
A Comparative Evaluation of Core Kernel Features

of the Recent Linux, FreeBSD, Solaris and

Windows Operating Systems
Stergios Papadimitriou, Lefteris Moussiades

Abstract—The paper compares core kernel architecture and
functionality of four modern operating systems. The subsystems
examined are process / thread architecture, scheduling and
interrupt handling. Linux, Solaris and FreeBSD have a lot
of similarities, owning Unix roots, but also have some notable
differences. However, Windows is significantly different, being
a radical non-Unix design. The paper compares some aspects
of the Unix-like approaches of Linux/Solaris/FreeBSD with
Windows, emphasizing the consequences of their different
design decisions, and presents some comparative performance
results, using Java benchmarks.

Index Terms—Scheduling, process, threads, interrupts

I. INTRODUCTION

In this work we examine comparatively core subsystems of

three modern Unix-like operating systems and contrast them

with the radical non-Unix approaches of Windows. The first

one is the GNU-Linux operating system [3], [6]. The current

3.x Linux kernel incorporates many advanced features [4],

[5] and stands well compared to the also state of the art

Solaris 11 kernel [1], [2], [7] and the FreeBSD kernel [11].

Also, some aspects of modern Windows (Windows 7) [10]

are compared with Unix designs.

The subsystems examined are process and thread structure,

interrupt structure and scheduling. These subsystems form

the core components of any operating system.

The Linux, Solaris and FreeBSD OSes take fairly similar

paths toward implementing the different concepts. Also the

performance, scalability and robustness of the three systems

are at similar levels. Both systems offer strong computing

environments, capable of supporting demanding applications

with similar performances.

Both Linux, Solaris, FreeBSD and Windows support pre-

emptive scheduling of threads with state of the art schedulers

[1], [3]. They can support effectively both batch, interactive

and even real-time processing demands. Also, they offer

extensive symmetric multiprocessing support and own fully

preemptive kernels. [6], [11].

The paper concludes that Linux, FreeBSD and Solaris

systems are modern and effective UNIX realizations, ca-

pable of accomplishing effectively demanding application

requirements and at the same time their UNIX philosophy

offers to them many similarities [9]. Linux seems the most

efficient, both from the point of view of the user experience

(which is subjective) and from actual performance results.

Manuscript received Oct 02, 2015; revised Nov 04, 2015.
Stergios Papadimitriou and Lefteris Moussiades are with the Technology

Education Institute of East Macedonia and Thraki, Dept of Informatics and
Computer Engineering, Agios Loukas, 65404 Kavala, GREECE, emails:
sterg@teiemt.gr, lmous@teiemt.gr

This efficiency can be explained from the fact that Linux gen-

erally uses less intermediate layers of code before accessing

hardware. Windows implements different design solutions,

and it is interested to study them and explore their benefits

and drawbacks.

The paper proceeds as follows: Section II highlights some

important aspects of the basic architecture of these systems.

Section III exploits the interrupt processing architecture that

is of outstanding importance for the efficient support of

higher layers and for meeting real-time processing demands.

Section IV studies the scheduling approaches of the four

systems and compares them. Finally, the paper concludes

with the results of this comparative study.

II. BASIC ARCHITECTURE

Both Linux, Solaris, FreeBSD and Windows are mono-

lithic kernels. This organization permits efficient execution

since kernel components interact with direct procedure calls

without involved with message passing and the associated

switches between user and kernel mode code. Windows

started as a microkernel design [10], but performance de-

mands forced the movement of components designed to

operate in user mode (for benefit of reliability and mod-

ularity) again in kernel space. The recent Windows kernel

has a modular design with distinct kernel components in

different modules. However, all the modules operate in kernel

space and therefore routines of one module can directly

call routines from other modules. This way, Windows kernel

avoids a great deal of overhead (as also Linux, FreeBSD and

Solaris kernels). The modular but yet monolithic design of

Windows kernel is referred sometimes as macrokernel design

[10].

In contrast to Linux/FreeBSD/Solaris, Windows presents

a client-server view of the operating system to applications.

