
A Neural Network Model Deployed in the Cloud

for Prediction of Network Traffic

Ramandeep Dhanoa and Waqar Haque

Abstract—A multi-step neural network based predictive

model is developed and trained offline, deployed in the cloud for

real-time scoring, and used to predict network traffic. The

information is then used to avoid congestion from occurring in

a distributed real-time environment. The model predicts

network traffic with high accuracy under varying scenarios

representing low, medium and high load conditions. The

accuracy is consistently maintained both inside and outside

training ranges of the selected parameters which impact

congestion. The R-square value ranges between 89.8% and

95.7% across all loads. The results prove robustness of the

proposed model and illustrate that it can capture fluctuations,

handle spikes, and adapt to varying load conditions. The results

are obtained in real-time and used for taking proactive

measures.

Index Terms—network congestion; neural networks;

predictive modeling; cloud computing

I. INTRODUCTION

REDICTIVE analytics plays a crucial role in better

decision-making and improved quality outcomes. It has

become an essential tool when incorporating advanced data

analytics into business operations. By analyzing historical

data, present scenarios and predicting events using statistical

and mathematical techniques, organizations can make

optimal decisions while becoming aware of uncertainty and

risk within data. Various data mining methods [1] are used to

extract meaningful information (patterns, trends and clusters)

from data. In predictive analytics, developing a prediction

model is the first phase, and mainly involves input

preparation, data modeling, and result interpretation. The

second and most important phase is the deployment of model,

which enables the decision makers to use it for real

applications [2]. Business users need data which is accurate,

timely and easy to understand. Hence, the real-time scoring

engine is needed for timely decisions leading to derivation of

new business rules, if warranted. The deployment of

predictive model is a complicated task because of its resource

and time-consuming nature. For real-time applications, when

results from the predictive model are delayed, they may be of

no value because of the dynamically changing business rules.

In this paper, we present a prediction model developed to
predict network congestion using neural networks. Further,

Manuscript received March 01, 2016. This work was supported by a
Discovery Grant from Natural Sciences and Engineering Research Council
(NSERC) of Canada.

The authors are with Department of Computer Science, University of
Northern British Columbia, Prince George BC Canada (phone: 250-960-
6522; e-mail: {dhanoa, waqar.haque}@unbc.ca).

the process of model deployment on the cloud is explained. A

distributed real-time simulator is chosen as the test-bed. In

such an environment, every transaction attempts to complete

its operations within the assigned time. However, when

resource requirement surpasses the capacity of network,

congestion occurs [3]. In a distributed network, congestion

occurs if a network link has queued messages waiting to get

processed thereby decreasing the quality of service.

II. RELATED WORK

Congestion control techniques using prediction algorithms

are known to provide superior network performance. Various

prediction models using time series, fuzzy logic, Kalman

filters, and neural networks have been proposed in recent

years. Of these, neural networks have been demonstrated to

provide relatively better performance because of their

sophisticated learning mechanism and complex

computational capability.

Time series is an ordering of data noted at regular intervals

of time, for example, monthly sales of a retail outlet. When

using this concept, it is important to analyze each point’s

correlation (measure of degree of association) with previous

point in the series. In order to predict through time series, the

stationary assumption, as measured by autocorrelation

functions [4], should be satisfied to minimize the mean square

error. Jung et al. [5] used an auto-regressive (AR) model to

predict network congestion, which examines whether the

predicted packets are greater than the given bandwidth, and

updates the routing table accordingly. Zhou et al. [6] proposed

a model which is a combination of linear time series ARIMA

and non-linear time series GARCH [7] model. Three separate

time scales have been used to predict the network traffic from

one-step ahead to k-step ahead. It captures long as well as

short-range dependence. The model was compared with

FARIMA [8] to prove its efficiency.

Fuzzy logic scales the degree of congestion, rather than

defining complete congestion. Xiang et al. [9] developed a

fuzzy neural network to predict the arrival rate of traffic. If

the queue length is estimated to overflow, encoding rate of the

source is reduced by 25 percent of the current sending rate.

