
Combining Scala with C++ for Efficient Scientific

Computation in the Context of ScalaLab
Stergios Papadimitriou, Lefteris Moussiades

Abstract—ScalaLab is a MATLAB-like environment for the
Java Virtual Machine (JVM). ScalaLab is based on the Scala
programming language. It utilizes an extensive set of Java and
Scala scientific libraries and also has access to many native
C/C++ scientific libraries by using mainly the Java Native
Interface (JNI). The performance of the JVM platform is
continuously improved at a fast pace. Today JVM can effectively
support demanding high-performance computing and scales
well on multicore platforms. However, sometimes optimized
native C/C++ code can yield even better performance. That code
can exploit the peculiarities of the hardware architecture and of
special parallel hardware, as for example Graphical Processing
Units. The present work reports some of the experience that we
gained with experiments with both JITed JVM code and native
code. We compare some aspects of Scala and C++ that concern
the requirements of scientific computing. The article describes
how ScalaLab tries to combine the best features of the Java
Virtual Machine with those of the C/C++ technology, in order
to implement an effective scientific computing environment.

Index Terms—Java, scientific computation, JIT Compilation,
scripting, numerical performance

I. INTRODUCTION

The recently introduced ScalaLab [5] scientific program-

ming environment for the Java Virtual Machine (JVM)

leverages the statically-typed Scala object-oriented/functional

language [3]. It provides MATLAB-like syntax that is used

to construct scripts that are then compiled by ScalaLab

for execution on the JVM. The Scala language sup-

ports the implementation of simple, coherent and efficient

MATLAB-like interfaces for many Java scientific libraries.

These interfaces are compiled within the core of ScalaLab.

ScalaLab is an open-source project and can be obtained

from http://code.google.com/p/scalalab/ . It can be installed

easily. The only prerequisite is the installation of the Java

8 (or newer) runtime (which is free). We supply scripts

for launching these systems for all the major platforms.

The general high-level architecture of ScalaLab is described

in [5]. The JVM provides a flexible environemnt for the

implementation of a MATLAB like user friendly scientific

programming environment. Also, Scala provides both the

powerful Scala interpreter that leads to a scripting execution

and elaborate mechanisms for building new syntax. However,

scientific computation demands high performance. This is

the main reason that Fortran is still a popular scientific

programming language. The recent advance in Just-In-Time

(JIT) compilation allows execution speed of bytecodes near

or sometimes even better than native code.

But, sometimes the flexibility offered by C/C++ to utilize

low-level features for optimization and to access specialized

Manuscript received Dec 05, 2015; revised Jan 11, 2016.
Stergios Papadimitriou and Lefteris Moussiades are with the Technology

Education Institute of East Macedonia and Thraki, Dept of Informatics
and Computer Engineering, Agios Loukas, 65404 Kavala,GREECE, emails:
sterg@teiemt.gr, lmous@teiemt.gr

hardware is important. The paper supports the claim that the

flexibility of the Scala programming language combined with

the robustness of the Java Virtual Machine, are sufficient for

building on top of them a capable scientific programming

environment. However, for some basic numerical analysis

operations that tend to be computationally demanding, as

for example the Singular Valued Decomposition (SVD) and

eigenvalue computations, native C / C++ libraries can offer a

notable speedup. The native library that we most exploit, the

GNU Scientific Library is a portable and efficient C scientific

library. We can access its functionality by using a JNI based

interface.

The paper proceeds as follows: Section II demonstrates

how some advanced characteristics of ScalaLab are imple-

mented on top of the corresponding features of the Scala

language. Section III discusses some aspects of JVM vs

C/C++ native code issues. Section IV summarizes on how we

exploited the javacpp open source project in order to interface

the GNU Scientific Library (GSL) in ScalaLab. Section V

elaborates on some performance related issues. Finally, we

conclude our paper and presents some directions for future

work.

II. ADVANCED CHARACTERISTICS OF THE SCALALAB

ENVIRONMENT

This section demonstrates how some advanced

characteristics of the ScalaLab are implemented on

top of thecorresponding features of the Scala language.

Global function workspace

Scientific programming environments demand a global

namespace of functions. Scala does not have the concept of

globally visible methods; every method must be contained

in an object or a class. A global function namespace, can be

implemented easily with static imports. In Scala objects are

imported since these objects encapsulate the static imports.

Therefore, the automatic import of static methods provides

the appearance of the existence of global methods. For

example, the plot method appears to be available globally

since we import it from the object scalaSci.plot.plot. Scala

also offers the ability to define apply methods for the

companion objects of classes. If a class implements the

apply method, an instance of the class can essentially be

’executed’ like a function as the instance name followed by

a list of arguments in parentheses. When the apply method

is implemented by a class, a method doesn’t need to be

imported into the ’global’ namespace, it is only necessary

to import the class itself.

