



Abstract—The judicious selection of Sequential Pattern Mining

(SPM) approaches becomes a challenge with the variety of

datasets pertaining to various application domains. This paper

presents the domain specific performance evaluation of the

most commonly used SPM approaches on real-life datasets. The

main objective of this study is to analyze the behavior of SPM

algorithms on the real-life datasets which represent

characteristics of truly real-life situations rather than the

synthetic ones and to select the one which best suits the given

application domain characteristics. Further, this study aims at

building a recommendation system for judicious selection of

algorithm(s) and minimum support thresholds for application

domains considering the nature of the application(s) and

characteristics of the involved Data Sets.

Index Terms— Sequential Pattern Mining, Data mining,

Frequent sequential pattern, Domain specific performance

evaluation, Minimum support threshold, Real-life datasets

I. INTRODUCTION

equential pattern mining approaches have been found to

be applicable in a variety of domains like retail industry,

healthcare, education, web usage mining, text mining,

bioinformatics, telecommunications, intrusion detection, etc.

In these domains, SPM techniques are employed to analyze

the available enormous data to identify sequential patterns in

order to implement efficient recommendation systems that

can aid in detecting events of utmost interest, in making

predictions based on previously observed patterns, and in

taking strategic product decisions.

Most commonly used SPM approaches are GSP[2],

SPADE[3], PrefixSpan[4], SPAM[5], CloSpan[6],ClaSP[7].

GSP is a generalized version of SPM approach [1] which

incorporates time constraints, sliding time windows, and

taxonomies in discovered sequential patterns. The

performance bottleneck of this approach is that it requires

several scans of the database to check the support of the

candidates and the use of a breath-first search technique for

the candidate generation, leading to high memory

consumption. SPADE is an apriori-based SPM lgorithm that

uses a vertical id-list database format, efficient lattice search

techniques and simple joins to discover frequent sequences.

The search space in SPADE is represented as a lattice

structure and it uses the notion of equivalence classes to

Manuscript received March 17, 2016; revised March 30, 2016.

A. R. Naseer is Principal & Professor at the Department of Computer

Science & Engineering, Jyothishmathi Institute of Technology &

Science(JITS Karimnagar) affiliated to Jawaharlal Nehru Technological

University(JNTU), Hyderabad, Telangana State, India (corresponding

author phone: +91 9052430745; e-mail: dr_arnaseer@hotmail.com).

V. Malsore is with the Department of Computer Science & Engineering,

Jyothishmathi Institute of Technology & Science(JITS Karimnagar)

affiliated to Jawaharlal Nehru Technological University(JNTU),

Hyderabad, Telangana State, India(e-mail: malsoru@gmail.com).

partition it. SPADE not only minimizes I/O costs by

reducing database scans, but also minimizes computational

costs by using efficient search schemes. PrefixSpan proposes

a pattern-growth approach for mining frequent patterns

without candidate generation. PrefixSpan recursively

projects a sequence database into a set of smaller projected

sequence databases and grows sequential patterns in each

projected database by exploring only locally frequent

fragments. SPAM is an apriori-based candidate generation

and pruning approach that uses a vertical bitmap data

structure representation of database which is similar to the

id-list of SPADE. CloSpan discovers only frequent closed

subsequences, i.e., those containing no super-sequences with

user specified minsup, instead of mining the complete set of

frequent subsequences. ClaSP algorithm mines frequent

closed sequential patterns in temporal transaction data. It

employs a vertical database format strategy inspired by the

SPADE algorithm and uses a heuristic to prune non-closed

sequences inspired by the CloSpan algorithm. A crucial

performance bottleneck of vertical algorithms such as

SPADE, SPAM, ClaSP is that they use a generate-candidate-

and-test approach that can generate a large amount of

infrequent candidates. To address this issue, a generic

candidate pruning mechanism based on the item co-

occurrences is proposed in [8] using a new structure named

CMAP (Co-occurrence MAP) for storing co-occurrence

information. This pruning mechanism is integrated into three

state-of-the-art algorithms ClaSP, SPADE and SPAM and

the resulting algorithms are renamed as CM-ClaSP, CM-

SPADE and CM-SPAM.