Haught et al. [10] placed Kalman filters on network links to

periodically record data such as queue size and current arrival

rate. It then predicts the queue size at next interval based on

the current and past queue lengths, and uses this information

to control the arrival rate of packets.

A feed forward neural network to predict the source of

congestion and restrict the flow rate is proposed by [11].

When the incoming traffic packets exceed the outgoing

packets, congestion is reduced by controlling the traffic rate

[11, 12, 13, 14, 15]. A feedback control algorithm is proposed

P

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

in [13] to predict the buffer occupancy L-step ahead through

multi-step neural network. It also estimates the resources

required through Back-Propagation (BP) neural network

which is then used by the source node to adjust the sent-out

rate accordingly. Fan and Mars [12] predicted the video traffic

by finite impulse response (FIR) neural network and

controlled congestion by throttling the input arrival rate.

Ogras and Marculescu [16] predicted the congestion on

Network-on-Chip (NOC) and proposed a flow control

algorithm to control the total number of packets in the

network. Mohan et al. [17] have implemented two approaches

to predict a congestion free path in the network. In the first

approach, association rule mining and traditional artificial

neural network are used. Association rule mining defines the

constraints, rules and statements derived from the data.

Neural network takes the input like packet drop, response

time and node degree, and yields the congestion weight which

is then used to determine the best path. The second approach

is an improved version of the feed-forward neural network,

called self-motivated functional link feed-forward neural

network. The neural network was trained with additional

inputs to give the best reliable path. A common drawback of

the aforementioned work is that they reduce the input arrival

rate, rather than proactively manage the congestion.

III. METHODOLOGY

The effectiveness and accuracy of the model is achieved in

several steps. First the model is developed and validated – this

process requires that inputs of neural network be specified;

second, the model is deployed in the cloud for real-time

scoring; finally, the results are used to take corrective actions,

if necessary. For this work, we use a distributed real-time

transaction processing simulator (DRTTPS) to analyze the

performance of the model.

A. Determining Inputs of Neural Network Model

The inputs of the neural network model are determined by

the parameters of the underlying application which, in our

case, is a simulated distributed real-time transaction

processing environment. DRTTPS provides the ability to add

protocols in a modular fashion, and tweak parameters of

interest using a highly interactive graphical user interface.

Time is represented in a dimensionless manner using ticks

(simulation clock) and events are created and inserted in a

queue at discrete points in time. These events include sending

messages, arrival and completion of transactions. The

complete structure of the simulator is beyond the scope of this

paper and can be found in [18].

Our goal is to predict congestion in distributed networks

and then take necessary corrective actions, if so warranted.

The primary input parameters affecting congestion are

determined by performing experiments with a broad range of

values; these then become inputs of the neural network.

Through experimentation, it was determined that the key

parameters affecting congestion are bandwidth (5 to 35

message units/tick), max active transactions (10 to 50), update

percentage (5 to 50%), latency (5 to 20 ticks) and work-size

(2 to 10 pages). The input range for each parameter is chosen

in a way that it shows observable results, for example,

bandwidth shows a major impact on congestion within the

range of 5 to 35 message units/tick (Fig. 1). The objective is

to train the neural network with high, medium, low, and no

congestion loads, based on a specified threshold. For each

simulation run, input data is recorded periodically in a trace

file.

Fig. 1. Bandwidth affecting PTCT

Fig. 2. Neural Network Model

B. Neural Network Model

 The neural network model is developed in SPSS Modeler

16.0 [19]. Fig. 2 shows different types of nodes in the model,

each node being representative of different functionality, as

explained below:

 InputData node is the worksheet source node, which

imports data from the periodic Excel trace file. The

neural network model is trained with 30 simulation runs

under a range of congestion loads.

 Type node specifies the role (input, target, or both) and

format of input fields.

