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Abstract—The judicious selection of Sequential Pattern Mining 

(SPM) approaches becomes a challenge with the variety of 

datasets pertaining to various application domains. This paper 

presents the domain specific performance evaluation of the 

most commonly used SPM approaches on real-life datasets. The 

main objective of this study is to analyze the behavior of SPM 

algorithms on the real-life datasets which represent 

characteristics of truly real-life situations rather than the 

synthetic ones and to select the one which best suits the given 

application domain characteristics. Further, this study aims at 

building a recommendation system for judicious selection of 

algorithm(s) and minimum support thresholds for application 

domains considering the nature of the application(s) and 

characteristics of the involved Data Sets. 
 

Index Terms— Sequential Pattern Mining, Data mining, 

Frequent sequential pattern, Domain specific performance 

evaluation, Minimum support threshold, Real-life datasets 

I. INTRODUCTION 

equential pattern mining approaches have been found to 

be applicable in a variety of domains like retail industry, 

healthcare, education, web usage mining, text mining, 

bioinformatics, telecommunications, intrusion detection, etc. 

In these domains, SPM techniques are employed to analyze 

the available enormous data to identify sequential patterns in 

order to implement efficient recommendation systems that 

can aid in detecting events of utmost interest, in making 

predictions based on previously observed patterns, and in 

taking strategic product decisions.  

Most commonly used SPM approaches are GSP[2], 

SPADE[3], PrefixSpan[4], SPAM[5], CloSpan[6],ClaSP[7]. 

GSP is a generalized version of SPM approach [1] which 

incorporates time constraints, sliding time windows, and 

taxonomies in discovered sequential patterns. The 

performance bottleneck of this approach is that it requires 

several scans of the database to check the support of the 

candidates and the use of a breath-first search technique for 

the candidate generation, leading to high memory 

consumption. SPADE is an apriori-based SPM lgorithm that 

uses a vertical id-list database format, efficient lattice search 

techniques and simple joins to discover frequent sequences. 

The search space in SPADE is represented as a lattice 

structure and it uses the notion of equivalence classes to 
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partition it. SPADE not only minimizes I/O costs by 

reducing database scans, but also minimizes computational 

costs by using efficient search schemes. PrefixSpan proposes 

a pattern-growth approach for mining frequent patterns 

without candidate generation. PrefixSpan recursively 

projects a sequence database into a set of smaller projected 

sequence databases and grows sequential patterns in each 

projected database by exploring only locally frequent 

fragments. SPAM is an apriori-based candidate generation 

and pruning approach that uses a vertical bitmap data 

structure representation of database which is similar to the 

id-list of SPADE. CloSpan discovers only frequent closed 

subsequences, i.e., those containing no super-sequences with 

user specified minsup, instead of mining the complete set of 

frequent subsequences. ClaSP algorithm mines frequent 

closed sequential patterns in temporal transaction data. It 

employs a vertical database format strategy inspired by the 

SPADE algorithm and uses a heuristic to prune non-closed 

sequences inspired by the CloSpan algorithm. A crucial 

performance bottleneck of vertical algorithms such as 

SPADE, SPAM, ClaSP is that they use a generate-candidate-

and-test approach that can generate a large amount of 

infrequent candidates. To address this issue, a generic 

candidate pruning mechanism based on the item co-

occurrences is proposed in [8] using a new structure named 

CMAP (Co-occurrence MAP) for storing co-occurrence 

information. This pruning mechanism is integrated into three 

state-of-the-art algorithms ClaSP, SPADE and SPAM and 

the resulting algorithms are renamed as CM-ClaSP, CM-

SPADE and CM-SPAM. 

All the existing and most commonly used sequential 

pattern mining approaches are based on the support model 

which uses single minimum support(minsup) threshold for 

the entire database with the implicit assumption that all items 

in the data are of the same nature and/or have similar 

frequencies in the data. This is often not observed in many 

of the real-life applications where some items may appear 

very frequently in the data, while others may rarely appear. 

