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Abstract—A multi-step neural network based predictive 

model is developed and trained offline, deployed in the cloud for 

real-time scoring, and used to predict network traffic. The 

information is then used to avoid congestion from occurring in 

a distributed real-time environment. The model predicts 

network traffic with high accuracy under varying scenarios 

representing low, medium and high load conditions. The 

accuracy is consistently maintained both inside and outside 

training ranges of the selected parameters which impact 

congestion. The R-square value ranges between 89.8% and 

95.7% across all loads. The results prove robustness of the 

proposed model and illustrate that it can capture fluctuations, 

handle spikes, and adapt to varying load conditions. The results 

are obtained in real-time and used for taking proactive 

measures. 

Index Terms—network congestion; neural networks; 

predictive modeling; cloud computing 

 

I. INTRODUCTION  

REDICTIVE analytics plays a crucial role in better 

decision-making and improved quality outcomes. It has 

become an essential tool when incorporating advanced data 

analytics into business operations. By analyzing historical 

data, present scenarios and predicting events using statistical 

and mathematical techniques, organizations can make 

optimal decisions while becoming aware of uncertainty and 

risk within data. Various data mining methods [1] are used to 

extract meaningful information (patterns, trends and clusters) 

from data. In predictive analytics, developing a prediction 

model is the first phase, and mainly involves input 

preparation, data modeling, and result interpretation. The 

second and most important phase is the deployment of model, 

which enables the decision makers to use it for real 

applications [2]. Business users need data which is accurate, 

timely and easy to understand. Hence, the real-time scoring 

engine is needed for timely decisions leading to derivation of 

new business rules, if warranted. The deployment of 

predictive model is a complicated task because of its resource 

and time-consuming nature. For real-time applications, when 

results from the predictive model are delayed, they may be of 

no value because of the dynamically changing business rules. 

In this paper, we present a prediction model developed to 
predict network congestion using  neural  networks.  Further, 
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the process of model deployment on the cloud is explained. A 

distributed real-time simulator is chosen as the test-bed. In 

such an environment, every transaction attempts to complete 

its operations within the assigned time. However, when 

resource requirement surpasses the capacity of network, 

congestion occurs [3]. In a distributed network, congestion 

occurs if a network link has queued messages waiting to get 

processed thereby decreasing the quality of service.  

II. RELATED WORK 

Congestion control techniques using prediction algorithms 

are known to provide superior network performance. Various 

prediction models using time series, fuzzy logic, Kalman 

filters, and neural networks have been proposed in recent 

years. Of these, neural networks have been demonstrated to 

provide relatively better performance because of their 

sophisticated learning mechanism and complex 

computational capability. 

Time series is an ordering of data noted at regular intervals 

of time, for example, monthly sales of a retail outlet. When 

using this concept, it is important to analyze each point’s 

correlation (measure of degree of association) with previous 

point in the series. In order to predict through time series, the 

stationary assumption, as measured by autocorrelation 

functions [4], should be satisfied to minimize the mean square 

error. Jung et al. [5] used an auto-regressive (AR) model to 

predict network congestion, which examines whether the 

predicted packets are greater than the given bandwidth, and 

updates the routing table accordingly. Zhou et al. [6] proposed 

a model which is a combination of linear time series ARIMA 

and non-linear time series GARCH [7] model. Three separate 

time scales have been used to predict the network traffic from 

one-step ahead to k-step ahead. It captures long as well as 

short-range dependence. The model was compared with 

FARIMA [8] to prove its efficiency. 

Fuzzy logic scales the degree of congestion, rather than 

defining complete congestion. Xiang et al. [9] developed a 

fuzzy neural network to predict the arrival rate of traffic. If 

the queue length is estimated to overflow, encoding rate of the 

source is reduced by 25 percent of the current sending rate. 

Haught et al. [10] placed Kalman filters on network links to 

periodically record data such as queue size and current arrival 

rate. It then predicts the queue size at next interval based on 

the current and past queue lengths, and uses this information 

to control the arrival rate of packets. 