All the existing and most commonly used sequential

pattern mining approaches are based on the support model

which uses single minimum support(minsup) threshold for

the entire database with the implicit assumption that all items

in the data are of the same nature and/or have similar

frequencies in the data. This is often not observed in many

of the real-life applications where some items may appear

very frequently in the data, while others may rarely appear.

This leads to the dilemma which is termed in the literature as

rare item problem [9] wherein infrequent or rare items will

not be extracted if the minsup threshold is set to a very high

value. Further, setting the minsup threshold to a very low

value to retrieve rare items may cause combinatorial

explosion due to the association of frequent items with one

another in all possible ways and many of these will be

meaningless. It is evident that using a single minsup for the

whole database is inadequate as it cannot capture the

inherent natures and frequency differences of the items in the

database. In order to tackle this problem, some adhoc and

approximate approaches [10][11][12] were proposed without

much progress. The approaches should be based on the fact

that different rules may need to satisfy different minimum

supports depending on the type of items involved. Hence,

the judicious selection of SPM approaches and minsup

A. R. Naseer, Senior Member IEEE, and V. Malsoru, Member, IAENG

Domain Specific Performance Evaluation of

Sequential Pattern Mining Approaches

S

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

values becomes a challenge with the variety of datasets

pertaining to various application domains.

This paper presents the domain specific performance

analysis of the most commonly used sequential pattern

mining approaches on real-life datasets. In this work, we

considered nine most commonly used SPM approaches and

eight real-life datasets having varied characteristics and

representing five different domains - web click stream, text

from books, sign language utterances, protein sequences and

Retail data from Supermarket.

The rest of the paper is organized as follows. Section II

presents the motivation and proposed work. The

performance evaluation of eight Sequential pattern mining

approaches on nine real-life datasets are presented in results

and discussion Section III, followed by concluding remarks

in section IV.

II. MOTIVATION AND PROPOSED WORK

Most of the Sequential Pattern Mining algorithms

developed consider only the IBM Synthetic Benchmarks to

compare their performance with other previously reported

approaches without considering the real-life datasets.

Moreover, there has been no performance evaluation

reported using Real-life datasets drawn from various

application domains in order to determine which particular

approach best suits the given application domain based on

performance measures such as total Execution time and

maximum memory utilized for retrieving maximum number

of frequent sequential patterns over a variation in minsup

threshold values.

It is to be further noted that there are several application

domains which require sequential patterns appearing

infrequently but they are important to be considered which

can be captured with lower thresholds i.e., with lower

minsup. They are ample number of application domains

which need sequential patterns which appear most frequently

which can be retrieved from the datasets with higher

thresholds, i.e. higher minsup. There are large number of

application domains which require frequent sequence

patterns within a certain allowable range of minsup

thresholds. Moreover, shorter and longer sequences are also

important to be considered in many of the application

domains. In most of the cases, these sequences are missed

out due to the selection of minsup threshold values normally

in the middle of the threshold range.

For example, a pharmaceutical store requires information

on infrequent sequential patterns, frequent sequential

patterns and most frequent sequential patterns most of the

time. This is a critical support system for health care unit

which need to keep track of the medicines considering these

sequential patterns and stock them accordingly so that

patients need may be satisfied instantaneously. Whereas for

a Retail Industry or supermarket, frequent sequential

patterns and most frequent sequential patterns are the most

important items to be considered to stock up in large

numbers to satisfy the immediate needs of the customers.

