
 
 

Abstract—This work is concerned with the study of vibrations 
induced by a laser beam in the context of different theories of 
magneto thermoelasticity of an infinitely long solid conducting 
circular cylinder. The temporal profile of the laser beam is 
considered as non-Gaussian. The cylinder is considered to be 
made of an isotropic homogeneous thermoelastic material put 
in a uniform magnetic field in the direction of the axis. Laplace 
transform techniques are used to derive the solution in the 
Laplace transform domain. The inversion process is carried 
out using a numerical method based on Fourier series 
expansions. The temperature, displacement, stresses, induced 
magnetic field and induced electric field are calculated 
numerically then represent the result by graphs. 

 
Keywords— Magneto Thermoelasticity; Coupled 
Thermoelasticity; Generalized Thermoelasticity; Non-Gaussian 
Laser Pulse 

I. INTRODUCTION 

 The dynamical interactions between the thermal and 
mechanical fields in solids are important due to its many 
applications in the field of geophysics plasma physics and 
related topics, especially in the nuclear field and high speed 
particle accelerators. The theory of generalized 
thermoelasticity with one relaxation time was introduced by 
Lord and Shulman [1]. In this theory Cattaneo -Maxwell law 
of heat conduction replaces the conventional Fourier’s law. 
The heat equation associated with this theory is a hyperbolic 
one and hence automatically eliminates the paradox of 
infinite speeds of propagation inherent in both the 
uncoupled and the coupled theories of thermoelasticity. For 
many problems involving steep heat gradients and when 
short time effects are sought this theory is indispensable. 
Sherief and El-Maghraby solved some crack problems for 
this theory [2-3]. Sherief and Hamza has obtained the 
solution of axisymmetric problems in spherical regions in 
[4] and in cylindrical regions in [5]. Sherief and Ezzat have 
obtained the solution in the form of series in [6]. Sherief and 
Dhaliwal used asymptotic expansions to obtain the solution 
of a 1D problem and to find the locations of the wave fronts 
and the speed of propagation of thermoelastic waves in [7]. 
This theory was extended to deal with micropolarity of the 
medium in [8], viscoelastic effects in [9]. Other works in the 
subject are [10-12]. 
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Increasing attention is being devoted to the interaction 
between magnetic fields and strain in a thermoelastic solid 
due to its many applications. Usually, in these investigations 
the heat equation under consideration is taken as the 
uncoupled or the coupled equation, not the generalized one. 
This attitude is justified in some situations where the 
solutions obtained using any of these equations differ little 
quantitatively. However, when short time effects are 
considered, the full, generalized system of equations has to 
be used or a great deal of accuracy is lost [1]. Among the 
authors who considered the generalized magneto-
thermoelastic equations are Nayfeh and Nemat-Nasser [13] 
who studied the propagation of plane waves in a solid under 
the influence of an electromagnetic field. They have 
obtained the governing equations in the general case and the 
solution for some particular cases. Sherief and Khader [14] 
studied Propagation of discontinuities in electromagneto 
generalized thermoelasticity in cylindrical regions. They 
calculate the speed of waves. 
 Green and Lindsay [15] developed the theory of 
generalized thermoelasticity with two relaxation times, 
based on a generalized inequality of thermodynamics. In this 
theory both the equations of motion and of heat conduction 
are hyperbolic. The heat conduction law is the same as 
Fourier’s law when the system has a centre of symmetry. 
Among the contributions to this theory are the works in [16-
17]. 
 Green and Nagdhi [18-20] have formulated a new model 
of thermoelasticity. This model predicts that the internal rate 
of production of entropy is identically zero, i.e., there is no 
dissipation of thermal energy. This theory (GN theory) is 
known as thermoelasticity without energy dissipation 
theory. In the development of this theory the thermal 
displacement gradient is considered as a constitutive 
variable, whereas in the conventional development of a 
thermoelasticity theory, the temperature gradient is taken as 
a constitutive variable [12]. A couple of uniqueness 
theorems have been proved in [21-22], and one-dimensional 
waves in a half-space and in an unbounded body have been 
studied in [23-25]. 
 

II.    Formulation of the Problem 

A. Basic Equations 

  Let (r, φ, z) be cylindrical polar coordinates with the z-
axis coinciding with the axis of a solid infinitely long elastic 
circular cylinder of a homogenous, isotropic material of 
radius a having finite conductivity at a uniform temperature 
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T0. The surface of the cylinder is assumed to be traction 
free. A constant magnetic field of strength H0 acts in the 
direction of the z-axis. This produces an induced magnetic 
field h and an induced electric field E. Because of the 
cylindrical symmetry of the problem, all the electro-
magnetic quantities satisfy Maxwell’s equations. 
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where J is the electric current density. ε0 and μ0 are the 
electric and magnetic permeability's, respectively and B, D 
are the magnetic and electric induction vectors, respectively. 