A feed forward neural network to predict the source of 

congestion and restrict the flow rate is proposed by [11]. 

When the incoming traffic packets exceed the outgoing 

packets, congestion is reduced by controlling the traffic rate 

[11, 12, 13, 14, 15]. A feedback control algorithm is proposed 
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in [13] to predict the buffer occupancy L-step ahead through 

multi-step neural network. It also estimates the resources 

required through Back-Propagation (BP) neural network 

which is then used by the source node to adjust the sent-out 

rate accordingly. Fan and Mars [12] predicted the video traffic 

by finite impulse response (FIR) neural network and 

controlled congestion by throttling the input arrival rate. 

Ogras and Marculescu [16] predicted the congestion on 

Network-on-Chip (NOC) and proposed a flow control 

algorithm to control the total number of packets in the 

network. Mohan et al. [17] have implemented two approaches 

to predict a congestion free path in the network. In the first 

approach, association rule mining and traditional artificial 

neural network are used. Association rule mining defines the 

constraints, rules and statements derived from the data. 

Neural network takes the input like packet drop, response 

time and node degree, and yields the congestion weight which 

is then used to determine the best path. The second approach 

is an improved version of the feed-forward neural network, 

called self-motivated functional link feed-forward neural 

network. The neural network was trained with additional 

inputs to give the best reliable path. A common drawback of 

the aforementioned work is that they reduce the input arrival 

rate, rather than proactively manage the congestion. 

III. METHODOLOGY 

The effectiveness and accuracy of the model is achieved in 

several steps. First the model is developed and validated – this 

process requires that inputs of neural network be specified; 

second, the model is deployed in the cloud for real-time 

scoring; finally, the results are used to take corrective actions, 

if necessary. For this work, we use a distributed real-time 

transaction processing simulator (DRTTPS) to analyze the 

performance of the model. 

A. Determining Inputs of Neural Network Model  

The inputs of the neural network model are determined by 

the parameters of the underlying application which, in our 

case, is a simulated distributed real-time transaction 

processing environment. DRTTPS provides the ability to add 

protocols in a modular fashion, and tweak parameters of 

interest using a highly interactive graphical user interface. 

Time is represented in a dimensionless manner using ticks 

(simulation clock) and events are created and inserted in a 

queue at discrete points in time. These events include sending 

messages, arrival and completion of transactions. The 

complete structure of the simulator is beyond the scope of this 

paper and can be found in [18]. 

Our goal is to predict congestion in distributed networks 

and then take necessary corrective actions, if so warranted. 

The primary input parameters affecting congestion are 

determined by performing experiments with a broad range of 

values; these then become inputs of the neural network. 

Through experimentation, it was determined that the key 

parameters affecting congestion are bandwidth (5 to 35 

message units/tick), max active transactions (10 to 50), update 

percentage (5 to 50%), latency (5 to 20 ticks) and work-size 

(2 to 10 pages). The input range for each parameter is chosen 

in a way that it shows observable results, for example, 

bandwidth shows a major impact on congestion within the 

range of 5 to 35 message units/tick (Fig. 1). The objective is 

to train the neural network with high, medium, low, and no 

congestion loads, based on a specified threshold. For each 

simulation run, input data is recorded periodically in a trace 

file. 

 

 

Fig. 1. Bandwidth affecting PTCT 

 

 

Fig. 2. Neural Network Model 

 

B. Neural Network Model 

 The neural network model is developed in SPSS Modeler 

16.0 [19]. Fig. 2 shows different types of nodes in the model, 

each node being representative of different functionality, as 

explained below: 

 

 InputData node is the worksheet source node, which 

imports data from the periodic Excel trace file. The 

neural network model is trained with 30 simulation runs 

under a range of congestion loads. 

 Type node specifies the role (input, target, or both) and 

format of input fields. 