This leads to the dilemma which is termed in the literature as 

rare item problem [9] wherein infrequent or rare items will 

not be extracted if the minsup threshold is set to a very high 

value.  Further, setting the minsup threshold to a very low 

value to retrieve rare items may cause combinatorial 

explosion due to the association of frequent items with one 

another in all possible ways and many of these will be 

meaningless. It is evident that using a single minsup for the 

whole database is inadequate as it cannot capture the 

inherent natures and frequency differences of the items in the 

database. In order to tackle this problem, some adhoc and 

approximate approaches [10][11][12] were proposed without 

much progress. The approaches should be based on the fact 

that different rules may need to satisfy different minimum 

supports depending on the type of items involved. Hence, 

the judicious selection of SPM approaches and minsup 
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values becomes a challenge with the variety of datasets 

pertaining to various application domains. 

This paper presents the domain specific performance 

analysis of the most commonly used sequential pattern 

mining approaches on real-life datasets. In this work, we 

considered nine most commonly used SPM approaches and 

eight real-life datasets having varied characteristics and 

representing five different domains - web click stream, text 

from books, sign language utterances, protein sequences and 

Retail data from Supermarket.  

The rest of the paper is organized as follows. Section II 

presents the motivation and proposed work. The 

performance evaluation of eight Sequential pattern mining 

approaches on nine real-life datasets are presented in results 

and discussion Section III, followed by concluding remarks 

in section IV.  

II. MOTIVATION AND PROPOSED WORK 

Most of the Sequential Pattern Mining algorithms 

developed consider only the IBM Synthetic Benchmarks to 

compare their performance with other previously reported 

approaches without considering the real-life datasets. 

Moreover, there has been no performance evaluation 

reported using Real-life datasets drawn from various 

application domains in order to determine which particular 

approach best suits the given application domain based on 

performance measures such as total Execution time and 

maximum memory utilized for retrieving maximum number 

of frequent sequential patterns over a variation in minsup 

threshold values. 

It is to be further noted that there are several application 

domains which require sequential patterns appearing 

infrequently but they are important to be considered which 

can be captured with lower thresholds i.e., with lower 

minsup. They are ample number of application domains 

which need sequential patterns which appear most frequently 

which can be retrieved from the datasets with higher 

thresholds, i.e. higher minsup. There are large number of 

application domains which require frequent sequence 

patterns within a certain allowable range of minsup 

thresholds. Moreover, shorter and longer sequences are also 

important to be considered in many of the application 

domains. In most of the cases, these sequences are missed 

out due to the selection of minsup threshold values normally 

in the middle of the threshold range.  

For example, a pharmaceutical store requires information 

on infrequent sequential patterns, frequent sequential 

patterns and most frequent sequential patterns most of the 

time. This is a critical support system for health care unit 

which need to keep track of the medicines considering these 

sequential patterns and stock them accordingly so that 

patients need may be satisfied instantaneously. Whereas for 

a Retail Industry or supermarket, frequent sequential 

patterns and most frequent sequential patterns are the most 

important items to be considered to stock up in large 

numbers to satisfy the immediate needs of the customers. 

Hence, it is required to develop a framework for mining 

sequential patterns in accordance with various application 

domain needs and to provide certain guidelines for selecting 

suitable approach that suits the given application domain. In 

order to provide a general framework taking into account the 

above discussed issues, it is required to carry out domain 

specific performance analysis of the most commonly used 

SPM approaches with the main objective of analyzing the 

behavior of these algorithms on the real-life datasets which 

represent characteristics of truly real-life situations rather 

than the synthetic ones. In this work, we carried out 

performance evaluation of the nine popular SPM approaches 

-  GSP, SPADE, SPAM, PrefixSpan, CloSpan, ClaSP, CM-

SPADE, CM-SPAM, CM-ClaSp on eight real-life datasets 

having varied characteristics and representing five different 

domains - web click stream, text from books, sign language 

utterances, protein sequences and Retail data from 

Supermarket. Performance metrics used in this study are 

Total execution Time taken and Main Memory utilized by 

each of the algorithm in retrieving maximum number of 

frequent sequential patterns. The other parameter considered 

in this work is the rate of decay of frequent sequential 

patterns over a wider variation of minsup threshold. 

The interesting aspect of this study is to determine the 

algorithm which best suits a particular scenario by 

considering the following three situations requiring: 
a) Strict Time Constraints (with no Memory Constraint) 

b) Strict Memory Constraints (with no Time Constraint) 

c) Moderate Time & Memory Constraints  

Depending on the nature and demands of various 

applications and scenarios, most suitable algorithm may be 

selected which best suits that particular situation. Moreover, 

the outcomes of this study can be used to provide certain 

guidelines in building efficient recommendation System for 

judicious selection of algorithm(s) and minsup values for a 

given application domain considering the nature of the 

applications and characteristics of the involved Data Sets. 

