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Abstract—In this paper, an efficient direct method based on
Legendre wavelets is introduced to approximate the solution
of Fredholm integral equations of the first kind. These basic
functions are orthonormal and have compact support. The
properties of the Legendre wavelets are utilized to convert the
integral equations into a system of linear algebraic equations.
The main characteristic of the method is low cost of setting
up the equations without using any projection method. Fur-
thermore an estimation of error bound for the present method
is proved. Finally, some numerical examples are provided to
demonstrate the applicability and accuracy of the proposed
technique.

Index Terms—Fredholm integral equation of the first kind,
Legendre wavelets, Direct method, Error bound.

I. INTRODUCTION

INTEGRAL equation has been one of the essential tools
for various areas of applied mathematics. Integral equa-

tions are widely involved in many scientific and engineering
problems [1], [2], [3]. Fredholm integral equation of the
first kind is one of the inverse problem that arise in many
physical models and engineering fields, such as radiography,
spectroscopy, cosmic radiation and image processing.
In this paper, we consider Fredholm integral equation of the
first kind of the following form∫ 1

0

k(t, s)f(s)ds = g(t), 0 ≤ t ≤ 1, (1)

where g(t) and k(t, s) are given continuous functions on
[0, 1] and [0, 1]× [0, 1], respectively, and f(t) is the solution
to be determined.
Fredholm integral equation of the first kind is one of the ill-
posed problems, and its numerical treatment is more difficult
than second kind one, which has been widely studied [4],
[5], [6], [7], [8], so, it is difficult to employ an appropriate
numerical method. Several numerical methods have been
used to approximate the solution of Eq. (1). Babolian and
Delves [9] introduced an augmented Galerkin method for
Fredholm integral equations of the first kind. In [10], compu-
tational projection methods were presented for the numerical
solution of Fredholm integral equations. Shang and Han [11]
obtained an approximate solution of these integral equations
by Legendre multi-wavelets. Also, Adibi and Assari in [12]
solved Fredholm integral equation of the first kind based on
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Chebyshev wavelet method.
Within recent years, wavelets lead to a huge number of
applications in numerical approximations. A survey of some
of their usages in various sciences can be found in [13].
The main characteristic of wavelets is their ability to convert
the given differential and integral equations to a system
of linear or nonlinear algebraic equations, which are then
solved by existing numerical methods. Legendre wavelet has
been used to solve different types of integral equations and
integro-differential equations because of its good accuracy
in approximations. An excellent survey on applications of
Legendre wavelets for solving different problems can be
found in [14], [15], [16], [17], [18].
In the present paper, we propose a direct computational
method based on Legendre wavelets to determine the so-
lution of Fredholm integral equations of the first kind. The
properties of Legendre wavelets are applied to evaluate the
unknown coefficients and find an approximate solution for
Eq. (1).
The paper is organized as follows: In Section 2, we review
the basic properties of wavelets and Legendre wavelets re-
quired for our subsequent development. Section 3 is devoted
to the derivation of a computational method to solve Eq. (1)
by using Legendre wavelets. In Section 4, we discuss the
convergence analysis and error estimation. Several examples
are given in section 5 to indicate the applicability and the
accuracy of the numerical technique.

II. WAVELETS AND THEIR PROPERTIES

Wavelets constitute a family of functions constructed from
dilation and translation of a single function called mother
wavelet. When the dilation parameter a and the translation
parameter b vary continuously, we have the following family
of continuous wavelets

ψa,b(t) = |a|− 1
2ψ

( t− b

a

)
, a, b ∈ R, a ̸= 0.

If we consider the parameters a and b as discrete values
a = a−k

0 , b = nb0a
−k
0 , where a0 > 0, b0 > 0 and n and

k are positive integers, then we have the following discrete
wavelets:

ψn,k(t) = |a0|
k
2ψ(ak0t− nb0),

where ψn,k(t) form a wavelet basis for L2(R). In particular,
when a0 = 2 and b0 = 1 then ψn,k(t) form an orthonormal
basis [13].
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A. Legendre wavelet

For any positive integer k, the Legendre wavelets are
defined on the interval [0, 1) as follows:

ψnm(t) =

{ √
m+ 1

22
k
2Lm(2kt− 2n+ 1), t ∈ [ 2n−2

2k
, 2n
2k
),

0, otherwise,

where n = 1, 2, · · · , 2k−1 and m = 0, 1, · · · ,M − 1. Here,
Lm(t) are the Legendre polynomials of order m and can be
determined by the recurrence formulae as following:

L0(t) = 1, L1(t) = t,

Lm+1(t) =
2m+ 1

m+ 1
tLm(t)− m

m+ 1
Lm−1(t),

m = 1, 2, 3, . . . .

B. Function approximation

A function f(t) ∈ L2[0, 1) may be expanded in terms of
Legendre wavelets as follows:

f(t) ≃
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t), (2)

where C and Ψ(t) are 2k−1M × 1 vectors given by

C = [c10, c11, . . . , c1(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T ,

Ψ(t) = [ψ10(t), . . . , ψ1(M−1)(t), ψ20(t), . . . , ψ2(M−1)(t),

. . . , ψ2k−10(t), . . . , ψ2k−1(M−1)(t)]
T .