Applications interact with a subsystem, mostly with the

Windows subsystem process (Crss). That subsystem keeps

the Executive Process (EPROCESS) block, the Process En-

vironment Block (PEB), and a parallel structure for each

process that is executing a Windows program.

The basic unit of scheduling in Solaris is the kthread t

structure [1]; and in Linux, the task struct structure [3].

Solaris represents each process as a proc t, and each thread

within the process has a kthread t. Linux represents both

processes and threads by task struct structures. A single-

threaded process in Linux has a single task struct. A single-

threaded process in Solaris has a proc t, a single kthread t,

and a klwp t structure. The klwp t structure provides kernel

state for user threads, i.e. is a save area for threads switching

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



between user and kernel modes. Effectively, all operating

systems schedule threads. In Linux a thread corresponds to

a task struct structure and in Solaris a thread is a kthread t.

Multithreaded processes in Linux are implemented as normal

processes (i.e. with task struct structures) that share the

same address space and resources. Linux also implements a

clever scheme for efficiently identifying the current process

descriptor by maintaining the proper pointer at the current

stack of the processor.

FreeBSD like Solaris implements a multithreaded process

design [11]. Each FreeBSD process keeps a linked list of its

threads. These threads are scheduled by the kernel, and they

own their own kernel stacks onto which they can execute

system calls simultaneously. The process state in FreeBSD

supports threads that can select the set of resources to

be shared, i.e. the concept of variable-weight processes is

implemented [11]. Linux implements also variable-weight

processes, but with a different mechanism, by allowing to

specify with the clone system call, which resources the newly

created tasks will share.

The thread structure of FreeBSD represents just the infor-

mation needed to run in the kernel (as the klwp t of Solaris

does): information about scheduling, a stack to use when

running in the kernel, a thread state block, and other machine

dependent state. FreeBSD elegantly divides the kernel state

in two primary structures: the process structure and the thread

structure. The process structure contains information that

must always remain resident in main memory, whereas the

thread structure tracks information that needs to be resident,

only when the process is executing, such as its kernel run-

time stack.

FreeBSD has the rfork system call that behaves like

Linux’s clone system call. Also it organizes sleep and turn-

stile queues in a data structure that is hashed by an event

identifier. FreeBSD assigns bottom-half interrupt priorities

and top-half interrupt priorities. It assigns for each thread a

user mode execution priority and a kernel mode execution

priority and separates wait channel priority from user mode

priority. Also, it assigns threads sleeping in the kernel a

higher priority, because they typically hold shared kernel

resources when they awakened. FreeBSD provides restartable

system calls.

FreeBSD initially assigns a high execution priority to each

thread and allows that thread to execute for a fixed time slice.

Threads that execute for the duration of their time slice have

their priority lowered, whereas threads that give up the CPU

(usually because they perform I/O) are allowed to remain at

their priority. Inactive threads have their priority raised.

Windows implements threads distinctly, as Solaris and

FreeBSD do, and not as Linux that views threads as normal

processes with shared resources. Windows processes are

represented by an executive process (EPROCESS) block.

Threads are represented by executive thread (ETHREAD)

blocks. The EPROCESS is a multithreaded process (like

Solaris proc t), therefore it links to one or more ETHREAD

(like Solaris kthread t) blocks. The part of the EPROCESS

structure that needs to be accessed from user-mode code, is

isolated to the Process Environment Block (PEB) (like Solaris

klwp t) that exists in the process address space. Thus, PEB

in Windows plays a similar role as klwp t of Solaris, i.e. a

glue for switching user and kernel modes of a process.

The following GroovyLab code exercises the efficiency

of the underlying multithreading support (GroovyLab, is

a MATLAB like environment that compiles Groovy like

code for the Java Virtual Machine. The project’s site is:

https://code.google.com/p/jlabgroovy/ ).

