any specific role in any 
determined scene is given by (4). 

 
)4()T(RS,R)T(RR ii βαβ Ψ∈ψ∃∈∀  
]TVPKEC[S,R S,RS,RS,Ri iii ααα

ψψψ=ψ α  

In such case, the suitability rate ξ of any physical agents is 
obtained by a match function which works as a 
requirements/capabilities function. Let us to suppose that a 
physical agent PAj is capable of executing a role Ri with a 
suitability rate ξ in a time t of a scene Sα as is described in (5). 

)5(

)S,R(

)S,R(*)PA(kb

S

Stij

t

3

1b
)b(i

)b(j

3

1b
)b(j

)R,PA(

α

α

⎟
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⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ψ

ψ

=ξ

∑

∑

=

α

α

=  

 
2.2 Problem Solving Algorithm 
 
For illustrative reasons, let us to consider a supervisor agent SA 
in-charge of supervise two scenes such that, S = {s1, s2}. Such 
SA must lead the execution of a set of actions performed by a 
cooperative group of three physical agents, such that, GPA = 
{PA1, PA2, PA3}, to solve a complex problem as is depicted in 
(Fig. 1). To follow, the scheme of the coordinated task 
algorithm is concisely explained.  
Definition – The SA must analyze the regions that must 
supervise. SA knows which actions must be performed in each 
region; it should evaluate the priority of the tasks to schedule 
the sequence of their execution. Once the SA knows the 
sequence of the tasks, it must identify which roles are needed to 
achieve each task. In this sense, each task involves several roles 
for its fulfillment. Therefore, SA uses the priority of the roles 
to schedule the execution of them. 
Proposition –Once, SA defines the roles that must be 
executed, informs this items (i.e., the roles) in order of 
relevance, to the group of physical agents. SA also sends the 

influence degree of the implicated roles. Finally, the SA 
informs to each of the invited physical agents the result of their 
previous actions. 
Decision – Here, it is assumed that each physical agent can 
self-calculates its suitability rate for every one of the informed 
roles of which it can play in the current scene. With the 
suitability rates, each physical agent is able to generate its 
knowledge base, it means, the physical agents can internally 
establish, in a decreasing order, the roles they can play. In this 
sense, a physical agent could be capable execute more than one 
role, but it only execute those roles for which it is the most 
suitable physical agent. To the end, using the information of 
their knowledge bases, each physical agent informs to the other 
physicals, the suitability rates for the roles it can plays. So, 
each physical evaluates who is the most suitable agent to 
execute each role.  
Agreement – When the physicals have agreed which role will 
play each one, each physical agent informs to the supervisor 
SA which role will execute. In addition, the physical that 
cannot execute any role in the current scene must also inform 
such event to the supervisor. Thus, the SA knows that there are 
some physical available to execute the actions of the remaining 
scenes. So, the SA must begin the process to inform the 
involved roles for its other supervised scenes. 
Execution & Supervision – The physicals that has agreed to 
play a role, must execute such role. At the same time, while 
physical agents execute the adopted role, the supervisor of the 
scene must supervise to evaluate if each physical agent has 
execute in a positive way the selected role. 

 
Fig. 1. General scheme of the problem-solving algorithm. 

3. EXPERIMENTAL FEATURES 
 

Robot soccer test bed simulates a soccer game where players 
(i.e., physical agents) must coordinate their individual actions 
to work aiming to achieve the global system’s goal (i.e., to win 
a game). The features for the simulated soccer tournaments are 
here described as follow: a supervisor agent SA, five physical 
agents, Gpa = {goalkeeper, defender1, defender2, forward1, 
forward2} are involved in the cooperative actions related to a 
game match. Each physical agent has an obstacle-free 
movement trajectory controller [10] to move them in the 
environment. The supervisor agent have assigned three zone of 
the environment, such that, SA = {scene1=attack; 
scene2=midfield; scene3=defense} as is showed in Fig. 2.  
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Fig. 2. General scheme of the simulated implementation. 

Environment conditions, here called proximity P, are related to 
the distance between the current location of a physical agent 
and the current location of the proposed actions, and is 
provided by (6) 

)6(
maxd

)R,PA(d
1)R,PA(P

St

S
S

ij
tij

α
α

α ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=  

Where  means the maximal distance of a physical 
agent with the proposed roles in the scene Sα as is described in 
(7) 

)7())R,PA(d),...,R,PA(d(maxd timi1S =
α

 

Physical knowledge refers to the cognitive ability of each 
physical agent to estimate the knowledge related to the 
capabilities of its body involved in the execution of a proposed 
action, called introspection I. Introspection parameter is 
calculated implementing feed-forward back-propagation neural 
networks. 

)8()))R,PA(I(max()R,PA(I
SS tijtij
αα

=  

Trust value, called trust T, refers to the social relationship 
among agents taking into account both the amount of “goods” 
actions which mean actions executed in a suitable way and the 
amount of and “bads” actions which mean actions that are 
executed in a negative way. In this sense, the trust of a physical 
agent is provided by (9). 

)9(
badsgoods

goods
)R,PA(T

S
ijij

ij

S

t
)R,PA()R,PA(

)R,PA(
tij

α

α ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
= To 

define how the relevance of the decision axes can influence in 
the calculus of the physical agents’ suitability rates. We have 
designed a classification performed a binary combination of the 
three axes. In this sense, we have obtained eight cases study, as 
shown in Table 1. In particular, each case study denotes the 
behavior of each one of the agents-teams that we have used in 
the empirical experiments. It means that each agents-team uses 
of one of the cases study to enhance the information of the 
decision axes for each agents-team cooperative works. 
 