Second interesting aspect of this study is to analyze the 

count and length of the frequent sequence patterns generated 

and the decay i.e., rate of decrease in the occurrence of these 

frequent sequential patterns over the variation in minsup 

threshold from low to high values. This study not only 

throws some light on the amount of frequent sequential 

patterns generated but also on the length of the sequential 

patterns identified with the variation of minsup from low to a 

high value. This would also give an insight into the kind of 

sequential patterns one would be interested to look for over 

a range of minsup threshold values. 

 Third interesting aspect is that this study can also be 

used to design and implement an improved & efficient 

algorithm taking into consideration the nature of the 

application domains, the characteristics of the datasets in the 

domain and behavior of the existing algorithms on these 

patterns/datasets. 

III. RESULTS AND DISCUSSION  

In this section, we present the extensive experiments 

carried out to assess the performance of the GSP, SPADE, 

SPAM, PrefixSpan, CloSpan, ClaSP, CM-SPADE, CM-

SPAM, CM-ClaSp algorithms. For this study, we have used 

the SPMF platform which is an open source data mining 

platform written in Java maintained by P. Fournier Viger 

[13]. All algorithms were implemented in Java. Experiments 

were performed on a system with Core i7 processor with 8 

GB RAM running Windows 7. All memory measurements 

were done using the Java API. Experiments were carried out 

on eight real-life datasets having varied characteristics and 

representing five different types domains - web click stream, 
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text from books, sign language utterances, protein sequences 

and Retail data from Supermarket. Those real-life datasets 

are Kosarak (Web Click-Stream domain), Leviathan (Book 

(Novel) domain), Sign (Sign Language Utterance Domain), 

FIFA(Web Click-Stream Domain), Snake(Protein Sequences 

Domain), Bible(Book Conversion Domain), MSNBC (Web 

Click Stream Domain) & Retail (Super market Domain).  

A. Performance Evaluation – Total execution Time and 

Main Memory Utilized 

In this section, we present the results on the total 

execution time taken and maximum memory consumed by 

the nine SPM algorithms on the eight data sets by varying 

the minimum support from low value to high value. This 

variation was done to analyze the behavior of these nine 

algorithms in finding out the sequential patterns over the 

minsup variations and their computational time and 

maximum Memory requirements in generating the required 

sequences for a given minsup threshold. Due to the paucity 

of space, we have included in this section the figures 

depicting Total Execution Time vs minsup plots, Max. 

Memory vs. minsup plots and Performance comparison 

tables for only six selected datasets -  Kosarak, Leviathan, 

Sign, Bible, snake & Retail representative of six application 

domains. For the remaining datasets, we have presented only 

the performance results. Figures 1 to 12 show the graphs 

plotted by considering total execution time taken and 

maximum memory required by GSP, SPADE, SPAM,   

PrefixSpan, CloSpan, CM-SPADE, CM-SPAM, CM-ClaSP 

and ClaSP algorithms for generating sequential patterns 

from Kosarak, Leviathan, Sign, Bible, Snake and  Retail 

datasets with respect to variations in minsup threshold.  

Kosarak dataset  (Web click-stream) : It is evident  from 

the figs. 1 & 2 that GSP performance is extremely poor 

when both Total Execution Time and Main Memory usage 

are considered for minsup threshold value  of 1. Since GSP 

performs poorly, it is compared with all other algorithms and 

the results are presented in the table I. SPADE takes least 

execution time and it is 78.69 (TFT) times faster than GSP. 

Further, CloSpan performs very well when only Max. 

memory requirement is considered. It requires 

78.96%(PLM) less memory when compared to poor 

performing GSP algorithm.  