Listing 1: A benchmark for testing multithreading

performance

tic()

sM=100; nthreads=1000000

java.util.concurrent.Future <?>[] futures =

new java.util.concurrent.Future [nthreads];

// how many rows the thread processes

int rowsPerThread = (int)(sM / nthreads)+1

int threadId = 0; // the current threadId

while (threadId < nthreads) { // for all threads

futures[threadId] =

edu.emory.mathcs.utils.ConcurrencyUtils.submit(

new Runnable() {

public void run() {

double sm=0.0

for (k in 1..1000) sm+=k

}

});

threadId++;

} // for all threads

ConcurrencyUtils.waitForCompletion(futures);

tm=toc()

}

}

The recent Linux kernel 3.11.6 on which OpenSuSE 13.1

is based outperformed clearly Windows 8 at the above

benchmark. Linux presented an execution time of 7.1 sec,

while Windows finished at 17.1 sec. We performed some

experiments with different number of threads, and Linux

finishes at about half the time, persistently at all the experi-

ments.

We performed also experiments to test the input / output

efficiency, using both the traditional Java I/O classes and

with the NIO (New IO) Java framework for asynchronous

I/O. At the plain input streams and at the random access files

tests, Linux outperformed Windows significantly. However,

at the buffered input streams and at the memory mapped

files, the performance of the two operating systems is similar.

Actually, at the buffered input stream benchmark with Java 8,

Windows outperforms Linux. We present two representative

tables, one with results obtained with Java 7 (Table 1) and

one with the recent Java 8 (Table 2).

Table 3 presents some results on multithreading perfor-

mance of the OSes. It displays the user and system (sys)

time for the corresponding tests (rows) and operating systems

(columns). Linux performs faster at this bench and FreeBSD

follows closely. Windows performs much slower than the

other OSes.

The thread creation benchmark (row 1 of Table 3) creates

repetitively a large number of threads (specifically one mil-

lion, i.e. 1000000). Each thread performs a trivial task, actu-

ally it increases a global variable with a non-thread safe in-

crement operation. As expected the final value of the counter

depends on race conditions, and takes non-deterministically

a value near 1000000, actually <= 1000000.

The next row presents a similar benchmark for thread

creation. The only difference is that the counter increment

operation is protected with a mutex. Therefore, the total

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



number of iterations is now reliably correct, i.e. is always

1000000. Surprisingly, execution times at Linux at that bench

that implements critical section is a little faster than the

increment of the shared counter in the wrong way without

mutex.

The memory map benchmark (third row) maps a file over

the virtual memory space. Linux performs again faster. At

the memory allocation benchmark (fourth row), also Linux

is the most efficient OS in allocating heap space, with the

classic malloc() C library function.

The forkWithNoWrite benchmark exercises the efficiency

of fork based process creation. Since Windows lacks a fork()

call, only Unix-like OSes are tested. The bench creates

a large number of forked processes (specifically 100000)

that do not perform any computation. The forkWithWrite

bench is similar with the only difference that these processes

increment a global counter. Again, Linux is clearly the

faster Unix-like OS. Also, perhaps it is interesting to note

that the clang Linux C/C++ compiler (based on the Low

Level Virtual Machine (LLVM) intermediate reprentation),

performs slightly faster than the standard gcc/g++ compiler,

although the difference is not significant. We whould note

here that Linux presents very small user times and generally

Linux process forking outperforms clearly the other OSes.

However, when it comes to implement multithreading for

applications, with frameworks as pthreads, Java or C++11,

the other OSes use their specialized thread structures. Thus,

the difference in the efficiency of thread support illustrated

at the Thread Creation and Thread Creation and mutex

benchmarks between Linux and FreeBSD is not significant,

actually FreeBSD has slightly smaller system times.

III. INTERRUPT STRUCTURE

Modern networking imposes significant demands for effi-

cient processing of interrupts from network cards that can

service very high transfer rates. Also, many ”Internet of

Things” style applications further demand efficient interrupt

processing. This section highlights some important aspects

of the rather advanced interrupt architecture offered by all

the OSes.