Ohm’s law for moving media states that 
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where σ0 is the electric conductivity and u is the 
displacement vector. This equation can be literalized by 
neglecting small quantities of the second order giving 














 0H
u

EJ
t

μσo 0
. (5) 

The basic equations represented by (CTE), (L-S) and (G-L) 
can be formulated in the following unified system: 

The equations of motion have the form 
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The equation of heat conduction has the form 
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The components of the stress tensor σij are given by 
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Where λ and μ are Lamé’s modulii, T is the absolute 
temperature of the medium, and γ is a material constant 
given by γ = (3λ + 2μ) αt where αt is the coefficient of linear 
thermal expansion, T0 is a reference temperature assumed to 
be such that │( T-T0 ) / T0 │<<1. k is the thermal 
conductivity of the medium, cE is the specific heat at 
constant strain, τ1, τ2 are the relaxation times and Q the 
external heat flux. ρ is the density and F is the Lorentz force 
given by  

B JF     

0,)( 00  zr FFhHJF  . 

From equations (6)-(8)  

1- At 021   the equations reduce to coupled 

thermoelasticity (CTE).  

2- At 0,0,1 21  n , the equations reduce to 

Lord-Shulman (L-S) model. 

3-  At 0,0,0 21  n , the equations reduce to 

Green-Lindsay (G-L) model. 

The applied magnetic field H0 has components 

 H0 = (0, 0, H0). 

We assume that the induced magnetic field has the 
components 

 h = (0, 0, h)  

E and J have the components 

 E = (0, E, 0)               and     J = (0, J, 0) 

Equations (1), (2) and (5) give 
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Eliminating J between equations (9) and (11), we obtain 
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Eliminating E between equations (10) and (12), we get 
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where 2 is Laplace’s operator given by 
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The displacement u has components 

 u = (u(r, t), 0, 0). 

This displacement field will produce the following strain 
components 
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The cubic dilatation e is thus given by 
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Applying the div operator to both sides of equation (6), we 
obtain 
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The equation of heat conduction reduce the form 
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The equation of the stress tensor given by 
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Let the medium is heated uniformly by a laser pulse with 
non-Gaussian form temporal profile [18] as 
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Where tp is a characteristic time (measured by picoseconds) 
of the laser-pulse (the time duration of a laser pulse), L0 is 
the laser intensity which is defined as the total energy 
carried by a laser pulse per unit area of the laser beam. The 
conduction heat transfer in the medium can be modeled as 
one-dimensional problem with an energy source Q(r, t) near 
the surface, i.e. 
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Where δ1 is the absorption depth of heating energy and Ra 
is the surface reflectivity [10]. Note that the laser pulse may 
lie on the surface of the medium (r = 0) see figure 1. In this 
case, the energy source takes the form 
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B. Solution the Problem 

 Let us introduce the following non-dimension variables 
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The governing equations (10), (13), (16), (17) and (18) in 
non-dimensional form become (dropping the asterisks for 
convenience) 
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C. Solution in the Laplace Transform Domain 

 Applying the Laplace transform with parameter s 
defined by the relation  
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to both sides of equations (19)-( 23), we obtain 
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Eliminating h , e  from equations (25), (26), and (27), we get 

      QsVscba ))(()( 2
23246    (29) 

where

]1)1()1)1(([ 211
2

2121   sVsnssa , 

  
 







211
2

2
2

22

2
211

22
21

2
21

22

)1(1)1( )(          

))(1()1()1(

sVV

VnssVVsVnssb

))(1( 2
2

2
2

4   VsVssc . 

In a similar manner we can show that e , h  satisfy the 
equations 

0)( 246  hcba , (30) 

0)( 246  ecba . (31) 

The solutions of equations (29)-(31) bounded for r = 0 have 
the forms 

Fig.  1. Temporal of laser power L/L0  
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where 2
3

2
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2
1 , kandkk are the roots with positive real parts of 

the characteristic equation: 

0246  cbkakk , (35) 

and 0I is the modified Bessel function of the first kind of 

order zero. 

Substituting from equations (33) and (34) into equations 
(25) and (27), we get 
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where  
2sV . 