 

 
Fig 1.   Kosarak Dataset-Total Execution Time vs  minsup 

 
Fig 2.   Kosarak Dataset- Max. Memory vs  minsup 

 
Table I: Kosarak : Comparison of  Execution Time & Max Memory Usage 

0 

                        KOSARAK   DATASET            when minsup=1 

Execution Time Max Memory Required 

Algorithm 

compared with 

GSP 

TFT 

(Times 

faster than) 

GSP 

Algorithm 

compared 

with GSP 

PLM  (%age of 

less memory) 

required when 

compared to GSP 

CM-SPADE 78.69 CloSpan 78.96 

SPADE 47.21 PrefixSpan 73.53 

CM-ClaSP 33.72 ClaSP 68.22 

PrefixSpan 26.23 CM-SPAM 63.09 

CM-SPAM 21.46 SPAM 60.32 

ClaSP 19.14 CM-ClaSP 57.93 

CloSpan 12.00 SPADE 20.94 

SPAM 9.70 CM-SPADE 15.76 

 

 
Fig 3   Leviathan Dataset-Execution Time vs  minsup 

 

 
Fig 4. Leviathan Dataset- Max. Memory vs  minsup 
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Leviathan dataset(Book - Novel): It is clear from figs. 3 & 

4 that PrefixSpan performance is poor when both Total 

Execution Time and Main Memory usage are considered for 

minsup threshold value  of 1. As seen in Table II, SPADE 

takes least execution time and it is 34.61 (TFT) times faster 

than PrefixSpan. Further, CloSpan performs very well when 

only Max. memory requirement is considered. It requires 

80.19%(PLM) less memory when compared to poor 

performing  PrefixSpan algorithm. 
 

Table II-Leviathan :Comparison of  Execution Time & Main Memory Usage 

LEVIATHAN DATASET            when minsup=1 

Execution Time Max. Memory Required 

Algorithm 

compared 

with 

PrefixSpan 

TFT (Times 

faster than) 

PrefixSpan 

Algorithm 

compared 

with 

PrefixSpan 

PLM (%age of less 

memory) required 

when compared to 

PrefixSpan 

SPADE 34.61 CloSpan 80.19 

CM-SPADE 34.58 CM-ClaSP 67.05 

CM-ClaSP 27.45 ClaSP 66.37 

ClaSP 19.71 SPAM 64.42 

SPAM 10.28 CM-SPADE 58.35 

CM-SPAM 10.20 CM-SPAM 52.43 

CloSpan 5.75 SPADE 33.88 

GSP 1.20 GSP 3.19 

Sign dataset (Sign-Language Utterance): It is seen from 

figs. 5 & 6 that GSP performance is extremely poor when 

Total Execution Time is considered and ClaSP performs 

poorly as far as Max Memory usage is considered for 

minsup threshold value of 1. As evident in Table III, SPADE 

takes least execution time and it is 13.45 times faster than 

GSP.  

 
Fig 5.  Sign Dataset-Total Execution Time vs  minsup 

 
Fig 6. Sign Dataset- Max. Memory vs  minsup 

Further, SPADE performs very well when only Max. 

memory requirement is considered. It requires 89.77% less 

memory when compared to poor performing ClaSP 

algorithm. 

 
Table III - Sign: Comparison of  Execution Time & Main Memory Usage 

                    SIGN  Data Set                      when minsup=5 

Execution Time Main Memory Usage 

Algorithm 

compared with 

GSP 

TFT(Times 

faster than) 

GSP 

Algorithm 

compared 

with ClaSP 

PLM(%age of less 

memory) required 

when compared to 

ClaSP 

SPADE 13.45 SPADE 89.77 

CM-SPADE 13.24 CM-SPADE 84.43 

SPAM 2.08 CloSpan 68.91 

PrefixScan 1.67 GSP 64.05 

CloSpan 1.66 CM-SPAM 54.83 

CM-ClaSP 1.43 SPAM 54.35 

CM-SPAM 1.11 PrefixSpan 52.41 

ClaSP 1.06 CM-ClaSP 0.97 
 

 

Snake dataset (Protein Sequences): It is interesting to note 

from figs. 7 & 8 that all algorithms fail for variation of 

minsup value below 40 due to insufficient memory. 

PrefixScan performance is extremely poor when both Total 

Execution Time and Main Memory usage are considered for 

minsup threshold value of 40.  As seen in Table IV, CM-

SPADE takes least execution time and it is 27.61 times 

faster than PrefixScan. Further, SPADE performs very well 

when only Max. memory requirement is considered. It 

requires 61.09% less memory when compared to poor 

performing PrefixScan algorithm.  