Although interrupt controllers perform a level of interrupt

prioritization, Windows imposes its own interrupt priority

scheme, on top of the interrupt prioritization performed

by interrupt controllers, known as interrupt request levels

(IRQLs). The IRQLs aren’t the same as the interrupt requests

(IRQs) defined by interrupt controllers. The kernel represents

IRQLs internally as a number from 0 through 31 on x86 and

from 0 to 15 on x64 and IA64. Higher numbers represent

higher priority interrupts. Although the kernel defines the

standard set of IRQLs for software interrupts, the Hardware

Abstraction Layer (HAL) maps hardware interrupt numbers

to the IRQLs.

Windows uses a type of device driver called a bus driver,

to determine the presence of devices on a bus type (e.g.

PCI, USB etc.) and what interrupts can be assigned to a

device. The bus driver reports this information to the Plug

and Play manager which decides, after taking into account the

acceptable interrupt assignments for all other devices, which

interrupt will be assigned to each device. Then it calls a Plug

and Play interrupt arbiter, which maps interrupts to IRQLs.

Both Windows and Linux use a system table called Inter-

rupt Descriptor (or Dispatch) Table (IDT). The IDT associates

each interrupt or exception vector with the address of the

corresponding interrupt or exception handler. The IDT must

be properly initialized before the kernel enables interrupts.

At system boot the IDT is filled with pointers to the kernel

routines that handle each interrupt and exception. Each

processor in Windows has a separate IDT, so that different

processors can run different ISRs, if appropriate. Windows

statically assigns interrupts to processors in a round-robin

manner.

A common practice is to store all the context required to

resume a nested kernel control path in the kernel mode stack

of the current process. With this design, we cannot reschedule

from an interrupt handler. This is because interrupts can be

arbitrarily nested, stacking multiple contexts on the kernel

stack. If we reschedule, the stack with the saved interrupt

frames is lost, and there is a problem at restoring those

contexts after the interrupt handler finishes.

Windows and Linux use the kernel stack of the current pro-

cess for interrupt frames and therefore they cannot reschedule

from an interrupt handler. Windows uses the kernel stack

of the currently executing thread for servicing interrupts.

Linux does the same when two-page stacks (i.e. 8Kb) are

used. However, for one page stack (i.e. 4 Kb) Linux uses

separate exception, hard IRQ stack and soft IRQ stacks.

These are multiple kernel mode stacks: for exceptions (one

per-process), for hard IRQ (one per CPU) and for soft

IRQs (one per CPU). Making a difference from Windows,

Linux implements an interrupt model without priority levels.

Because each interrupt handler may be deferred by another

one, there is no need to establish additional predefined

priorities among hardware devices beyond those defined by

the hardware interrupt arbiter. This simplifies the kernel code

and improves its portability.

Also, for Windows, code running at Deferrable Procedure

Call (DPC) dispatch level or above can’t wait for an object.

That wait operation would necessitate the scheduler to select

another thread to execute. However, the scheduler synchro-

nizes its data structures at DPC dispatch level and cannot

therefore be invoked to perform a reschedule.

Linux implements an elaborate scheme to balance the

interrupt load among the processors at a multiprocessor

environment. Specifically, a special kernel thread, the kirqd,

exploits the IRQ affinity of a CPU by modifying the Interrupt

Redirection Table entries of the I/O APIC. The later table

controls the distribution of interrupt processing among CPUs.

Therefore, Linux obtains generally a balanced load of the

interrupt workload over multiprocessors.

Linux provides three different and complementary ways

to perform deferred processing:

1) Softirqs

2) Tasklets

3) Work queues

Softirqs is the most efficient mechanism. They are stati-

cally allocated (i.e. defined at compile time). They can run

concurrently on several CPUs, even if they are of the same

type. Therefore, to fullfill these concurrency requirements,

they must be reentrant functions and must explicitly protect

their data structures with spin locks.

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



Tasklets are built upon the softirq mechanism but they

can be dynamically allocated (i.e. at runtime). That makes

them proper for use with dynamically loaded kernel modules.