 FutureQueueLength is the neural network modeling

node, where all network settings are configured (Table

I). The type of neural network is Multilayer Perceptron

with 2 hidden layers consisting of 10 and 5 neurons,

respectively. Determining the number of hidden layers

and neurons is an iterative process. The number of

training cycles used to train the network is 250. Overfit

prevention set is 50%, which means half of the total

data is separated from the modeling data so that the

network does not model errors in the system.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

TABLE I. NEURAL NETWORK SETTINGS

Neural Network Parameter Value

Type Multilayer Perceptron

Hidden Layers & Neurons
Hidden layer 1: 10
Hidden layer 2: 5

Training Cycles 250

Overfit Prevention set (%) 50%

 When the model completes its execution, a model

nugget (diamond-shaped) is created. This nugget

contains information (rules and equations) which is

used for scoring and analysis of data. For instance, the

summary view (Fig. 3) displays a quality chart

showing the final accuracy of the model as defined by

R-square value (92.7% for our model) [19]. The

summary table provides an overview of the network

architecture and other training parameters. Various

other details of the model can be browsed through the

nugget, for example, the predictive importance chart,

which helps to identify the relative importance of each

predictor (Fig. 4).

 Finally, in the analysis node, training vs. actual

outcome is analyzed to find the error. The statistical

measure used here is R-square; higher the value of R-

square, better is the prediction model.

Determining the architecture of neural network and

related settings is an iterative process. After each training

cycle, the results are analyzed to identify issues in the network

settings and reconfigure the parameters (number of hidden

layers and neurons), if necessary. This process is repeated

until satisfactory results are achieved (R-square is above

90%).

C. Cloud Deployment

Once the model is trained, it is ready for deployment and

use. In order to obtain real-time scoring, we have selected

ADAPA (Adaptive Decision and Predictive Analytics) [2]

scoring engine. It delivers cloud computing capabilities and

open standards, which facilitate quick deployment by

integrating with data mining platform (SPSS Modeler).

ADAPA uses Predictive Model Markup Language (PMML)

[20] to deploy models from data mining tools to the cloud.

PMML is an XML-based language, which represents data

mining models, business rules, input data, and data

transformations. The steps involved in the deployment and

use of the model are described below [2]:

 Step 1: Prepare the model. Our neural network

model is developed in SPSS Modeler which exports

it in PMML format. Once the model is finalized, it

is deployed on ADAPA so that real-time scoring

can be done.

 Step 2: Deploy model. Model is deployed directly

by uploading PMML file on the ADAPA console

which is an interface that allows user to upload

models and rule-sets.

 Step 3: Verify the model. After model deployment,

ADAPA results need to be verified. ADAPA

processes the uploaded data file (containing input

data) and provides the predicted results in a new

file, which can be downloaded and analyzed. If the

results are identical to those from SPSS Modeler,

the model is verified.

 Step 4: Use the model. Once the model deployment

is verified, it can be used for real-time scoring. The

scoring can be done through ADAPA console or

through XML-based web service. ADAPA web

service uses Java Data Mining (JDM) standard to

process the models defined in PMML [2]. Web

service properties are configured in Web Service

Description Language (WSDL) file, defined by

JDM standard.

Fig.3. Neural Network Model Summary View

Fig. 4. Predictive Importance Chart

In summary, a user can create the predictive model, for

instance, in SPSS Modeler, export it as a PMML file, and

upload it to the ADAPA user interface. The embedded Java

code then makes web service calls to ADAPA and obtains

scores in real-time.

An instance of ADAPA is initiated to generate a default

code package. Each instance has its own settings in different

files of SDK. In our experiments, once the instance is started

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

and the default source code files generated, the instance is

never terminated. ADAPA provides a development kit with

sample programs to assist with sending data in an acceptable

format and obtain the predicted values.