 FutureQueueLength is the neural network modeling 

node, where all network settings are configured (Table 

I). The type of neural network is Multilayer Perceptron 

with 2 hidden layers consisting of 10 and 5 neurons, 

respectively. Determining the number of hidden layers 

and neurons is an iterative process. The number of 

training cycles used to train the network is 250. Overfit 

prevention set is 50%, which means half of the total 

data is separated from the modeling data so that the 

network does not model errors in the system. 
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TABLE I. NEURAL NETWORK SETTINGS 

Neural Network Parameter Value 

Type Multilayer Perceptron 

Hidden Layers & Neurons 
Hidden  layer 1: 10 
Hidden layer 2: 5 

Training Cycles 250 

Overfit Prevention set (%) 50% 

 

 When the model completes its execution, a model 

nugget (diamond-shaped) is created. This nugget 

contains information (rules and equations) which is 

used for scoring and analysis of data. For instance, the 

summary view (Fig. 3) displays a quality chart 

showing the final accuracy of the model as defined by 

R-square value (92.7% for our model) [19]. The 

summary table provides an overview of the network 

architecture and other training parameters. Various 

other details of the model can be browsed through the 

nugget, for example, the predictive importance chart, 

which helps to identify the relative importance of each 

predictor (Fig. 4). 

 Finally, in the analysis node, training vs. actual 

outcome is analyzed to find the error. The statistical 

measure used here is R-square; higher the value of R-

square, better is the prediction model. 

Determining the architecture of neural network and 

related settings is an iterative process. After each training 

cycle, the results are analyzed to identify issues in the network 

settings and reconfigure the parameters (number of hidden 

layers and neurons), if necessary. This process is repeated 

until satisfactory results are achieved (R-square is above 

90%). 

C. Cloud Deployment 

Once the model is trained, it is ready for deployment and 

use. In order to obtain real-time scoring, we have selected 

ADAPA (Adaptive Decision and Predictive Analytics) [2] 

scoring engine. It delivers cloud computing capabilities and 

open standards, which facilitate quick deployment by 

integrating with data mining platform (SPSS Modeler). 

ADAPA uses Predictive Model Markup Language (PMML) 

[20] to deploy models from data mining tools to the cloud.  

PMML is an XML-based language, which represents data 

mining models, business rules, input data, and data 

transformations. The steps involved in the deployment and 

use of the model are described below [2]: 

 Step 1: Prepare the model. Our neural network 

model is developed in SPSS Modeler which exports 

it in PMML format. Once the model is finalized, it 

is deployed on ADAPA so that real-time scoring 

can be done. 

 Step 2: Deploy model. Model is deployed directly 

by uploading PMML file on the ADAPA console 

which is an interface that allows user to upload 

models and rule-sets. 

 Step 3: Verify the model. After model deployment, 

ADAPA results need to be verified. ADAPA 

processes the uploaded data file (containing input 

data) and provides the predicted results in a new 

file, which can be downloaded and analyzed. If the 

results are identical to those from SPSS Modeler, 

the model is verified. 

 Step 4: Use the model. Once the model deployment 

is verified, it can be used for real-time scoring. The 

scoring can be done through ADAPA console or 

through XML-based web service. ADAPA web 

service uses Java Data Mining (JDM) standard to 

process the models defined in PMML [2]. Web 

service properties are configured in Web Service 

Description Language (WSDL) file, defined by 

JDM standard. 

 

 

Fig.3. Neural Network Model Summary View 

 

 

Fig. 4. Predictive Importance Chart 

 

In summary, a user can create the predictive model, for 

instance, in SPSS Modeler, export it as a PMML file, and 

upload it to the ADAPA user interface. The embedded Java 

code then makes web service calls to ADAPA and obtains 

scores in real-time. 

An instance of ADAPA is initiated to generate a default 

code package. Each instance has its own settings in different 

files of SDK. In our experiments, once the instance is started 
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and the default source code files generated, the instance is 

never terminated. ADAPA provides a development kit with 

sample programs to assist with sending data in an acceptable 

format and obtain the predicted values.  