Hence, it is required to develop a framework for mining

sequential patterns in accordance with various application

domain needs and to provide certain guidelines for selecting

suitable approach that suits the given application domain. In

order to provide a general framework taking into account the

above discussed issues, it is required to carry out domain

specific performance analysis of the most commonly used

SPM approaches with the main objective of analyzing the

behavior of these algorithms on the real-life datasets which

represent characteristics of truly real-life situations rather

than the synthetic ones. In this work, we carried out

performance evaluation of the nine popular SPM approaches

- GSP, SPADE, SPAM, PrefixSpan, CloSpan, ClaSP, CM-

SPADE, CM-SPAM, CM-ClaSp on eight real-life datasets

having varied characteristics and representing five different

domains - web click stream, text from books, sign language

utterances, protein sequences and Retail data from

Supermarket. Performance metrics used in this study are

Total execution Time taken and Main Memory utilized by

each of the algorithm in retrieving maximum number of

frequent sequential patterns. The other parameter considered

in this work is the rate of decay of frequent sequential

patterns over a wider variation of minsup threshold.

The interesting aspect of this study is to determine the

algorithm which best suits a particular scenario by

considering the following three situations requiring:
a) Strict Time Constraints (with no Memory Constraint)

b) Strict Memory Constraints (with no Time Constraint)

c) Moderate Time & Memory Constraints

Depending on the nature and demands of various

applications and scenarios, most suitable algorithm may be

selected which best suits that particular situation. Moreover,

the outcomes of this study can be used to provide certain

guidelines in building efficient recommendation System for

judicious selection of algorithm(s) and minsup values for a

given application domain considering the nature of the

applications and characteristics of the involved Data Sets.

Second interesting aspect of this study is to analyze the

count and length of the frequent sequence patterns generated

and the decay i.e., rate of decrease in the occurrence of these

frequent sequential patterns over the variation in minsup

threshold from low to high values. This study not only

throws some light on the amount of frequent sequential

patterns generated but also on the length of the sequential

patterns identified with the variation of minsup from low to a

high value. This would also give an insight into the kind of

sequential patterns one would be interested to look for over

a range of minsup threshold values.

 Third interesting aspect is that this study can also be

used to design and implement an improved & efficient

algorithm taking into consideration the nature of the

application domains, the characteristics of the datasets in the

domain and behavior of the existing algorithms on these

patterns/datasets.

III. RESULTS AND DISCUSSION

In this section, we present the extensive experiments

carried out to assess the performance of the GSP, SPADE,

SPAM, PrefixSpan, CloSpan, ClaSP, CM-SPADE, CM-

SPAM, CM-ClaSp algorithms. For this study, we have used

the SPMF platform which is an open source data mining

platform written in Java maintained by P. Fournier Viger

[13]. All algorithms were implemented in Java. Experiments

were performed on a system with Core i7 processor with 8

GB RAM running Windows 7. All memory measurements

were done using the Java API. Experiments were carried out

on eight real-life datasets having varied characteristics and

representing five different types domains - web click stream,

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

text from books, sign language utterances, protein sequences

and Retail data from Supermarket. Those real-life datasets

are Kosarak (Web Click-Stream domain), Leviathan (Book

(Novel) domain), Sign (Sign Language Utterance Domain),

FIFA(Web Click-Stream Domain), Snake(Protein Sequences

Domain), Bible(Book Conversion Domain), MSNBC (Web

Click Stream Domain) & Retail (Super market Domain).

A. Performance Evaluation – Total execution Time and

Main Memory Utilized

In this section, we present the results on the total

execution time taken and maximum memory consumed by

the nine SPM algorithms on the eight data sets by varying

the minimum support from low value to high value. This

variation was done to analyze the behavior of these nine

algorithms in finding out the sequential patterns over the

minsup variations and their computational time and

maximum Memory requirements in generating the required

sequences for a given minsup threshold. Due to the paucity

of space, we have included in this section the figures

depicting Total Execution Time vs minsup plots, Max.

Memory vs. minsup plots and Performance comparison

tables for only six selected datasets - Kosarak, Leviathan,

Sign, Bible, snake & Retail representative of six application

domains. For the remaining datasets, we have presented only

the performance results. Figures 1 to 12 show the graphs

plotted by considering total execution time taken and

maximum memory required by GSP, SPADE, SPAM,

PrefixSpan, CloSpan, CM-SPADE, CM-SPAM, CM-ClaSP

and ClaSP algorithms for generating sequential patterns

from Kosarak, Leviathan, Sign, Bible, Snake and Retail

datasets with respect to variations in minsup threshold.