IV. EXPERIMENTS AND RESULTS

The network topology can play an important role in

congestion. For this research, we chose the hypercube

network as the underlying topology because of its superior

topological characteristics which include small diameter

(communication delays are less when network’s diameter is

small), high connectivity, simple routing, and fault tolerance

[21]. The results presented in this section are for a 3-

dimensional (8 nodes) hypercube. Since links are bi-

directional in nature, the total number of links in the topology

are 24. For example, there are two links between nodes 0 and

1 (bi-directional), link outgoing from Node 0 and Node 1 is

named as Link 0-1 and vice versa. Each link may have

different congestion load, depending on its attributes

(bandwidth and latency) and node’s workload (each node has

different inter-arrival rate). For each experiment, the baseline

parameters were fixed and neural network inputs were varied

to create different congestion loads.

A. Testing with non-trained parameters, but within the

trained input range

In this set of experiments, accuracy of the neural network

model is tested with non-trained parameter values which lie

within the trained input ranges. The simulation runs chosen to

test the accuracy of the model represent different congestion

loads.

1) Experiment A1 – High Congestion Load:

Initially, the model is tested with a simulation run

depicting high congestion (Bandwidth – 5, Update

percentage – 10%, and maximum active transactions,

MAT 50). It is a highly congested scenario because of the

low bandwidth. The accuracy, that is, R-square of the run

is 95.7%. To demonstrate the model’s performance, only

one representative link is selected for each load. An

example of a link experiencing high congestion is Link 4-

6. As shown in Fig. 5, approximately 1000-2000

messages are queued on this link which could take 200 to

400 ticks to clear the queue, thus representing high

congestion. As illustrated, the prediction model has

shown very promising results in predicting the

congestion for such highly congested scenario. For more

explicit comparison, the snapshot of predicted results for

selected 1000 ticks is shown in Table II. The model’s

correctness for the selected ticks is always above 90%

(out of 10 cases, 6 have above 95% correctness).

2) Experiment A2 – Negligible Congestion Load:

In order to observe the behaviour under minimal

congestion, the model was analyzed with the simulations

runs representing negligible/no congestion load. The

accuracy (R-square) of the run is 91.0%. Links 1-5 (Fig.

6) and 7-5 (Fig. 7) have 0 messages in the queue (no

congestion), and insignificant fluctuations. This pattern is

successfully recognized by our prediction model. At tick

15,500, Link 1-5 has 65 queued messages whereas our

model predicted 45 messages. Even though the number

of queued messages is significantly higher than the mean

value (approximately 0), the model is still able to predict

this spike with reasonable accuracy (70%). Similarly, at

tick 14,600, Link 7-5 has 10 queued messages, whereas

the model predicted 8 messages (accuracy - 80%).

Fig. 5. Analysis of Link 4-6

TABLE II. PREDICTION RESULT SNAPSHOT OF LINK 4-6

Tick Queue Length Predicted

Length

Correctness(%)

15300 1005 1094 91.1

15400 940 993 94.4

15500 915 940 97.3

15600 990 919 92.8

15700 970 981 98.9

15800 875 964 89.8

15900 875 885 98.9

16000 880 885 99.4

16100 935 889 95.1

16200 920 936 98.3

Fig. 6. Queue Length: Link 1-5

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Fig. 7. Queue Length: Link 7-5

B. Testing with parameters outside the input training

range

The experiments presented in this section use parameter

values which fall outside the input training ranges. Recall,

training range of MAT is 10 to 50 transactions, update

percentage 5 to 50%, and bandwidth 5 to 30 message

units/tick. Again, the simulation runs with different

congestion loads are analyzed, but only one representative

link from each set is presented here.

1) Experiment B1 – High Congestion Load:

In this experiment, high congestion load is created by

setting MAT at 60, update percentage at 55, and

bandwidth at 15. All the parameters are outside the input

training range, except total bandwidth. It is because the

goal here was to create high congestion scenario, which

would not have been possible if bandwidth value was

selected from outside the input training range. The

accuracy (R-square) of the simulation run is 92.0%.