The Scala Interpreter

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



An essential component of Scala’s scripting framework is

the Scala interpreter. This is an essential component for a

scientific programming environment. It is based n compiled

scripting and thus scripts run at full speed. Since compiled

C/C++ programs are executed as operating system processes,

there is not an easy way to keep computed variables from

an executed C program for later runs.

The overall approach of the Scala interpreter is based on

initially compiling the requested code. A Java classloader and

Java reflection are then used to run the compiled bytecode

and access its results.

The scheme implemented in the Scala interpreter extracts

the whole visible (i.e. context of public variables) com-

putation state as the interpreter’s context. ScalaLab binds

both data and code objects automatically to this context.

ScalaLab runs Java bytecode, that can be manipulated as data

variables, i.e. we can store a code object that implements a

function to a variable. It is clearly much more difficult to

handle natively compiled chunks of C/C++ code. Although

this is more powerful it imposes difficulties in retrieving the

previous context when we create a new Scala interpreter. In

that case it is necessary to replay the commands in order

to restore the environment. However, the restoration of the

user environment in ScalaLab is performed fastly; the user

does not notice the delay of the few Scala compiler runs.

Restoration of the computation context also is a somewhat

rare operation.

A single compiler instance is used in the Scala’s interpreter

to accumulate all successfully interpreted Scala code. The

interpretation of a piece of code is performed by generating

a new object that includes that piece of code and has public

members to export all variables defined by that code. To

accommodate user expressions that are constructed from

variables or methods defined in previous statements, import

statements are used.

It becomes evident that an effective approach for detecting

the variables that a piece of code defines is required, in

order to import their values at the global workspace. The

Scala interpreter utilizes the Scala parser to accomplish the

non-trivial task of analyzing variable visibility. The Scala

parser is also utilized, in order to detect which variables are

used by a code snippet. The values of these variables are

then requested from previously executed code. Such type of

retrieval seems very difficult or even impossible for natively

executed C/C++ code. It is unnecessary to request variables

from the interpreter that do not appear in a new code snippet,

since these values will not change. For example, if prevVar

= 5.5, is not used at our new script, the interpreter does not

request the value of prevVar.

The Scala interpreter keeps a list of names of identifiers

bound with a var or val declaration (boundVarNames) and

also a list of function identifiers defined with a def dec-

laration (boundDefNames). In addition we can retrieve the

last source code fragment of the program that has been

interpreted (lastLineInterpreted).

We keep a symbol table of the current ScalaSci bound

variables. This task is used to graphically display the current

work context to the user. We have to keep this external

table synchronized with the internal variables binding that

the interpreter keeps (i.e. boundVarValNames). The current

value of each variable is retrieved from the interpreter by

issuing a simple command with the name of the variable.

If an identifier is being redefined as a function then it is

removed from the variable binding. This is necessary since

the namespace of variables and functions in Scala is common

[4] and thus the identifier is hidden by the function definition.

III. DISCUSSION OF JVM VS C/C++ NATIVE CODE

ISSUES

Recently, the gap between Java and C++ performance has

been narrowed. Many author studies [10], [11], [12], [13],

[14] have shown that Java can achieve similar performance to

natively compiled languages such as C++. Taboada et al. [11]

claims that with exploiting the Just-in-Time (JIT) compiler

Java obtains native performance from Java bytecode. The

JIT (Just-In- Time) compiler can significantly speed up the

execution of Java applications. The JIT, which is an integral

part of the JVM takes the bytecodes and compiles them

into native code before execution. Since Java is a dynamic

language, the JIT compiles methods on a method-by-method

basis just before they are called. If the same method is

called many times or if the method contains loops with many

repetitions the effect of re-execution of the native code can

dramatically change the performance of Java code [13].

An important advantage of JIT, is that the compilation

can be optimized to the targeted CPU and the operating

system model where the application runs. JIT compilers are

able to collect statistics about how code actually runs in the

environment it is in, and they can rearrange and recompile

for optimum performance.

Many researchers argue that the main reasons JIT opti-

mization are less effective than C++ are:

1) Java is dynamically safe; it ensures programs do not

violate the semantics or allow direct access to untrusted

memory. Dynamic type tests must be frequently per-

formed.

2) The Java language allocates all objects on the heap,

in contrast to C++, where many objects are stack

allocated. This means that object allocation rates are

much higher for the Java language than for C++.

3) In the Java language, most method invocations are

virtual, and are more frequently used than in C++.

4) Java technology-based programs can change on the

fly due to the ability to perform dynamic loading of

classes. Oracle develops the Java Hotspot compiler that

combines interpreted evaluation with adaptive JITing

of the hot spots. Then it focuses the attention of

a global native code optimizer on the hotspot. This

allows avoiding compilation of infrequently used code.

