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Abstract—This manuscript presents an automated 

classification approach to classify lesions into four categories of 

liver diseases, based on Computer Tomography (CT) images. 

The four diseases types are Cyst, Hemangioma, Hepatocellular 

carcinoma (HCC), and Metastasis. 

The novelty of the proposed approach is attributed to 

utilizing the difference of features (DOF) between the lesion 

area and the surrounding normal liver tissue. The DOF 

(texture and intensity) is used as the new feature vector that 

feeds the classifier. The classification system consists of two 

phases. The first phase differentiates between Benign and 

Malignant lesions, using a Support Vector Machine (SVM) 

classifier. The second phase further classifies the Benign into 

Hemangioma or Cyst and the Malignant into Metastasis or 

HCC, using a Naïve Bayes (NB) classifier. The experimental 

results show promising improvements to classify the liver 

lesion diseases. Furthermore, the proposed approach can 

overcome the problems of varying intensity ranges, textures 

between patients, demographics, and imaging devices and 

settings. 

 
Keywords—CAD system, Difference of feature, Fuzzy-c- 

means, Lesion detection, Liver segmentation. 

I. INTRODUCTION 

iver is an important organ to human where it performs 

vital functions such as detoxification of hormones, 

drugs, filter the blood from waste products, production of 

proteins required for blood clotting. Therefore, liver disease 

has to be considered seriously. The early detection and 

correct diagnose will-assist to reduce the cancer death and 

will lead to a successful treatment and full recovery. There 

are two classes of a liver lesion: benign and malignant. The 

benign lesions (noncancerous) are quite common and 

usually do not produce symptoms. For this work 

Hemangioma, and Cyst considered as benign. Malignant 

lesions (cancerous) are divided into primary liver cancer 

where originated in the liver and metastatic liver cancer 

which spreads from cancer sites elsewhere in the body. 

Metastasis and HCC considered as malignant [1]. 

There are several types of imaging techniques performed 

for examination of liver tumors such as Computed 

tomography (CT) scan, Ultrasound, X-Ray, and Magnetic 

Resonance Imaging (MRI) to diagnose liver tumors. The CT 

scan considers one of the most robust imaging modalities. 

Although during the last years, the quality of CT images has 

been significantly improved. Moreover, a vast amount of 

information can be obtained from CT [2]. 
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However, experienced doctors face some difficulties to 

make an accurate diagnosis that leads to more tests and 

invasive procedures (biopsies) [3]. Computer-aided 

diagnosis (CAD) systems were proposed for liver tissue 

characterization and classification, and gained more 

attention within the evolution in image processing and 

artificial intelligence to adopt as a second hand for the 

radiologist and assist in diagnosis and reduce the number of 

biopsy or surgery that would otherwise have been necessary 

[4]. 

The CAD system considers feature extraction as 

important stage, which is used in lesion classification and 

applied for understanding radiological images by extracting 

low level features such as intensity, texture, and shape 

features and feed them to a classifier to diagnose liver 

tumors [5], [6]. Therefore, several approaches have been 

applied to determine the appropriate features to fuel 

classifiers in order to increase the diagnostic accuracy. 

In this paper, an overview of various liver diseases’ 

classification methodologies is explained briefly. The 

novelty of this work lies in using the difference of intensity 

and texture features between a lesion and its surrounding 

area from normal liver tissue. The classification is done 

through two phases. Firstly, proposed system classified 

lesion into benign or malignant. Secondly, reclassify benign 

into Hemangioma or Cyst and malignant into Metastasis or 

HCC. 

The paper is organised as follows. Section II presents the 

related literature research, section III presents the proposed 

work, which includes Liver segmentation and lesion 

detection, feature extraction, and classification; section IV 

deals with the experiments results and discussion while 

section V summarizes the study findings through the 

conclusion. 

II. RELATED WORK 

Numerous CAD systems have been developed to classify 

the liver tumors into benign and malignant. While other 

systems proposed to classify specific liver diseases such as 

Cyst, Hemangioma, Hepatic adenoma and Focal nodular 

hyperplasia (which are of benign); Metastatic, HCC, and 

Cholangiocarcinoma (which are malignant). 