Substituting from equations (36) and (37) into equations 
(33) and (34), we get 
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From equations (24) and (39), we obtain 
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From equations (15) and (32), we get 





3

1
1 )(

i
i

i

i rkI
k

A
u   (41) 
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 The induced fields E0 and h0 in the free space 
surrounding the cylinder satisfy the following equations 
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Eliminating 0E  between equations (2.43) and (2.44), we get 
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The solution of equation (2.45) which is bounded at infinity 
is given by 
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where A4(s) is some parameter depending on s only and K0 
is the modified Bessel function of the second kind of order 
zero. 

Substituting from equation (46) into equation (43), we 
obtain 

)(
)(

1
4

0 sVrK
V

sA
E  .  (47) 

The boundary conditions of the problem can be written as: 
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where a is the reduce of the cylinder . Taking the Laplace 
transform of both sides of the preceding equations, we 
obtain 
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 Applying the boundary conditions, we obtain the 
following system of linear equations in the unknown 
parameters A1, A2, A3, and A4. 
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Solve equations (50)-(53) to find A1, A2, A3 and A4. 

D. Inversion of the Laplace Transform 

 We shall now outline the method used to invert the 
Laplace transforms in the above equations. Let   be the 
Laplace transform of a function f (r, t). The inversion 
formula for Laplace transforms can be written as [26] 
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where d is an arbitrary real number greater than all the real 
parts of the singularities of .Taking s = d + i y, the above 
integral takes the form 
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Expanding the function h(r, t) = exp( dt) f(r, t) in a Fourier 
series in the interval [0,2L], we obtain the approximate 
formula [27] 
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The discrimination error, ED, can be made arbitrarily small 
by choosing d large enough [27] 

 As the infinite series in (54) can only be summed 
up to a finite number N of terms, the approximate value of 
f(r, t) becomes 
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Using the above formula to evaluate f(r, t) we introduce a 
truncation error ET that must be added to the discrimination 
error to produce the total approximation error. 

 Two methods are used to reduce the total error. 
First, the `Korrecktur` method is used to reduce the 
discrimination error. Next, the ε algorithm is used to reduce 
the truncation error and therefore to accelerate convergence. 

The Korrecktur method uses the following formula to 
evaluate the function f(r, t)  

f(r, t)= f∞ ( r, t) e 2dL f∞ ( r, 2L+ t) + E`D  ,  

where the discrimination error   [27] 

Thus, the approximate value of f(r, t) becomes 

fNK(r, t) = fN(r, t)   e 2dL fN`( r, 2L+t) .                   (57) 

N` is an integer such that N` < N. 

 We shall now describe the ε algorithm that is used 
to accelerate the convergence of the series in (54). Let N be 
an odd natural number and let 
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It can be shown that [27] the sequence 

........,13111 ........,,........., N  

Converges to f(r, t) + ED - C0/2 faster than the sequence of 
partial sums 

 sm     ,    m =1,2,3, ...  . 

 The actual procedure used to invert the Laplace 
Transforms consists of using equation (57) together with the 
ε-algorithm. The values of d and L are chosen according the 
criteria outlined in [27]. 

E. Numerical Results and Discussion 

 We shall apply our results to the copper material. The 
material properties are  
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All field quantities temperature, displacement, stress, 
induced magnetic field and induced electric field are 
depended on t, r only.  The problem was solved for one 
value of time namely t = 0.1 The graphs for the temperature, 
displacement, stress, induced magnetic field and induced 
electric field are shown in figures (2-6), respectively. Dotted 
lines represent the solution for coupled thermoelasticity 
(CTE), dashed lines represent the solution for Green-
Lindsay (G-L) model and solid lines represent the case 
Lord-Shulman (L-S) model. 

 

 

 Fig.  4. Stresses Distribution  

Fig.  3. Displacement Distribution  

Fig.  2. Temperature Distribution  
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 In the coupled thermoelasticity (CTE) we 
put 1,021  n  , in Green-Lindsay (G-L) model 

put 0,02.0,01.0 21  n , in Lord-Shulman (L-S) model 

put 1,02.0,0 21  n . In figure 2 the temperature 

distribution, we observe that the curves have the same 
behavior for the three theories of thermoelasticity. There are 
starting from out surface of the cylinder r = a, the heat is 
increasing until it constant. In figure 3-4 displacement 
distribution and stress, we observe all the curves start with 
negative values of z-axes, then rapidly increase to a 
maximal positive value and there after continuously 
decrease to zero value. In figure 5 the induced magnetic 
filed is the direction of the negative value of z-axes, the 
value of induced magnetic field is change between inside 
and out side of the cylinder. In figure 6 the value of induced 
electric filed is zero at r = 0, and it will increase inside and 
outside the cylinder until it becomes zero.  
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Fig.  6. Induced electric field  

Fig.  5. Induced magnetic field  
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