This hot spot monitoring is continued dynamically

as the program runs, so that it literally adapts its

performance on the fly to the users needs.

The main compiler optimizations according to Oracle are:

deep inlining and inlining of potentially virtual calls, fast in-

stanceof/checkcast, range check elimination, loop unrolling,

feedback-directed optimizations the Java virtual machine

profiles the program execution in the interpreter before

compiling the Java bytecode to optimized machine code and

the profiling information is used later by the compiler to

more aggressively and optimistically optimize the code in

certain situations. This allows to Java applications to run in

at similar or greater speed than C++ programs.

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



IV. THE JAVA - C++ INTERFACING FRAMEWORK OF THE

JAVACPP PROJECT

ScalaLab uses extensively the JavaCPP project that

provides efficient access to native C++ inside Java. It

is a framework developed by an open source project,

https://github.com/bytedeco/javacpp

JavaCPP maps naturally and efficiently many common

features afforded by the C++ language and often considered

problematic. Some of such features are: overloaded opera-

tors, class and function templates, callbacks through function

pointers, function objects (i.e. functors), virtual functions and

member function pointers, nested struct definitions, variable

length arguments, nested namespaces, large data structures

containing arbitrary cycles, virtual and multiple inheritance,

anonymous unions, bit fields, exceptions and destructors with

garbage collection.

JavaCP consists of a parser that parses the C/C++ code

and constructs automatically the appropriate Java classes and

C/C++ interfacing code. Finally, the code can be compiled

with the javacpp Java library. The final result is a Java class

that provides a large fraction of the functionality of the native

library, to the JVM accessible by means of the JNI interface.

To implement native methods JavaCPP generates appropriate

code for JNI, and passes it to the C++ compiler to build a

native library.

Native libraries can be constructed with JavaCPP in three

steps:

1) the first step is to compile our Java class that uses

native methods with javac (as usually), using also

javacpp.jar on our classpath.

2) the next step invokes as a Java program the function-

ality that JavaCPP provides for automatically building

the appropriate native library.

3) finally, we can run the Java application with the native

library support as usually, with the only additional

requirement of placing javacpp.jar at the class-path.

We exploited the javacpp framework in order to

interface the GNU scientific library (GSL) routines

with ScalaLab. We present some examples of their

use in a Web wiki:

http://code.google.com/p/scalalab/wiki/GNUScientificLibraryInScalaLab.

Although the interface of the GSL routines is not as

straightforward as generally is for the pure Java libraries,

some basic numerical routines as Singular Valued Decom-

position (SVD) and eigenvalue computations perform signif-

icantly faster for large matrices. For example we can obtain

a speedup of 2 to 3 times for matrices of sizes of more

than a million elements. Therefore, we can afford some more

complexity in order to gain that notable computational speed

improvement.

V. PERFORMANCE

The Scala language is statically-typed and therefore Scala

code can theoretically be compiled to bytecode that runs as

fast as Java, sometimes a bit faster sometimes a bit slower,

depending on the situation. However, for the advanced fea-

tures of Scala such as pattern matching, trait inheritance and

type parameters, it is difficult to optimize their compilation.

The Scala language developers concentrate on these issues

and improve the performance of the Scala compiler with each

new version of the language.

We would note that the performance of the recent version

of MATLAB (2012b) has been impressively improved,

while SciLab has been improved also but not so much.

Benchmarking

In order to access the performance of the C++ and Scala

platforms, a variety of mathematical computation algorithms

will be examined. These will include matrix computations,

Fast Fourier Transforms (FFT), eigen decomposition of a

matrix and singular value decomposition of a matrix.

Fast Fourier Transform benchmark

The Fast Fourier Transform (FFT) benchmark is

performed in ScalaLab using implementations of the

FFT from various libraries. Of these libraries, the

Oregon DSP library provides the best performance.

Close in performance to this library is the JTransforms (

https://sites.google.com/site/piotrwendykier/software/jtransforms)

library. Since JTransforms is multithreaded, it will

accordingly perform more efficiently with more robust

machines (e.g. having 8 or 32 cores, instead of only 4).

The tutorial FFT implementation of the classic Numerical

Recipes book [1] (with the C/C++ code translated to Java)

was also observed to achieve reasonable performance in

ScalaLab. Interestingly, it was observed that the Oregon

DSP and JTransforms FFT routines are nearly as fast as

the optimized built-in FFT of MATLAB. We should note

that the reported differences in benchmarks are stable, e.g.

the relative differences are about the same on different

computers, and individual runs show small variations at

the results. Contributing to the small variability is that we

perform explicitly garbage collection before any benchmark

run.