Kosarak dataset (Web click-stream) : It is evident from

the figs. 1 & 2 that GSP performance is extremely poor

when both Total Execution Time and Main Memory usage

are considered for minsup threshold value of 1. Since GSP

performs poorly, it is compared with all other algorithms and

the results are presented in the table I. SPADE takes least

execution time and it is 78.69 (TFT) times faster than GSP.

Further, CloSpan performs very well when only Max.

memory requirement is considered. It requires

78.96%(PLM) less memory when compared to poor

performing GSP algorithm.

Fig 1. Kosarak Dataset-Total Execution Time vs minsup

Fig 2. Kosarak Dataset- Max. Memory vs minsup

Table I: Kosarak : Comparison of Execution Time & Max Memory Usage

0

 KOSARAK DATASET when minsup=1

Execution Time Max Memory Required

Algorithm

compared with

GSP

TFT

(Times

faster than)

GSP

Algorithm

compared

with GSP

PLM (%age of

less memory)

required when

compared to GSP

CM-SPADE 78.69 CloSpan 78.96

SPADE 47.21 PrefixSpan 73.53

CM-ClaSP 33.72 ClaSP 68.22

PrefixSpan 26.23 CM-SPAM 63.09

CM-SPAM 21.46 SPAM 60.32

ClaSP 19.14 CM-ClaSP 57.93

CloSpan 12.00 SPADE 20.94

SPAM 9.70 CM-SPADE 15.76

Fig 3 Leviathan Dataset-Execution Time vs minsup

Fig 4. Leviathan Dataset- Max. Memory vs minsup

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Leviathan dataset(Book - Novel): It is clear from figs. 3 &

4 that PrefixSpan performance is poor when both Total

Execution Time and Main Memory usage are considered for

minsup threshold value of 1. As seen in Table II, SPADE

takes least execution time and it is 34.61 (TFT) times faster

than PrefixSpan. Further, CloSpan performs very well when

only Max. memory requirement is considered. It requires

80.19%(PLM) less memory when compared to poor

performing PrefixSpan algorithm.

Table II-Leviathan :Comparison of Execution Time & Main Memory Usage

LEVIATHAN DATASET when minsup=1

Execution Time Max. Memory Required

Algorithm

compared

with

PrefixSpan

TFT (Times

faster than)

PrefixSpan

Algorithm

compared

with

PrefixSpan

PLM (%age of less

memory) required

when compared to

PrefixSpan

SPADE 34.61 CloSpan 80.19

CM-SPADE 34.58 CM-ClaSP 67.05

CM-ClaSP 27.45 ClaSP 66.37

ClaSP 19.71 SPAM 64.42

SPAM 10.28 CM-SPADE 58.35

CM-SPAM 10.20 CM-SPAM 52.43

CloSpan 5.75 SPADE 33.88

GSP 1.20 GSP 3.19

Sign dataset (Sign-Language Utterance): It is seen from

figs. 5 & 6 that GSP performance is extremely poor when

Total Execution Time is considered and ClaSP performs

poorly as far as Max Memory usage is considered for

minsup threshold value of 1. As evident in Table III, SPADE

takes least execution time and it is 13.45 times faster than

GSP.

Fig 5. Sign Dataset-Total Execution Time vs minsup

Fig 6. Sign Dataset- Max. Memory vs minsup

Further, SPADE performs very well when only Max.

memory requirement is considered. It requires 89.77% less

memory when compared to poor performing ClaSP

algorithm.