In Eq. (2), the wavelet coefficients are determined by cnm =(
f(t), ψnm(t)

)
, for n = 1, 2, · · · , 2k−1, m = 0, 1, · · · , M−

1, and, (., .) denotes the inner product.
Similarly, the function k(t, s) ∈ L2([0, 1) × [0, 1)) may be
estimated as:

k(t, s) ≃ ΨT (t)KΨ(s), (3)

where K is a 2k−1M × 2k−1M matrix that

kij =
(
ψi(t),

(
k(t, s), ψj(s)

))
, i, j = 1, 2, . . . , 2k−1M.

(4)

III. THE PROPOSED NUMERICAL METHOD

In this section, we introduce a numerical method to solve
Eq. (1) by means of Legendre wavelets. For this purpose,
assume that

f(t) ≃ CTΨ(t), (5)

g(t) ≃ GTΨ(t), (6)

k(t, s) ≃ ΨT (t)KΨ(s), (7)

where K is a known 2k−1M × 2k−1M -dimensional matrix
and G is a known 2k−1M -vector. In Eq. (5), C is an
unknown 2k−1M -vector.
By substituting Eqs. (5) −(7) into Eq. (1), we get∫ 1

0

ΨT (t)KΨ(s)ΨT (s)Cds = ΨT (t)G, (8)

or

ΨT (t)K

(∫ 1

0

Ψ(s)ΨT (s)ds

)
C = ΨT (t)G. (9)

Furthermore, the integration of the cross-product of two
Legendre wavelets vectors is∫ 1

0

Ψ(t)ΨT (t)dt = I, (10)

where I is the 2k−1M identity matrix.
Using Eq. (10), Eq. (9) can be replaced by

ΨT (t)KIC = ΨT (t)G. (11)

Therefore, we have the following linear system of equations:

KC = G, (12)

by solving the linear system (12), we can find the unknown
vector C.

IV. CONVERGENCE ANALYSIS

In this section, we are concerned with the error bound
and convergence of the proposed method by the following
theorem.
Theorem. Suppose that f ∈ C

(M)

[0, 1) is a real-

valued function such that f =
2k−1∑
n=1

fn, and let Yn =

span{ψ
n0
(t), ψ

n1
(t), . . . , ψ

n(M−1)
(t)}, n = 1, 2, . . . , 2k−1.

If C
T

nΨn(t) is the best approximation to fn from Yn, where

Cn = [cn0, cn1, cn2, . . . , cn(M−1)]
T ,

Ψn(t) = [ψn0(t), ψn1(t), ψn2(t), . . . , ψn(M−1)(t)]
T ,

then f
N,M

(t) = C
T

Ψ(t) approximates f(t) with the follow-
ing error bound

∥ f(t)− fN,M (t) ∥2≤
γ

2M(k−1)M !
√
2M + 1

, (13)

where γ = max
t∈[0,1)

|f (M)

(t)|.

Proof. The Taylor expansion for the function fn(t)
is

f̃n(t) = fn

(2n− 2

2k

)
+ f ′n

(2n− 2

2k

)(
t− 2n− 2

2k

)
+ · · ·

f
(M−1)

n

(2n− 2

2k

) (t− 2n−2
2k

)M−1

(M − 1)!
,

2n− 2

2k
≤ t <

2n

2k
,

we know that

|fn(t)− f̃n(t)| ≤ |f
(M)

(η)|
(t− 2n−2

2k
)
M

M !
,

η ∈ [
2n− 2

2k
,
2n

2k
), n = 1, 2, · · · , 2k−1. (14)

Since C
T

nΨn(t) is the best approximation of fn(t) and f̃n ∈
Yn, using (14), we have∥∥∥fn(t)−C

T

nΨn(t)
∥∥∥2
2
≤

∥∥∥fn(t)− f̃n(t)
∥∥∥2
2

=

∫ 2n

2k

2n−2

2k

|fn(t)− f̃n(t)|2dt

≤
∫ 2n

2k

2n−2

2k

[f (M)

(η)(t− 2n−2
2k

)M

M !

]2
dt
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TABLE I
ABSOLUTE ERRORS FOR EXAMPLE 1

t Present method Present method Method in [12]
with k=2, M = 2 with k=2, M = 3 with k=2, m = 2

0.1 1.93× 10−7 5.37× 10−11 5.32× 10−5

0.2 9.22× 10−8 1.81× 10−11 1.37× 10−4

0.3 8.48× 10−9 3.61× 10−11 2.21× 10−4

0.4 1.09× 10−7 1.57× 10−13 3.04× 10−4

0.5 5.23× 10−8 1.70× 10−11 5.98× 10−4

0.6 3.85× 10−8 8.14× 10−12 3.80× 10−4

0.7 2.47× 10−8 2.16× 10−12 5.51× 10−4

0.8 1.09× 10−8 8.99× 10−13 7.21× 10−4

0.9 2.82× 10−9 1.06× 10−12 8.92× 10−4

≤
[ γ

M !