 

 
Figure 7.  Snake Dataset-Total Execution Time vs  minsup 

 

 
Figure 8. Snake Dataset- Max. Memory vs  minsup 
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Table IV :Snake -Comparison of  Execution Time & Main Memory Usage 

SNAKE   Data Set           when minsup = 40 

Execution Time Maim Memory Usage 

Algorithm 

compared with 

PrefixScan 

Times faster 

than 

PrefixScan 

Algorithm 

compared 

with 

PrefixScan 

%age of less 

memory required 

when compared to 

PrefixScan 

CM-SPADE 27.61 SPADE 61.09 

SPADE 25.29 SPAM 19.95 

SPAM 17.21 CM-SPAM 19.94 

CM-SPAM 10.08 CM-SPADE 18.73 

GSP 1.09 GSP 17.45 

CM-ClaSP, CloSpan, ClaSP algorithms fail for variation of minsup 

from 40 to 60 due to insufficient memory 

 

 
Fig 9.  Bible  Dataset-Total Execution Time vs  minsup 

 

 
Fig 10. Bible Dataset- Max. Memory vs  minsup 

Table V-Bible:Comparison of  Execution Time & Main Memory Usage 

           BIBLE Data Set         when minsup =1 

Execution Time Maim Memory Usage 

Algorithm 

compared with 

GSP 

Times 

faster 

than GSP 

Algorithm 

compared with 

CM-SPAM 

%age of less 

memory required 

when compared to 

CM-SPAM 

CM-ClaSP  129.25 CloSpan 80.01 

CM-SPAM 103.72 GSP 76.71 

ClaSP 84.49 ClaSP 75.68 

SPAM 82.61 CM-ClaSP 74.83 

CloSpan 7.03 PrefixSpan 71.98 

PrefixSpan 1.07 SPAM 51.80 

SPADE and CM-SPADE algorithms fail for all variations of 

minsup due to insufficient memory 
 

Bible (Book Conversion): It is interesting to note from figs. 

9 & 10 that SPADE & CM-SPADE algorithms fail for entire 

variation of minsup due to insufficient memory. GSP 

performance is extremely poor when Total Execution. Time 

is considered and CM-SPAM performs poorly when Max 

Memory usage is considered for minsup threshold value of 

1. As seen in the table V, CM-ClaSP takes least execution 

time and it is 129.25 times faster than GSP. Further, 

CloSpan performs extremely well when only Max. memory 

requirement is considered. It requires 80.01% less memory 

when compared to poor performing  CM-SPAM algorithm. 

 

FIFA dataset  (Web click-stream): PrefixSpan performs 

poorly  when Total Execution Time  and Max Memory 

usage are considered for minsup threshold value of 8. CM-

SPADE takes least execution time and it is 15.06 times 

faster than PrefixSpan.  Further, CloSpan performs very well 

when only Max. memory requirement is considered. It 

requires 67.58% less memory when compared to poor 

performing PrefixScan algorithm. 

 

MSNBC dataset  (Web click-stream): It is interesting to 

note that ClaSP and CM-ClaSP  algorithms fail for entire 

variation of minsup due to insufficient memory. GSP 

performance is extremely poor when Total Execution Time 

is considered and PrefixScan performs poorly when Max 

Memory usage is considered for minsup threshold value of 

1. SPADE takes least execution time and it is 1503.03 times 

faster than GSP. Further, CM-SPADE performs extremely 

well when only Max. memory requirement is considered. It 

requires 98.96% less memory when compared to poor 

performing  PrefixScan algorithm. 

  

 
Figure 11. Retail Dataset  -Total Execution Time vs  minsup 

 

 
Fig 12. Retail Dataset- Max. Memory vs  minsup 

Retail dataset (Belgian Retail Store): It is evident from 

figs. 11 & 12 that CM-SPAM performance is poor when 
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Total Execution Time is considered and CM-SPADE 

performs badly when Max Memory usage is considered for 

minsup threshold value of 1. As it is evident from table VI, 

SPADE takes least execution time and it is 12.54 times 

faster than CM-SPAM. Further, PrefixScan performs 

extremely well when only Max. memory requirement is 

considered. It requires 92.53% less memory when compared 

to poor performing CM-SPADE algorithm. 
 