Contrary, to softirqs, they can be non-reentrant functions.

Therefore, they are easier to write, but they are imposed

to serialization, i.e. tasklets of the same type cannot run in

parallel on several CPUs. However, tasklets of different types

can.

Both softirqs and tasklets execute in interrupt context,

therefore they cannot sleep. This imposes significant limi-

tation on what the programmer can perform within a softirq-

tasklet.

The work queue mechanism was introduced in Linux to

overcome this limitation. Work queues schedule deferrable

work within the process context of special kernel threads.

Thus this deferable code, is schedulable, and can there-

fore sleep. However, work queues induce the overhead of

scheduling and of the necessary context switches. Softirqs

and tasklets are a more efficient mechanism since they are

executed totally within kernel space, as simple C routine

calls. We note that although work queues imply a context

switch, that context switch is efficient, since switching takes

place totally within kernel space.

Practically, work queues are quite efficient, but when we

have to service thousands of interrupts per second, using

tasklets or even the more efficient softirqs makes sense.

Linux also supports an elaborate distribution of IRQ

signals coming from the hardware devices in a round-robin

fashion among all the CPUs [3]. The Linux approach to

interrupt handling stays closer to hardware from the other

OSes. A competent C programmer can readily write interrupt

handlers without having to familiarize with complicated

layering e.g. the ”interrupt objects” of Windows. Linux

implements an interrupt architecture that although rather low-

level, it exploits fully the parallelism on an SMP system and

is simple to use.

The Linux kernel delivers exceptions caused by program-

ming errors to the application as Unix style signals.

Solaris uses the notion of the interrupt thread for servicing

interrupts. This has similarities to the work queues of Linux.

Upon recept of the interrupt, the current thread is pinned

and the interrupt thread executes. When the interrupt thread

completes, the interrupted thread is unpinned and resumes

execution. This mechanism avoids a full context switch for

servicing interrupts. Solaris interrupt threads can sleep also:

If the interrupt thread blocks, it is given full thread state

and it is placed on a sleep queue, and the interrupted thread

will be unpinned. Thus, for interrupt code that doesn’t sleep,

Solaris interrupt threads can be more efficient than Linux

work queues.

The term pinned refers to a mechanism employed by

the Solaris kernel that avoids context switching out the

interrupted thread. The executing thread is pinned under

the interrupt thread. The interrupt thread ”borrows” the

LWP from the executing thread. While the interrupt handler

is running, the interrupted thread is pinned to avoid the

overhead of having to completely save its context; it cannot

run on any processor until the interrupt handler completes

or blocks on a synchronization object. Once the handler is

complete, the original thread is unpinned and rescheduled.

Solaris (as Windows also) assigns priorities to interrupts to

allow overlapping interrupts to be handled with the correct

precedence. This interrupt prioritization performs similarly

to the IRQL based prioritization performed by the Windows

kernel. We should note that Linux does not prioritize inter-

rupts explicitly, but by allowing nesting of interrupts enforces

the interrupt prioritization that the interrupt controller im-

plements. However, interrupt handlers using priority levels

alone cannot block, since a deadlock could occur if they are

waiting on a resource held by a lower priority interrupt.

Solaris supports the cross-call mechanism for multiproces-

sor systems. It is a facility with which one CPU can send an

interrupt to one or more other CPUs on the system (or to all

of them) to force the CPU into a handler to take a specific

action.

FreeBSD implements thread context for interrupt process-

ing and fits it within the prioritization of the rest tasks of

the workload. It uses also high-priority interrupt threads as

Solaris does. The highest priority threads of class ITHD serve

the time critical demands for interrupt processing, tasks that

on single processor systems were usually performed within

the interrupt service routine by disabling the CPU interrupts.