An example of a link with high congestion load is

shown in Fig. 8 for a duration of approximately 2000

ticks. The data error bars represent deviation of predicted

value from the actual value. The dark gray bar indicates

that the predicted value is smaller as compared to the

actual value; whereas the white bar means that the

predicted value is larger than the actual value. The

maximum error in the displayed interval occurs at the

8100th tick (queue length – 1300 messages and predicted

queue length – 1112 messages)

Fig. 8. Analysis of Link 4-6

2) Experiment B2 – Low Congestion Load:

In this experiment, the prediction model is tested with

low congestion load, and the accuracy (R-square) of the

run is 91.4%. This simulation run has fluctuating queue

length (Fig. 9), for example - at tick 1200, the number of

queued messages is 250 (high congestion load), then

drops to 10 messages (low congestion load), and climbs

to 95 messages (medium congestion load). The predicted

result for the aforementioned example is 180 messages

queued at tick 1200 (high congestion load), declines to 28

messages (low congestion load), and then climbs to 87

messages (medium congestion load). This indicates that

our prediction model correctly captures the fluctuating

congestion load scenarios in the hypercube network.

3) Experiment B3 – Negligible Congestion Load:

When tested with negligible congestion load, the

accuracy (R-square) of the run is 89.8%. The highest

outlier in the range exists at 1900th tick where the

predicted and actual number of messages in the queue

were 12 and 30, respectively (Fig 10); the remaining ticks

show no congestion in general, and are predicted

accurately by the model.

Fig. 9. Analysis of Link 5-1

Fig. 10. Analysis of Link 2-6

C. Using the predictive scores

The scores obtained from the predictive model were used

to take preemptive measures to avoid congestion from

happening. This included re-routing of network traffic prior

to any imminent congestion. The results were obtained from

the cloud deployment in real-time and it was monitored

whether the actions taken on the basis of predicted

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

congestion actually improves network performance. The

results showed a remarkable improvement, but are beyond

the scope of this paper.

V. CONCLUSION

In this paper, we have demonstrated how a neural network

model can be developed and deployed in the cloud for real-

time scoring, and using the results to proactively manage

congestion in a distributed network. The neural network

prediction model is developed in SPSS Modeler. The model

is trained in an off-line mode for various congestion scenarios

and then deployed in the cloud for real-time scoring. SPSS

modeler exports a file in PMML format containing the neural

network model; this file is uploaded on the ADAPA instance

running on Amazon cloud. An ADAPA wrapper embedded in

the simulator invokes the prediction model through web

services and predicts network traffic in real-time. This

information is then used to proactively re-route messages to

avoid congestion from happening.

The prediction model is tested using parameter values both

inside and outside training ranges, and R-square is observed

for each experiment (Fig. 11). From the testing set, it is noted

that the maximum accuracy ranges from 91.0% (at negligible

congestion) to 95.7% (at high congestion) when tested within

the input training range. Outside of the training range, these

values are 89.8% to 92.0%, respectively. From the analysis of

various simulation runs with different congestion loads, it is

concluded that our prediction model is robust because it can

sense different congestion scenarios in a link, capture

fluctuations, handle spikes, and adapt to varying load

conditions.

Fig. 11. Performance of Prediction Model

REFERENCES

[1] O. Maimon and L. Rokach, Data Mining and Knowledge

Discovery Handbook, Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 2005.

[2] A. Guazzelli, K. Stathatos and M. Zeller, "Efficient Deployment of

Predictive Analytics Through Open Standards and Cloud

Computing," SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 32-38,
Nov. 2009.

[3] M. Welzl, Network Congestion Control: Managing Internet Traffic

(Wiley Series on Communications Networking Distributed
Systems), John Wiley & Sons, 2005.

[4] T. H. Lai, "Time series analysis univariate and multivariate

methods : William W.S. Wei, (Addison-Wesley, Reading, MA,

1990)," International Journal of Forecasting, vol. 7, pp. 389-390,

1991.