Table III - Sign: Comparison of Execution Time & Main Memory Usage

 SIGN Data Set when minsup=5

Execution Time Main Memory Usage

Algorithm

compared with

GSP

TFT(Times

faster than)

GSP

Algorithm

compared

with ClaSP

PLM(%age of less

memory) required

when compared to

ClaSP

SPADE 13.45 SPADE 89.77

CM-SPADE 13.24 CM-SPADE 84.43

SPAM 2.08 CloSpan 68.91

PrefixScan 1.67 GSP 64.05

CloSpan 1.66 CM-SPAM 54.83

CM-ClaSP 1.43 SPAM 54.35

CM-SPAM 1.11 PrefixSpan 52.41

ClaSP 1.06 CM-ClaSP 0.97

Snake dataset (Protein Sequences): It is interesting to note

from figs. 7 & 8 that all algorithms fail for variation of

minsup value below 40 due to insufficient memory.

PrefixScan performance is extremely poor when both Total

Execution Time and Main Memory usage are considered for

minsup threshold value of 40. As seen in Table IV, CM-

SPADE takes least execution time and it is 27.61 times

faster than PrefixScan. Further, SPADE performs very well

when only Max. memory requirement is considered. It

requires 61.09% less memory when compared to poor

performing PrefixScan algorithm.

Figure 7. Snake Dataset-Total Execution Time vs minsup

Figure 8. Snake Dataset- Max. Memory vs minsup

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Table IV :Snake -Comparison of Execution Time & Main Memory Usage

SNAKE Data Set when minsup = 40

Execution Time Maim Memory Usage

Algorithm

compared with

PrefixScan

Times faster

than

PrefixScan

Algorithm

compared

with

PrefixScan

%age of less

memory required

when compared to

PrefixScan

CM-SPADE 27.61 SPADE 61.09

SPADE 25.29 SPAM 19.95

SPAM 17.21 CM-SPAM 19.94

CM-SPAM 10.08 CM-SPADE 18.73

GSP 1.09 GSP 17.45

CM-ClaSP, CloSpan, ClaSP algorithms fail for variation of minsup

from 40 to 60 due to insufficient memory

Fig 9. Bible Dataset-Total Execution Time vs minsup

Fig 10. Bible Dataset- Max. Memory vs minsup

Table V-Bible:Comparison of Execution Time & Main Memory Usage

 BIBLE Data Set when minsup =1

Execution Time Maim Memory Usage

Algorithm

compared with

GSP

Times

faster

than GSP

Algorithm

compared with

CM-SPAM

%age of less

memory required

when compared to

CM-SPAM

CM-ClaSP 129.25 CloSpan 80.01

CM-SPAM 103.72 GSP 76.71

ClaSP 84.49 ClaSP 75.68

SPAM 82.61 CM-ClaSP 74.83

CloSpan 7.03 PrefixSpan 71.98

PrefixSpan 1.07 SPAM 51.80

SPADE and CM-SPADE algorithms fail for all variations of

minsup due to insufficient memory

Bible (Book Conversion): It is interesting to note from figs.

9 & 10 that SPADE & CM-SPADE algorithms fail for entire

variation of minsup due to insufficient memory. GSP

performance is extremely poor when Total Execution. Time

is considered and CM-SPAM performs poorly when Max

Memory usage is considered for minsup threshold value of

1. As seen in the table V, CM-ClaSP takes least execution

time and it is 129.25 times faster than GSP. Further,

CloSpan performs extremely well when only Max. memory

requirement is considered. It requires 80.01% less memory

when compared to poor performing CM-SPAM algorithm.

FIFA dataset (Web click-stream): PrefixSpan performs

poorly when Total Execution Time and Max Memory

usage are considered for minsup threshold value of 8. CM-

SPADE takes least execution time and it is 15.06 times

faster than PrefixSpan. Further, CloSpan performs very well

when only Max. memory requirement is considered. It

requires 67.58% less memory when compared to poor

performing PrefixScan algorithm.