Following the ITHD scheduling class, comes in priority

the REALTIME class. Therefore, with the prerequisite of

small and bounded overhead for the ITHD thread processing,

the engineer can design and implement on FreeBSD real

time processing workloads. The KERN class follows the

REALTIME class in priority. This class performs deferred

interrupt processing, i.e. is the top-half kernel processing of

the interrupt requests. Time consuming parts of the interrupt

service tasks should be implemented within the threads of

the KERN class. The class that runs the ”normal” user ap-

plications, the TIMESHARE follows in priority. The kernel

adapts dynamically the priority of the threads of this class

in order to provide better response to the interactive tasks.

The priorities of threads running in the timeshare class are

adjusted by the kernel based on resource usage and recent

CPU utilization. A thread has two scheduling priorities: one

for scheduling user-mode execution and one for scheduling

kernel mode execution. Finally, the IDLE class consumes the

CPU time, when no useful task exists.

IV. SCHEDULING AND SCHEDULERS

Scheduling decisions are usually based on priority. In

Linux, the lower the priority value, the better, i.e. a value

closer to 0 represents a higher priority. In Solaris, the higher

the value, the higher the priority. For Linux, the priority

range 0 - 99 corresponds to the System Threads, Real-Time

Scheduling Class (SCHED FIFO, SCHED RR) and the pri-

ority range 100 - 139 to User priorities (SCHED NORMAL).

In Solaris, the priority range 0 - 59 corresponds to the

Time Shared, Interactive, Fixed, Fair Share Scheduler class,

the range 60-99 to the System Class, the range 100-159 to

the Real-Time and finally the highest priority range 160-

169 to the Low level Interrupts [3], [1]. The overall scheme

of Solaris prioritization clearly resembles the corresponding

FreeBSD scheme. Both Windows, Solaris and Linux use a

per-CPU runqueue.

All OSes favor interactive threads/processes. Interactive

threads run at better priority than compute-bound threads, but

tend to run for shorter time slices. Traditionally, time-slice

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



based scheduling uses heuristic criteria to favor interactive

tasks. This is suboptimal and problematic.

Linux introduces a new type of scheduling the Completely

Fair Scheduling that avoids the problem of computing the

proper time slices [6] The Completely Fair Scheduler (CFS)

tries to approximate the concept of perfect multitasking, i.e.

the fair sharing of processor time by the tasks. Suppose, for

example, that we have N tasks of equal priority to schedule.

The CFS should try to approximate the ideal situation of

having them running as if each task was alone at the CPU,

of course running at 1

N
speed.

Implementing such an ideal protocol requires to have

the processes run for infinitely small durations. However,

in practice is not efficient to run the tasks for very small

durations, due to context switching overheads and the effect

of switching on caches. The larger are the time slices (i.e.

time quantums) the smaller is the overall overhead, and

the better the overall system throughput, at the expense

of increasing task latencies. CFS intelligently settles this

tradeoff by fixing the targeted latency, i.e. the maximum

affordable latency for a set of tasks. Then CFS computes,

based on the latency constraint, a schedule that shares the

processor time fairly and optimizes switching overhead, i.e.

it performs only the necessary task swaps to maintain the

latency constraints.

The CFS also avoids starving low priority tasks. With CFS

irrespective of how much heavily loaded is a system, even

the less important tasks receive some time slice.

The switching rate for tasks with the timeslicing based

Windows and Solaris scheduling is dependent on the load and

cannot fullfill systematically the required latencies. In con-

trast, the Completely Fair Scheduler (CFS) of Linux, designs

the scheduling starting with the constraint of maintaining the

required latencies.

Time quantum based scheduling systems usually perform

a priority boost after a release from a wait operation. Since

usually the interactive I/O bound tasks are blocked, this

strategy favors them. Also, they adaptively decrease the

priority of compute bound tasks on every successive time

quantum that they take. The Completely Fair Scheduler au-

tomatically favors I/O bound tasks, since their blocking time

provides them an advantage to take their turn. In contrast, the

traditional priority boost mechanisms of Windows, FreeBSD

and Solaris are rather heuristic and their effective operation

is based on an elaborate tuning of their parameters.

Solaris uses a dispatch queue per CPU. If a thread uses up

its time slice, the kernel gives it a new priority and returns

it to the dispatch queue.