Table 1. Classification of the Decision Axes. 

ΨR(Sα) P I T 
teamR û û û 
teamT û û ü 
teamI û ü û 
teamI+T û ü ü 
teamP ü û û 
teamP+T ü û ü 
teamP+I ü ü û 
teamP+I+T ü ü ü 
    

4. EXPERIMENTS AND RESULTS 
 

Empirical experiments featuring simulated cooperative 
scenarios have been established in order to put into practice the 
formalization of the problem-solving algorithm for situated 
agents described in this work. In addition, two experimental 
implementations have been developed; first, agents-teams 
(using each one of the cases study introduced in Table 1 versus 
a default opponent provided by the simulator; second, a set of 
games among the above agents-teams using the cases study.  
 
4.1 Experiment 1 
 
This implementation is constituted by predefined number of 
(10) championships, each one with predefined number of (30) 
games, where each agents-team plays versus a default opponent 
provided by the simulator. In addition, the initial state of each 
physical agent in the scenario was randomly set after each 
pause (due to the scored goals) and at ever game. The 
performance is measured as a radio between the total points 
(won: 3 points; tied: 1 point) reached by the proposed teams in 
each championship.4.1.1 Analyzing Results 
 
The agents-teams performance is showed both from the 
average in the successful performance taking into account the 
number of obtained points and from the achieved successful 
decisions. In this sense, successful decisions mean that each 
physical agent selects the action for which it is the most 
suitable agent. Then, if the physical agent performs such action 
in a suitable way that increase the performance of the multi-
agent system. In particular, Fig. 4 shows the agents’ 
performance in a decreasing order (from left to right). To the 
end, the results identify an improvement rate of around 51% 
between the best case (casePIT) and the worst case (caseR). 
 

 
Fig. 4. Analysis Results of the Experiment 1.   
 
4.2 Experiment 2 
 
This experiment was predefined with number of (10) 
championships, each one with predefined number of (28) 
games, where each agents-team plays against the other agents-
team denoted by its consideration of the three decision axes. In 
summary, each agents-team plays a set of (280) games and its 
performance is calculated in a radius of (won game: 3 points; 
tied game: 1 point). To mention, in all the experiments the 
initial state of the physical agents was randomly changed after 
each kick-off or after each finished game. 
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4.2.1 Analyzing Results 
 
Results are analyzed taking into account the average reached 
by the agents-teams in each championship. In this sense, Fig. 5 
illustrates the agents-teams performance based on the 
successful number of obtained points along the championship. 
The progression of the cases shows that the performance does 
not improve significantly beyond about the championship 6. 
The number to initially confirm the agents-teams performance 
will be fixed in 10 championships. In particular, based on a 
critically comparison between the best and the worst cases, 
there is an improvement rate of around 51.40%. 
 

 

 
Fig. 5. Successful Performance of the Agents-Teams. 

a) Comparative Performance of the worst (caseR) the simple 
cases (caseT, caseI, caseP) and the best case (caseP+I+T); b) 
Comparative Performance of the worst (caseR) the coupled 
cases (caseI+T, caseP+T, caseP+I) and the best case (caseP+I+T). 

 
 

5. FINAL REMARKS 
 

A preliminary conclusion of the results is showed in the 
previous section is how the system performance improves 
when the agents become more “conscious” about which kind 
of information must be included in their knowledge bases when 
they must define their situation to execute a proposed action. 
Reasonable decision performance is achieved when agents 
includes such knowledge in their reasoning process, especially 
when they must work jointly. But more importantly, the system 
performance (successful performance) is significantly better 
when the agents increase the information (i.e., when the agents 
use grater amount of knowledge) involved in their decision-
making to perform any action.  
Summarizing, this preliminary deduction argues how the 
system performance improves when the agents become more 
“conscious” about which kind of information must be included 

in their knowledge bases when they must define their 
capabilities to execute a proposed action.  
The data from the experiments discloses that the 
implementation of the three parameters of the decision axes 
combined in the agents’ decision-making produces best 
performance in all the experiments. However, the remaining 
cases show interesting results but not an optimal strategy for 
the present domains at all. Such fact illustrates that the choice 
of a strategy for include knowledge in the agents’ decision-
making is far from trivial. In this case, the obtained results are 
significant, and show the need for further investigation about 
the agents’ situation and its effect in the performance of 
complex problems in dynamic and cooperative environments. 
The paper shows that a good framework for situated agent 
based on the knowledge of the introduced decision axes can 
increase the autonomy and self-control of agent in cooperative 
actions and allows obtaining reliable capabilities/requirements 
function in the agent cooperative resolution for coordinated 
task. 
This is a complicated process because the number of action 
grows exponentially and an increase of the number of agents 
could be a new situation, and each agent takes individual 
decisions of which the outcome can be influenced by the 
actions performed by the other agents. For thus, each agent is 
capable of perceive and interpret the information involved in 
the proposed actions and include such information in its 
knowledge base. This fact allows agents to be only focused in 
those particular actions that they can execute taking into 
account its calculated estimation (suitability rate) regards such 
actions. For thus; redundancy in the tasks execution is then 
avoided. This new and effective approach contributes to 
enhance multi-agent efficiency and performance in dynamic 
and cooperative environments because the agents can know if 
they can perform any proposed action. If agents cannot perform 
any action, the agents can make another decision depending on 
the general interest of the multi-agent system. Thus, the agents’ 
situation is based on the elements of the three decision axes and 
is useful in the agent’s decision-making aiming to increase the 
general system performance. 
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