MSNBC dataset (Web click-stream): It is interesting to

note that ClaSP and CM-ClaSP algorithms fail for entire

variation of minsup due to insufficient memory. GSP

performance is extremely poor when Total Execution Time

is considered and PrefixScan performs poorly when Max

Memory usage is considered for minsup threshold value of

1. SPADE takes least execution time and it is 1503.03 times

faster than GSP. Further, CM-SPADE performs extremely

well when only Max. memory requirement is considered. It

requires 98.96% less memory when compared to poor

performing PrefixScan algorithm.

Figure 11. Retail Dataset -Total Execution Time vs minsup

Fig 12. Retail Dataset- Max. Memory vs minsup

Retail dataset (Belgian Retail Store): It is evident from

figs. 11 & 12 that CM-SPAM performance is poor when

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Total Execution Time is considered and CM-SPADE

performs badly when Max Memory usage is considered for

minsup threshold value of 1. As it is evident from table VI,

SPADE takes least execution time and it is 12.54 times

faster than CM-SPAM. Further, PrefixScan performs

extremely well when only Max. memory requirement is

considered. It requires 92.53% less memory when compared

to poor performing CM-SPADE algorithm.

Table VI-Retail: Comparison of Execution Time & Main Memory Usage

 RETAIL Data Set when minsup =1

Execution Time Maim Memory Usage

Algorithm

compared with

CM-SPAM

TFT (Times

faster than)

CM-SPAM

Algorithm

compared with

CM-SPADE

PLM-%age of

less memory

required when

compared to

CM-SPADE

SPADE 12.54 PrefixScan 92.53

CM- SPADE 12.28 CloSpan 89.75

CM-ClaSP 9.31 GSP 84.92

ClaSP 7.4 ClaSP 84.38

GSP 4.65 CM-ClaSP 83.76

CloSpan 3.70 SPAM 73.60

PrefixScan 3.09 CM-SPAM 69.27

SPAM 1.16 SPADE 6.51

B. Frequent Sequential Pattern count and Sequence Length

In this section, we present the results of the study

performed to assess the influence of variation in the minsup

threshold on the Frequent Sequential Patterns(FSPs)

retrieved from the eight datasets by the nine most popular

data mining algorithms. This study not only throws some

light on the amount of FSPs generated but also on the length

of the sequential patterns identified with the variation of

minsup from low to a high value. This would also give an

insight into the kind of sequential patterns one would be

interested to look for over a range of minsup threshold

values.

Table VII - Frequent Sequence Length & corresponding Sequence Count
FS

L

Kosarak

373

FSP

Count

FIFA

117738

FSP

Count

Retail

363

FSP

Count

FS

L

MSNBC

45503

FSP

Count

Snake

13133171

FSP

Count

1 56 132 54 1 17 20

2 134 1187 120 2 241 351

3 122 11397 133 3 2449 4601

4 52 12627 47 4 8701 26567

5 9 88189 9 5 11624 130632

6 - 4206 - 6 9296 261149

FS

L

Leviathan

167189

FSP

Count

Bible

23308

FSP

Count

Sign

944486

FSP

Count

7 5789 2180129

8 3124 2572713

9 1876 4517459

1 345 239 151 10 1307 2322552

2 4243 1708 8382 11 765 1022667

3 18738 3958 65058 12 282 30198

4 38480 4970 158724 13 30 7956

5 43922 4292 230061 14 2 31243

6 33194 3170 232494 15 - 18600

7 18173 2457 158071 16 - 4710

8 7433 1688 69388 17 - 1508

9 2222 717 18994 18 - 112

10 414 104 2942 19 - 4

11 25 5 216 FSL – Frequent Sequence Length

FSP- Frequent Sequential Pattern 12 - - 5

The table VII shows the count of FSPs of different lengths

retrieved from eight datasets by the SPM approaches when

the minsup threshold value is at the least minimum. As seen

in table VII, SPM approaches extracted 373 FSPs having

upto 5-length patterns from Kosarak dataset when minsup=1,

from Bible dataset 23308 FSPs having upto 11-length

patterns when minsup=1, from MSNBC dataset 45503 FSPs

having upto 14-length patterns when minsup=1, from Retail

dataset 363 FSPs having upto 5-length patterns when

minsup=1, from Leviathan dataset 167189 FSPs consisting

upto 11-length patterns when minsup=1, from sign dataset

when minsup=5, algorithms generate 944486 FSPs

comprising upto 12-length patterns, from FIFA dataset

117738 FSPs having upto 6-length patterns when minsup=8,

and from Snake dataset 13133171 FSPs comprising upto

19-length sequences when minsup=40.