Table VI-Retail: Comparison of  Execution Time & Main Memory Usage 

       RETAIL  Data Set       when minsup =1 

Execution Time Maim Memory Usage 

Algorithm 

compared with 

CM-SPAM 

TFT (Times 

faster than)       

CM-SPAM 

Algorithm 

compared with          

CM-SPADE 

PLM-%age of 

less memory 

required when 

compared to 

CM-SPADE 

SPADE 12.54 PrefixScan 92.53 

CM- SPADE 12.28 CloSpan 89.75 

CM-ClaSP 9.31 GSP 84.92 

ClaSP 7.4 ClaSP 84.38 

GSP 4.65 CM-ClaSP 83.76 

CloSpan 3.70 SPAM 73.60 

PrefixScan 3.09 CM-SPAM 69.27 

SPAM 1.16 SPADE 6.51 

B. Frequent Sequential Pattern count and Sequence Length 

In this section, we present the results of the study 

performed to assess the influence of variation in the minsup 

threshold on the Frequent Sequential Patterns(FSPs) 

retrieved from the eight datasets by the nine most popular 

data mining algorithms. This study not only throws some 

light on the amount of FSPs generated but also on the length 

of the sequential patterns identified with the variation of 

minsup from low to a high value. This would also give an 

insight into the kind of sequential patterns one would be 

interested to look for over a range of minsup threshold 

values.  

Table VII -  Frequent Sequence Length & corresponding  Sequence Count 
FS

L 

Kosarak 

373 

FSP 

Count 

FIFA 

117738 

FSP 

Count 

Retail 

363 

FSP 

Count 

FS

L 

MSNBC 

45503 

FSP 

Count   

Snake 

13133171 

FSP  

Count 

1 56 132 54 1 17 20 

2 134 1187 120 2 241 351 

3 122 11397 133 3 2449 4601 

4 52 12627 47 4 8701 26567 

5 9 88189 9 5 11624 130632 

6 - 4206 - 6 9296 261149 

FS

L 

Leviathan 

167189 

FSP 

Count 

Bible 

23308 

FSP 

Count 

Sign 

944486 

FSP 

Count 

7 5789 2180129 

8 3124 2572713 

9 1876 4517459 

1 345 239 151 10 1307 2322552 

2 4243 1708 8382 11  765 1022667 

3 18738 3958 65058 12 282 30198 

4 38480 4970 158724 13 30 7956 

5 43922 4292 230061 14 2 31243 

6 33194 3170 232494 15 - 18600 

7 18173 2457 158071 16 - 4710 

8 7433 1688 69388 17 - 1508 

9 2222 717 18994 18 - 112 

10 414 104 2942 19 - 4 

11 25 5 216 FSL – Frequent Sequence Length 

FSP- Frequent Sequential Pattern 12 - - 5 

The table VII shows the count of FSPs of different lengths 

retrieved from eight datasets by the SPM approaches when 

the minsup threshold value is at the least minimum. As seen 

in table VII, SPM approaches extracted 373 FSPs having 

upto 5-length patterns from Kosarak dataset when minsup=1, 

from Bible dataset 23308 FSPs having upto 11-length 

patterns when minsup=1, from MSNBC dataset 45503 FSPs 

having upto 14-length patterns when minsup=1, from Retail 

dataset 363 FSPs having upto 5-length patterns when 

minsup=1, from Leviathan dataset  167189 FSPs consisting 

upto 11-length patterns when minsup=1, from sign dataset 

when minsup=5, algorithms generate 944486 FSPs  

comprising upto 12-length patterns, from FIFA dataset 

117738 FSPs having upto  6-length patterns when minsup=8, 

and from Snake dataset 13133171  FSPs   comprising  upto 

19-length sequences when minsup=40. 

Considering the Frequent Sequence Count decay over 

minsup variation as depicted in figure 13, it is to be noted 

that Kosarak, Leviathan, Bible, MSNBC, Retail datasets 

show almost similar trend of sudden(sharp) decrease in the 

occurrence of Frequent Sequential patterns when minsup is 

varied from 1 to 2.  

 
Fig 13. KBMR  FSC Decay over minsup variation 

 
Fig 14.  LSF  FSC Decay over minsup variation 

 

For instance, rate of decrease of Frequent Sequent Count 

is 67.56% in Kosarak, 79.64% in Leviathan, 77.29% in 

Bible, 78.67% in MSNBC and 68.32% in Retail datasets 

when minsup is changed to 2. This trend continues till 

further as it is evident from the figure when minsup is 

increased to 5, most of the higher length frequent sequences 

vanish. For instance, when minsup is increased to 5, 91.69% 

of the FSPs disappear in the case of Kosarak dataset, 

97.71% in the case of Leviathan, 96.68% in the case of 

Bible, 96.80% in the case of MSNBC and 91.46% in the 
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case of Retail dataset. For variation of minsup beyond 5, less 

than 10% or even much less (below 5%) of the FSPs exist. 