[5] S. Jung, C. Kim and Y. Chung, "A Prediction Method of Network

Traffic Using Time Series Models," in Computational Science and

Its Applications - ICCSA 2006, vol. 3982, Springer Berlin

Heidelberg, 2006, pp. 234-243.

[6] B. Zhou, D. He and Z. Sun, "Traffic Modeling and Prediction using

ARIMA/GARCH Model," in Modeling and Simulation Tools for

Emerging Telecommunication Networks, Springer US, 2006, pp.
101-121.

[7] L. Bauwens, S. Laurent and J. V. K. Rombouts, "Multivariate

GARCH models: a survey," Journal of Applied Econometrics, vol.
21, no. 1, 2006.

[8] J. Liu, Y. Shu, L. Zhang, F. Xue and O. Yang, "Traffic modeling

based on FARIMA models," in Electrical and Computer
Engineering, 1999 IEEE Canadian Conference, 1999.

[9] F. Xiang, H. Xiaoyan, J. Luo, J. Wu and G. Gu, "Fuzzy Neural

Network Based Traffic Prediction and Congestion Control in
High-Speed Networks.," J. Comput. Sci. Technol., vol. 15, no. 2,

pp. 144-149, 2000.

[10] J. Haught, K. Hopkinson, N. Stuckey, M. Dop and A. Stirling, "A
Kalman filter-based prediction system for better network context-

awareness.," in Winter Simulation Conference, 2010.

[11] J. A. Bivens, B. K., M. J. Embrechts and B. K. Szymanski,
"Network Congestion, Arbitration, And Source Problem

Prediction Using Neural Networks," Smart Engineering System

Design, vol. 4, pp. 243-252, 2002.

[12] Z. Fan and P. Mars, "Access flow control scheme for ATM

networks using neural-network-based traffic prediction,"

Communications, IEE Proceedings-, vol. 144, no. 5, pp. 295-300,
Oct 1997.

[13] Y. He, N. Xiong and Y. Yang, "Data Transmission Rate Control in

Computer Networks Using Neural Predictive Networks.," in ISPA,
2004.

[14] Z. Liu, X. Guan and H. Wu, "Bandwidth Prediction and

Congestion Control for ABR Traffic Based on Neural Networks.,"
in ISNN (2), 2006.

[15] M. Thottethodi, A. Lebeck and S. Mukherjee, "Self-tuned

congestion control for multiprocessor networks," in High-
Performance Computer Architecture, 2001. HPCA. The Seventh

International Symposium on, 2001.

[16] U. Ogras and R. Marculescu, "Prediction-based flow control for
network-on-chip traffic," in Design Automation Conference, 2006

43rd ACM/IEEE, 2006.

[17] B. Mohan, R. Sandeep and D. Sridharan, "A Data Mining
Approach for Predicting Reliable Path for Congestion Free

Routing Using Self-motivated Neural Network," in Software

Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, vol. 149, Springer Berlin

Heidelberg, 2008, pp. 237-246.

[18] W. Haque and P. R. Stokes, "Simulation of a Complex Distributed
Real-time Database System," in Proceedings of the 2007 Spring

Simulation Multiconference - Volume 2, San Diego, CA, USA,
2007.

[19] IBM, "IBM SPSS Modeler 17 User's Guide," IBM, 1 August

2015. [Online]. Available:
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/

modeler/17.0/en/ModelerUsersGuide.pdf. [Accessed 1 November

2015].

[20] Data Mining Group, PMML Version - 4.1.

http://dmg.org/pmml/pmml-v4-1.html.

[21] A. Louri and B. Weech, "Scalable Optical Interconnection
Networks for Large-Scale Parallel Computers," in Parallel

Computing Using Optical Interconnections, vol. 468, K. Li, Y. Pan

and S. Zheng, Eds., Springer US, 1998, pp. 47-76.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