Considering the Frequent Sequence Count decay over

minsup variation as depicted in figure 13, it is to be noted

that Kosarak, Leviathan, Bible, MSNBC, Retail datasets

show almost similar trend of sudden(sharp) decrease in the

occurrence of Frequent Sequential patterns when minsup is

varied from 1 to 2.

Fig 13. KBMR FSC Decay over minsup variation

Fig 14. LSF FSC Decay over minsup variation

For instance, rate of decrease of Frequent Sequent Count

is 67.56% in Kosarak, 79.64% in Leviathan, 77.29% in

Bible, 78.67% in MSNBC and 68.32% in Retail datasets

when minsup is changed to 2. This trend continues till

further as it is evident from the figure when minsup is

increased to 5, most of the higher length frequent sequences

vanish. For instance, when minsup is increased to 5, 91.69%

of the FSPs disappear in the case of Kosarak dataset,

97.71% in the case of Leviathan, 96.68% in the case of

Bible, 96.80% in the case of MSNBC and 91.46% in the

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

case of Retail dataset. For variation of minsup beyond 5, less

than 10% or even much less (below 5%) of the FSPs exist.

As shown in figure 14, the datasets having larger length

FSPs like Sign, FIFA and Snake, the rate of decrease of the

FSPs is somewhat slower. For instance, 41.27% of the FSPs

vanish in the case of Sign Dataset when minsup is varied

from 5 to 6, 41.85% in the case of FIFA when minsup varied

from 8 to 9, 55.19% in the case of Snake Dataset when

minsup is changed from 40 to 45. Further, substantial

amount of higher length patterns exist over a wide variation

of misup threshold.

 This study draws the conclusion that largest length FSPs

appear only when minsup threshold is at its least minimum

value for all datasets and remain live only for a very short

variation of minsup. It is also observed that in some of the

datasets with larger length FSPs, substantial amount of

higher length patterns remain live over a wider variation of

misup threshold.

C. Recommendation

The detailed analysis presented in subsections A & B of

Section III provides sufficient guidelines to build a

recommendation system for selection of appropriate

algorithm and minsup for a given application domain. The

recommended algorithms for the eight datasets based on the

performance results are given in table VIII. It has been

found that SPADE and CM-SPADE outperform all other

algorithms in most of the Domains as far as the total

execution time is concerned. It is interesting to note that for

Bible Dataset from Book(Conversion) domain, CM-ClaSP is

the preferred approach when least total execution time is

considered. Further, when we consider only minimum

memory usage, CloSpan fairs extremely well for datasets

(Kosarak, FIFA, Bible, Leviathan) from domains Webclick

Streams, Book(Conversion), and Book(Novel). For datasets

from Sign language utterance and Protein Sequences,

SPADE is the recommended approach and PrefixScan is the

ultimate choice for Retail dataset from Super Market domain

as far as the least memory usage is considered.

Table VIII: Recommended algorithms for various domains

Datasets Domain Selected Algorithm based on

least

execution

time

Min

memory

utilized

Both Execution time

& Memory

Kosarak Web Click-

Stream

CM-SPADE CloSpan CM-ClaSP,

PrefixSpan

Leviathan Book (Novel) SPADE CloSpan CM-SPADE,

CM-ClaSP

Sign Sign Language

Utterance

SPADE SPADE SPADE, CM-SPADE

FIFA Web Click-

Stream

CM-SPADE CloSpan CM-SPADE, SPADE

Snake Protein

Sequences

CM-SPADE SPADE CM-SPADE, SPADE

Bible Book(Convers

ion)

CM-ClaSP CloSpan CM-ClaSP, ClaSP

MSNBC Web Click-

Stream

SPADE CM-SPADE SPADE, CM-SPADE

Retail Super Market SPADE PrefixScan CM-ClaSP, ClaSP

This study also recommends to consider a range of

minsup threshold values for retrieving longer sequences

from the datasets so that interesting sequences can be

captured within the specified window at the lower spectrum

of minsup threshold variations instead of using a single

minsup value.