The runqueues for all operating systems have separate

linked lists of runnable threads for different priorities. Both

Solaris, FreeBSD and Linux use a separate list for each

priority. The previous O(1) scheduler of Linux used an

arithmetic calculation based on run time versus sleep time

of a thread (as a measure of interactiveness) to arrive at a

priority for the thread. Solaris performs a table lookup.

All OSes schedule the one next thread to run, instead of at-

tempting to derive a schedule for a whole group of n threads.

Also, they have mechanisms to take advantage of caching

(warm affinity) and load balancing. For hyperthreaded CPUs,

Solaris has a mechanism to help keep threads on the same

CPU node. This mechanism is under control of the user and

application. The other OSes also support similar processor

task affinity schemes.

Both OSes support POSIX SCHED FIFO, SCHED RR,

and SCHED OTHER (or SCHED NORMAL).

SCHED FIFO and SCHED RR typically result in realtime

threads. Solaris, FreeBSD and Linux implement kernel

preemption in support of realtime threads. Solaris has

support for a fixed priority class, a system class for system

threads (such as page-out threads), an interactive class used

for threads running in a windowing environment under

control of the X server, and the Fair Share Scheduler in

support of resource management.

One of the big differences between Solaris and Linux

is the capability of Solaris to support multiple scheduling

classes on the system at the same time. The ability to add

new scheduling classes to the system comes with a price.

Everywhere in the kernel that a scheduling decision can

be made (except for the actual act of choosing the thread

to run) involves an indirect function call into scheduling

class-specific code. For instance, when a thread is going

to sleep, it calls scheduling-class-dependent code that does

whatever is necessary for sleeping in the class. On Linux

the scheduling code simply does the needed action. There is

no need for an indirect call. The extra layer means there is

slightly more overhead for scheduling on Solaris, but more

supported features.

Similar to Linux, FreeBSD avoids the dynamic selection

of scheduling policy for performance reasons. However, it

allows the selection of the scheduler when the kernel is built

[11].

V. CONCLUSIONS

The paper aimed to provide an insight to some key design

approaches and components of Linux, Solaris, FreeBSD and

Windows using a comparative view. All the four OSes are

monolithic kernels (although Windows started as microker-

nel). Also, they allow the kernel to be extended flexibly

with dynamically loadable modules. Windows imposes more

layers between the hardware and the user space applications

(e.g. the HAL, the interrupt objects). Microsoft virtualizes

part of the hardware and builds other components upon that

virtualization. Clearly, this is an advantage from the point

of view of portability to different architectures but requires

learning additional Microsoft APIs and being dependent on

them. From the four OSes, Linux is generally the closest

to the hardware, and combined with the clever and highly

optimized implementation approaches, realize the fastest

overall performance.

Solaris uses more data abstraction layering, and generally

could support additional features quite easily because of this.

However, most of the layering in the kernel is undocumented.

The application level interface of Linux, FreeBSD and

Solaris is very similar, typical of the modern UNIX system

programming interface [7], [8]. Also, FreeBSD and Solaris

share similar approaches at their internal design of low

level process/thread structures and primitives, distinct from

Linux that has its own design of multithreading. The paper

concludes that both systems are modern and effective UNIX

realizations. They are capable of accomplishing effectively

demanding application requirements and at the same time

their UNIX philosophy offers to them many similarities

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



TABLE I
THE RESULTS OF BENCHMARKING I/O OPERATIONS WITH JAVA 7

I/O test Linux Windows

Plain Input Stream 4145 10328

Buffered Input Stream 197 219

Random Access File 5992 13517

Memory Mapped File 164 203

[9]. The presented performance results favor Unix-like OSes

compared to Windows. Finally, from the three Unix based

OSes, Linux performs better at the presented benchmarks, as

can be expected with the less layering that has at its design.

However, the performance of Linux that we measured

seems close to that of the recent FreeBSD kernel. Also,

both kernels can be easily build from source, in our expe-

rience it is easier to build from source the FreeBSD kernel.