Native code optimizations

In order to test the JVM performance vs native code

performance, an implementation of SVD is used [see

http://code.google.com/p/scalalab/wiki/ScalaLabVsNativeC]

. Both the Microsoft’s cl compiler of Visual Studio on

Windows 8 64-bit and the gcc compiler running on Linux

64-bit were used. ScalaLab is based on the Java runtime

version: 1.7.0 25 and Scala 2.11 M7. It has been observed

that ScalaLab performs better than unoptimized C and are

even close to optimized C code when performing matrix

calculations. Table 1 shows some results.

VI. CONCLUSIONS

The paper has discussed some aspects of scientific com-

puting in the Scala programming language, a modern object-

functional language for the Java Virtual Machine. Scala is

exploited with the ScalaLab environment that presents to the

user a MATLAB like user-friendly environment for perform-

ing scientific explorations. The flexible syntax of Scala, its

direct and elegant interface with the plenty high-quality Java

scientific libraries and its capable scripting interpreter form

the basis for a powerful scientific environment.

Also, the speed of the Scala language with a statically

typed design and an advanced and elaborate compiler com-

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



TABLE I
SVDPERFORMANCE: JAVA VS NATIVE CODE

Matrix Size Optimized C ScalaLab Unoptimized C

200X200 0.08 0.15 0.34

200X300 0.17 0.2 0.61

300X300 0.34 0.58 1.23

500X600 3.75 5.06 8.13

900X1000 35.4 51.3 53.3

pares well to the speed of bytecode compiled with the javac

Java compiler, sometimes a little slower sometimes a bit

faster. We discussed some of the reasons that Java bytecodes

today compete the speed of native optimized C/C++ code

and we have presented some benchmark results that support

this claim. However, there exist circumstances that native

C/C++ code can perform better. We presented some of the

experience we gained using the GSL scientific library that

is implemented in C. We utilized the javacpp open source

project in order to implement the corresponding C to Java

interface. Future work can improve on the native interfaces of

ScalaLab, and can possibly utilize even more efficient C/C++

native routines, to complement the computational potential of

the JVM.

REFERENCES

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.
Flannery, Numerical Recipes in C++, The Art of Scientific Computing,
Second Edition, Cambridge University Press, 2002

[2] Stergios Papadimitriou, Konstantinos Terzidis, Seferina Mavroudi,
Spiridon Likothanasis, Scientific Scripting for the Java Platform with
jLab, IEEE Computing in Science and Engineering (CISE), July/August
2009, Vol. 11, No 4, pp. 50-60

[3] Martin Odersky, Lex Spoon, Bill Venners, Programming in Scala,
Artima eds, 2008

[4] Venkat Subramaniam, Programming Scala Tackle Multicore Complex-
ity on the Java Virtual Machine, Pragmatic Bookself 2009

[5] Stergios Papadimitriou, Konstantinos Terzidis, Seferina Mavroudi,
Spiridon Likothanasis, ScalaLab: an effective scientific programming
environment for the Java Platform based on the Scala object-functional
language, IEEE Computing in Science and Engineering (CISE), Vol.
13, No 5, 2011, p. 43-55

[6] E. Anderson, Z. Bai, C. Birschof, S. Blackford, J. Demmel, J. Dongarra,
J.Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney, D. Sorensen,
LAPACK Users’ Guide, SIAM, Third Edition, 1999

[7] Gilles Dubochet, On Embedding domain-specific languages with user-
friendly syntax, In Proceedings of the 1st Workshop on Domain Specific
Program Development, pages 19-22, 2006

[8] Gilles Dubochet, Embedded Domain-Specific Languages using Li-
braries and Dynamic Metaprogramming, PhD Thesis, EPFL, Suise,
2011

[9] Timothy A. Davis, Direct Methods for Sparse Linear Systems, SIAM
publishing, 2006

[10] Nikishkov, Y, Nikishkov, G & Savchenko, V 2003 Comparison of C
and Java performance in finite element computations, Computers and
Structures, vol. 81, no. 24, pp. 2401-2408.

[11] Taboada, GL, Ramos, S, Exposito, RR, Tourino, J & Doallo, R 2013
Java in the High Performance Computing arena: Research, practice and
experience, Science of Computer Programming, vol. 78, no. 5, pp. 425.

[12] Lewis, J.P, Neumann, U, 2004 Performance of
Java versus C++, University of Southern California,
¡http://scribblethink.org/Computer/javaCbenchmark.html¿

[13] Oracle n.d., The Java HotSpot Performance Engine
Architecture¡http://www.oracle.com/technetwork/java/whitepaper-
135217.html¿

[14] Oancea, B, Rosca, IG, Andrei, T & Iacob, AI 2011 Evaluating
Java performance for linear algebra numerical computations, Procedia
Computer Science, vol. 3, pp. 474-478.

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016