As shown in figure 14, the datasets having larger length 

FSPs like Sign, FIFA and Snake, the rate of decrease of the 

FSPs is somewhat slower. For instance, 41.27% of the FSPs 

vanish in the case of Sign Dataset when minsup is varied 

from 5 to 6, 41.85% in the case of FIFA when minsup varied 

from 8 to 9, 55.19% in the case of Snake Dataset when 

minsup is changed from 40 to 45. Further, substantial 

amount of higher length patterns exist over a wide variation 

of misup threshold. 

 This study draws the conclusion that largest length FSPs 

appear only when minsup threshold is at its least minimum 

value for all datasets and remain live only for a very short 

variation of minsup. It is also observed that in some of the 

datasets with larger length FSPs, substantial amount of 

higher length patterns remain live over a wider variation of 

misup threshold. 

C. Recommendation  

The detailed analysis presented in subsections A & B of 

Section III provides sufficient guidelines to build a 

recommendation system for selection of appropriate 

algorithm and minsup for a given application domain. The 

recommended algorithms for the eight datasets based on the 

performance results are given in table VIII. It has been 

found that SPADE and CM-SPADE outperform all other 

algorithms in most of the Domains as far as the total 

execution time is concerned.  It is interesting to note that for 

Bible Dataset from Book(Conversion) domain, CM-ClaSP is 

the preferred approach when least total execution time is 

considered. Further, when we consider only minimum 

memory usage, CloSpan fairs extremely well for datasets 

(Kosarak, FIFA, Bible, Leviathan)  from domains Webclick 

Streams, Book(Conversion), and Book(Novel). For datasets 

from Sign language utterance and Protein Sequences, 

SPADE is the recommended approach and PrefixScan is the 

ultimate choice for Retail dataset from Super Market domain 

as far as the least memory usage is considered. 

 
Table VIII:  Recommended algorithms for various domains 

Datasets Domain Selected Algorithm based on  

least 

execution 

time 

Min 

memory 

utilized 

Both Execution time 

& Memory 

Kosarak Web Click-

Stream 

CM-SPADE CloSpan CM-ClaSP, 

PrefixSpan 

Leviathan Book (Novel) SPADE CloSpan CM-SPADE, 

CM-ClaSP 

Sign Sign Language 

Utterance 

SPADE SPADE SPADE, CM-SPADE 

FIFA Web Click-

Stream 

CM-SPADE CloSpan CM-SPADE, SPADE 

Snake Protein 

Sequences 

CM-SPADE SPADE CM-SPADE, SPADE 

Bible Book(Convers

ion) 

CM-ClaSP CloSpan CM-ClaSP, ClaSP 

MSNBC Web Click-

Stream 

SPADE CM-SPADE SPADE, CM-SPADE 

Retail Super Market    SPADE PrefixScan CM-ClaSP, ClaSP 

 

This study also recommends to consider a range of 

minsup threshold values for retrieving longer sequences 

from the datasets so that interesting sequences can be 

captured within the specified window at the lower spectrum 

of minsup threshold variations instead of using a single 

minsup value. 

IV. CONCLUSION 

In this paper, we presented our experimental study to 

evaluate the performance of most popular nine sequential 

pattern mining algorithms on eight real data sets representing 

different application domains. In these experiments, we 

varied the minsup threshold from lower values to higher 

values in order to study the behavior of these algorithms in 

retrieving the sequential patterns from different datasets. 

Also this study was extended to assess the influence of 

variation in the minsup threshold on the amount of frequent 

sequential patterns generated and on the length of the 

sequential patterns identified. This work provided an insight 

into the kind of sequential patterns one would be interested 

to look for over a range of minsup threshold values.  

As a future work, this study can be extended to cover all 

the Application domains and the  findings of this detailed 

study can be used in building efficient recommendation 

System for judicious selection of algorithm(s) and minsup 

values for any given application domain considering the 

nature of the applications and characteristics of the involved 

Data Sets. Further, this study can also be used to design and 

implement an improved & efficient algorithm which takes 

into consideration the nature of the application domains, the 

characteristics of the datasets in the domains and behavior of 

the existing algorithms on these patterns/datasets. 
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