IV. EXPERIMENTS AND RESULTS 

The network topology can play an important role in 

congestion. For this research, we chose the hypercube 

network as the underlying topology because of its superior 

topological characteristics which include small diameter 

(communication delays are less when network’s diameter is 

small), high connectivity, simple routing, and fault tolerance 

[21]. The results presented in this section are for a 3-

dimensional (8 nodes) hypercube. Since links are bi-

directional in nature, the total number of links in the topology 

are 24. For example, there are two links between nodes 0 and 

1 (bi-directional), link outgoing from Node 0 and Node 1 is 

named as Link 0-1 and vice versa. Each link may have 

different congestion load, depending on its attributes 

(bandwidth and latency) and node’s workload (each node has 

different inter-arrival rate). For each experiment, the baseline 

parameters were fixed and neural network inputs were varied 

to create different congestion loads. 

A. Testing with non-trained parameters, but within the 

trained input range 

In this set of experiments, accuracy of the neural network 

model is tested with non-trained parameter values which lie 

within the trained input ranges. The simulation runs chosen to 

test the accuracy of the model represent different congestion 

loads. 

1) Experiment A1 – High Congestion Load:  

Initially, the model is tested with a simulation run 

depicting high congestion (Bandwidth – 5, Update 

percentage – 10%, and maximum active transactions, 

MAT 50). It is a highly congested scenario because of the 

low bandwidth. The accuracy, that is, R-square of the run 

is 95.7%. To demonstrate the model’s performance, only 

one representative link is selected for each load. An 

example of a link experiencing high congestion is Link 4-

6. As shown in Fig. 5, approximately 1000-2000 

messages are queued on this link which could take 200 to 

400 ticks to clear the queue, thus representing high 

congestion. As illustrated, the prediction model has 

shown very promising results in predicting the 

congestion for such highly congested scenario. For more 

explicit comparison, the snapshot of predicted results for 

selected 1000 ticks is shown in Table II. The model’s 

correctness for the selected ticks is always above 90% 

(out of 10 cases, 6 have above 95% correctness). 

2) Experiment A2 – Negligible Congestion Load:  

In order to observe the behaviour under minimal 

congestion, the model was analyzed with the simulations 

runs representing negligible/no congestion load. The 

accuracy (R-square) of the run is 91.0%. Links 1-5 (Fig. 

6) and 7-5 (Fig. 7) have 0 messages in the queue (no 

congestion), and insignificant fluctuations. This pattern is 

successfully recognized by our prediction model. At tick 

15,500, Link 1-5 has 65 queued messages whereas our 

model predicted 45 messages. Even though the number 

of queued messages is significantly higher than the mean 

value (approximately 0), the model is still able to predict 

this spike with reasonable accuracy (70%). Similarly, at 

tick 14,600, Link 7-5 has 10 queued messages, whereas 

the model predicted 8 messages (accuracy - 80%). 

 

Fig. 5. Analysis of Link 4-6 

 

TABLE II. PREDICTION RESULT SNAPSHOT OF LINK 4-6 

Tick Queue Length Predicted 

Length 

Correctness(%) 

15300 1005 1094 91.1 

15400 940 993 94.4 

15500 915 940 97.3 

15600 990 919 92.8 

15700 970 981 98.9 

15800 875 964 89.8 

15900 875 885 98.9 

16000 880 885 99.4 

16100 935 889 95.1 

16200 920 936 98.3 

 
 

 

Fig. 6. Queue Length: Link 1-5 
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Fig. 7. Queue Length: Link 7-5 

B. Testing with parameters outside the input training 

range 

The experiments presented in this section use parameter 

values which fall outside the input training ranges. Recall, 

training range of MAT is 10 to 50 transactions, update 

percentage 5 to 50%, and bandwidth 5 to 30 message 

units/tick. Again, the simulation runs with different 

congestion loads are analyzed, but only one representative 

link from each set is presented here. 