An illustrative large benchmark that illustrates the similar

performance of the two OSes, is the building from source

of the LLVM-clang-cling sources (https://github.com/llvm-

mirror/clang,https://github.com/vgvassilev/cling). The gmake

based building process is a heavy one, the total source code

is about 356.6MB. FreeBSD 11 completes that build in

4203.839 sec (user time), 177.652 sec (system time) with

a ZFS filesystem, and in 4061.268u, 149.202s with a UFS

filesystem. The sligthy slower performance of ZFS is perhaps

due to the fact that the virtual memory system of FreeBSD

currently does not integrate the caching of ZFS, and ZFS

performs its own buffering. OpenSUSE 13.2 Linux with a

custom build kernel, 4.1.0-2, and ext4 filesystem performs

slightly better with respect to user time, i.e. 3937.621secs but

a little slower with respect to system time i.e. 190.67secs.

That review work tried to enlight some aspects of the

internal operation of the compared OSes. Clearly, a lot of

interest work remains, to better understand the advantages

and disadvantages of the rather sophisticated cores of these

modern OSes.

REFERENCES

[1] Richard McDougall and Jim Mauro, Solaris(TM) Internals: Solaris 10
and OpenSolaris Kernel Architecture (2nd Edition) (Solaris Series), Sun
Microsystems Press, 2006

[2] Richard McDougall, Jim Mauro, Brendan Gregg, Solaris Performance
and Tools, Sun Microsystems Press, 2006

[3] Daniel Plerre Bovet and Marco Cesati, Understanding the Linux Kernel,
O’ Reilly, 2005

[4] Christian Benvenuti, Understanding LINUX Network Internals, O’
Reilly, 2005

[5] Jonathan Corbet, Alessandro Rubini, Creg Kroah-Hartman, LINUX
Device Drivers, 3nd Edition, O’Reilly 2005

[6] Linux Kernel Development (3nd Edition) (Novell Press) by Robert
Love, 2010

[7] Rich Teer, Solaris System Programming, Addison-Wesley, 2005
[8] Stevens, W. Richard, Fenner, Bill, and Rudoff, Andrew M. 2004,

UNIX Network Programming, Volume 1, Third Edition, The Sockets
Networking API, Addison-Wesley, Reading, MA

[9] Advanced Programming in the UNIX Environment, Third Edition, W.
Richard Stevens, Stephen A. Rago, Addison-Wesley, 2013

[10] Mark E. Russinovich, David A. Solomon, Alex Ionescu, Windows
Internals, 6th edition, 2012, Microsoft Press, Vol. I and II

[11] Marshall Kirk McKusick, George V. Neville-Neil, Robert N.M. Wat-
son, The design and implementation of the FreeBSD operating system,
Addison-Wesley, 2nd edition, 2014

TABLE II
THE RESULTS OF BENCHMARKING I/O OPERATIONS WITH JAVA 8

I/O test Linux Windows

Plain Input Stream 3945 11001

Buffered Input Stream 294 78

Random Access File 5893 14126

Memory Mapped File 55 62

TABLE III
THE RESULTS OF BENCHMARKS WITH THE PTHREAD LIBRARY (USER

AND SYSTEM TIME IN SECS)

Benchmark Linux FreeBSD

Thread Creation 2.11, 9.5 3.00, 8.72

Thread Creation and mutex 2.98, 9.193 3.04, 9.2

Memory Map 2.5, 9.35 3.28, 8.21

Memory Allocation 2.44, 10.15 3.21, 8.18

Benchmark Solaris Windows 8

Thread Creation 7.0, 8.04 7.6, 32.07

Thread Creation and Mutex 7.119, 7.999 8.1, 33.1

Memory Map 7.6, 8.3 7.3, 38.53

Memory Allocation 7.5, 8.26 7.718, 36.68

Benchmark Linux FreeBSD Solaris

forkWithNoWrite 0.08, 2.12 2.79, 11.23 4.71, 18.8

forkWithWrite 0.078, 2.376 2.9, 11.7 4.86, 19.4

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016