IV. CONCLUSION

In this paper, we presented our experimental study to

evaluate the performance of most popular nine sequential

pattern mining algorithms on eight real data sets representing

different application domains. In these experiments, we

varied the minsup threshold from lower values to higher

values in order to study the behavior of these algorithms in

retrieving the sequential patterns from different datasets.

Also this study was extended to assess the influence of

variation in the minsup threshold on the amount of frequent

sequential patterns generated and on the length of the

sequential patterns identified. This work provided an insight

into the kind of sequential patterns one would be interested

to look for over a range of minsup threshold values.

As a future work, this study can be extended to cover all

the Application domains and the findings of this detailed

study can be used in building efficient recommendation

System for judicious selection of algorithm(s) and minsup

values for any given application domain considering the

nature of the applications and characteristics of the involved

Data Sets. Further, this study can also be used to design and

implement an improved & efficient algorithm which takes

into consideration the nature of the application domains, the

characteristics of the datasets in the domains and behavior of

the existing algorithms on these patterns/datasets.

REFERENCES

[1] Agrawal, Rakesh, and Ramakrishnan Srikant. "Mining sequential

patterns", Proceedings of the Eleventh International Conference on

Data Engineering, Taipei, Taiwan, March 1995.

[2] R. Srikant and R. Agrawal, “Mining sequential patterns:

Generalizations and performance improvements”, Proc. Of 5th

International Conference on Extending Database Technology

(EDBT’96), pp. 3-17, 1996.

[3] Zaki, Mohammed J. "SPADE: An efficient algorithm for mining

frequent sequences", Machine learning 42.1-2 (2001): 31-60.

[4] Pei, Jian, et al. "Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth.", 17th International Conference on

Data Engineering(ICDE), April 2001.

[5] Ayres, Jay, et al. "Sequential pattern mining using a bitmap

representation", Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining.

ACM, 2002.

[6] X. Yan, J. Han, and R. Afshar, “Clospan: Mining Closed Sequential

Patterns in Large Datasets,” Proc. Third SIAM Int’l Conf. Data

Mining (SDM’03), pp. 166-177, May 2003.

[7] A. Gomariz, M. Campos, R. Marin, B. Goethals, “ClaSP : An

Efficient Algorithm for Mining Frequent Closed Sequences”, J. Pei et

al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 50–61, 2013.©

Springer-Verlag Berlin Heidelberg 2013.

[8] P. Fournier-Viger, A. Gomariz, M. Campos, R. Thomas, “Fast

Vertical Mining of Sequential Patterns using Co-Occurrence

Information”, Advances in Knowledge Discovery and Data Mining,

pp. 40-52, Springer International Publishing, 2014,

[9] Mannila, H. "Database methods for data mining.” KDD-98 tutorial,

1998.

[10] Lee, W., Stolfo, S. J., and Mok K. W., 1998, ‘Mining audit data to

built intrusion detection models.’ KDD-98.

[11] Han, J. and Fu, Y., 1995, ‘Discovery of multiple-level association

rules from large databases.’ VLDB-95.

[12] B.Liu, W.Hsu and Y.Ma, “Mining association rules with multiple

minimum supports”, Proceedings of the fifth ACM, SIGKDD

Conference San diego, CA,USA, August 15-18,1999,P.341

[13] www.philippe-fournier-viger.com/spmf/index.php - SPMF open

source data mining platform written in Java maintained by P.

Fournier Viger.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