1) Experiment B1 – High Congestion Load:  

In this experiment, high congestion load is created by 

setting MAT at 60, update percentage at 55, and 

bandwidth at 15. All the parameters are outside the input 

training range, except total bandwidth. It is because the 

goal here was to create high congestion scenario, which 

would not have been possible if bandwidth value was 

selected from outside the input training range. The 

accuracy (R-square) of the simulation run is 92.0%. 

An example of a link with high congestion load is 

shown in Fig. 8 for a duration of approximately 2000 

ticks. The data error bars represent deviation of predicted 

value from the actual value. The dark gray bar indicates 

that the predicted value is smaller as compared to the 

actual value; whereas the white bar means that the 

predicted value is larger than the actual value. The 

maximum error in the displayed interval occurs at the 

8100th tick (queue length – 1300 messages and predicted 

queue length – 1112 messages) 

 

Fig. 8. Analysis of Link 4-6 

 

2) Experiment B2 – Low Congestion Load: 

In this experiment, the prediction model is tested with 

low congestion load, and the accuracy (R-square) of the 

run is 91.4%. This simulation run has fluctuating queue 

length (Fig. 9), for example - at tick 1200, the number of 

queued messages is 250 (high congestion load), then 

drops to 10 messages (low congestion load), and climbs 

to 95 messages (medium congestion load). The predicted 

result for the aforementioned example is 180 messages 

queued at tick 1200 (high congestion load), declines to 28 

messages (low congestion load), and then climbs to 87 

messages (medium congestion load). This indicates that 

our prediction model correctly captures the fluctuating 

congestion load scenarios in the hypercube network. 

 

3) Experiment B3 – Negligible Congestion Load: 

When tested with negligible congestion load, the 

accuracy (R-square) of the run is 89.8%. The highest 

outlier in the range exists at 1900th tick where the 

predicted and actual number of messages in the queue 

were 12 and 30, respectively (Fig 10); the remaining ticks 

show no congestion in general, and are predicted 

accurately by the model. 

 

Fig. 9. Analysis of Link 5-1 

 

 

Fig. 10. Analysis of Link 2-6 

 

C. Using the predictive scores 

The scores obtained from the predictive model were used 

to take preemptive measures to avoid congestion from 

happening. This included re-routing of network traffic prior 

to any imminent congestion. The results were obtained from 

the cloud deployment in real-time and it was monitored 

whether the actions taken on the basis of predicted 
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congestion actually improves network performance. The 

results showed a remarkable improvement, but are beyond 

the scope of this paper. 

V. CONCLUSION 

In this paper, we have demonstrated how a neural network 

model can be developed and deployed in the cloud for real-

time scoring, and using the results to proactively manage 

congestion in a distributed network. The neural network 

prediction model is developed in SPSS Modeler. The model 

is trained in an off-line mode for various congestion scenarios 

and then deployed in the cloud for real-time scoring. SPSS 

modeler exports a file in PMML format containing the neural 

network model; this file is uploaded on the ADAPA instance 

running on Amazon cloud. An ADAPA wrapper embedded in 

the simulator invokes the prediction model through web 

services and predicts network traffic in real-time. This 

information is then used to proactively re-route messages to 

avoid congestion from happening. 

The prediction model is tested using parameter values both 

inside and outside training ranges, and R-square is observed 

for each experiment (Fig. 11). From the testing set, it is noted 

that the maximum accuracy ranges from 91.0% (at negligible 

congestion) to 95.7% (at high congestion) when tested within 

the input training range. Outside of the training range, these 

values are 89.8% to 92.0%, respectively. From the analysis of 

various simulation runs with different congestion loads, it is 

concluded that our prediction model is robust because it can 

sense different congestion scenarios in a link, capture 

fluctuations, handle spikes, and adapt to varying load 

conditions. 

 

 

Fig. 11. Performance of Prediction Model 
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