]2 ∫ 2n

2k

2n−2

2k

(
t− 2n− 2

2k

)2M

dt

=
[ γ

M !

]2 1

2(k−1)(2M+1)(2M + 1)
.

Now,

∥∥∥f(t)−C
T

Ψ(t)
∥∥∥2
2
≤

2k−1∑
n=1

∥∥∥fn(t)−C
T

nΨn(t)
∥∥∥2
2

≤ γ2

2(k−1)(2M)(M !)2(2M + 1)
.

By taking the square roots, we get the error estimate of
approximate f(t) with C

T

Ψ(t). Obviously, by considering
assumptions of this theorem, we infer that C

T

Ψ(t) → f(t)
as M,k are sufficiently large.

V. NUMERICAL EXAMPLES

In this section, we present several examples to approximate
the solution of Fredholm integral equations of the first kind
using numerical method described in the previous sections.
In order to demonstrate the performance of the method
and clarify the accuracy and the efficiency of the proposed
method, we compare the results of our method with the
results from some other methods. The numerical experiments
are implemented in the software Mathematica 9.

A. Example 1

Consider the following Fredholm integral equation of the
first kind:∫ 1

0

sin(ts)f(s)ds =
sin t− t cos t

t2
, 0 ≤ t ≤ 1,

with the exact solution f(t) = t. The computational results
are displayed in Table I and Fig. 1. In Table I the absolute
errors of the proposed method are compared with the results
obtained by the Chebyshev wavelet method [12]. Fig. 1
shows the exact and approximate solution for k = 2 and M
= 3.

Solid line® Exact solution

    ® Approximate solution

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. The Exact Solution and Approximate Solution for Example 1 .

TABLE II
ABSOLUTE ERRORS FOR EXAMPLE 2

t Present method Present method Method in [12]
with k=2, M = 2 with k=2, M = 3 with k=2, m = 3

0.1 2.99× 10−3 2.04× 10−4 9.37× 10−4

0.2 1.42× 10−2 2.35× 10−4 2.65× 10−5

0.3 1.66× 10−2 4.66× 10−4 1.08× 10−3

0.4 5.47× 10−3 7.97× 10−4 1.10× 10−3

0.5 6.36× 10−2 6.20× 10−3 1.25× 10−4

0.6 1.68× 10−2 6.00× 10−4 2.11× 10−3

0.7 1.16× 10−2 9.01× 10−4 2.26× 10−3

0.8 2.00× 10−2 2.16× 10−4 7.28× 10−4

0.9 6.13× 10−3 5.37× 10−4 3.83× 10−4

Solid line®Exact solution

   ®Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

Fig. 2. The Exact Solution and Approximate Solution for Example 2.

B. Example 2

As the second example, the following Fredholm integral
equation of the first kind is considered∫ 1

0

etsf(s)ds =
et+1 − 1

t+ 1
, 0 ≤ t ≤ 1.

The exact solution of this problem is f(t) = et. Table II
and Fig. 2 show the numerical results for this example.
A comparison between the absolute errors of our method
together with Chebyshev wavelet method [12] for t ∈ [0, 1)
is shown in Table II. The approximate solution (for k = 2
and M = 3) together with the exact solution are depicted in
Fig. 2.
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TABLE III
ABSOLUTE ERRORS FOR EXAMPLE 3

t Present method Present method method in [10]
with k=2, M = 2 with k=2, M = 3 with j=3

0.1 6.29× 10−3 1.94× 10−13 5.53× 10−2

0.2 1.63× 10−2 2.59× 10−14 5.09× 10−2

0.3 6.37× 10−3 6.19× 10−13 1.59× 10−1

0.4 2.35× 10−2 1.74× 10−12 3.94× 10−1

0.5 1.74× 10−2 1.25× 10−11 6.24× 10−1

0.6 1.56× 10−2 2.74× 10−12 6.14× 10−1

0.7 2.88× 10−2 2.70× 10−12 6.27× 10−1

0.8 4.80× 10−2 3.81× 10−12 3.44× 10−1

0.9 4.90× 10−3 5.60× 10−13 3.37× 10−2

Solid line ® Exact solution

® Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Fig. 3. The Exact Solution and Approximate Solution for Example 3 .

C. Example 3

Consider the following Fredholm integral equation of the
first kind:∫ 1

0

√
s2 + t2f(s)ds = g(t), 0 ≤ t ≤ 1,

where

g(t) =
1

48

(
16(t2)

3
2 + 3t4

(
log[t2]

−2 log[1 +
√

1 + t2]
)
− 2

√
1 + t2(2 + 5t2)

)
,

and with the exact solution f(t) = t(t−1). Table III and Fig.
3 show the numerical results for this example. The compari-
son results between the proposed method and Computational
projection methods [10] are tabulated in Table III. Moreover,
Fig. 3 displays the exact solution and approximate solution
with k = 2 and M = 3.
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