Extracting appropriate features is considered to be the 

most important stage in CAD system for classification of 

liver diseases. Hence, previous research developed the 

accuracy of the CAD system to classify the liver lesion 

based on a type of features. These features can be 

categorised depending on the type of features, into intensity-

based features, texture-based features or combined features 

between intensity and texture to be fed to a classifier.  

Dankerl et al. [7] proposed a CAD system where uses an 

image search engine exploiting texture analysis of liver 
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tumor image data for enquiry tumors from a database to 

retrieve the lesion type (Cyst, Hemangioma, HCC, and 

Metastasis). The radiologist has drawn ROI around the 

lesion. Total number of images is 80 that used for training 

and testing, which divided into 20 Hemangioma, 20 

Metastasis, 20 HCC, and 20 Cysts and it recorded an 

accuracy rate 95.5%. 

In yet another classification of liver tissue from CT 

images system was presented by Mougiakakou et al. [8]. 

The lesions were drawn by an experienced radiologist as a 

region of interest corresponding to the normal liver tissue, 

Cyst, Haemangioma, and HCC. Five different types of 

texture features are extracted for each ROI as the following, 

first-order statistics, spatial gray level dependence matrix, 

gray level difference method, Laws texture energy 

measures, and fractal dimension measurements. The dataset 

size 147; 83 have been used as training set, 32 as validation 

set, and 32 as testing. However, the majority of the cases in 

the dataset are normal liver tissue as 76 samples. CAD 

system depends on multiple classifier system consist from 

five Neural Networks (NNs), a system used one of NN as 

primary classifier and other four NNs trained by back-

propagation algorithm with adaptive learning rate and 

momentum. Final classification results are based on the 

application of a voting scheme across the outputs of the 

individual NNs with obtained 90.63% accuracy for testing 

set and 93.75% for the validation set. 

Additional study in liver classification was provided by 

Safdari et al. [9]. The classification system was developed to 

characterize the liver lesion in CT image into 

Haemangioma, Metastasis, and Cyst based using a visual 

word histogram. While the proposed system builds a 

dictionary for a training set using local descriptors and 

representing a region in the image using a visual word 

histogram. Where, a scan window moves across the image 

and is determined to be normal liver tissue or a lesion. The 

radiologist determined the liver boundary and drew ROI 

around the lesion. Totally dataset 73 cases divided into 25 

Cysts, 24 Metastases, and 24 Haemangiomas. The accuracy 

recorded was 95%. 

The most recently study in liver lesion classification was 

provided by Doron et al. [10]. The combination of texture 

features (GLCM, LBP, Gabor, and GLBP) and intensity 

feature (gray level intensity) are obtained from a given 

lesion. For classification module, SVM and KNN classifier 

were used to distinguish between four types of liver tissues, 

namely: Cyst, Hemangioma, Metastases, and Healthy tissue. 

The best result of 97% accuracy was obtained with 

combination of Gabor, LBP and Intensity features using 

SVM classifier. 

Table I depicts a generic comparison between various 

proposed CAD systems as previously stated. 

After surveying the published papers, many researchers 

try to diagnose liver disease using different techniques to 

increase the classification performance. However, it has 

been found that the previous studies on CAD systems 

usually used the absolute value of features, which are 

extracted from lesion regions. As a consequence, the 

performance is varied significantly under different 

acquisition conditions. For example, the CT machines or 

operators are different. In this study the surrounding normal 

tissue of liver in the same image is used as reference. So for 

a certain feature, we calculate the difference of features 

between the lesion and surrounding normal liver tissue and 

employ it as a new feature vector in our proposed system. 

 

TABLE I 
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Dankerl et al. [7] 80 x x x x 95.5% 

Mougiakakou et al. [8] 147 x x x - 93.75% 

Safdari et al. [9] 73 - x x x 95% 

Doron et al. [10] 92 x x x x 97.3% 

 

III. PROPOSED WORK 

The main goal of this paper is to design a CAD system to 

classify CT liver lesion at the first stage into one of the two 

classes: benign and malignant as presented in figure 1. Then, 

reclassified as disease type into Hemangioma or Cyst for 

benign and Metastasis or HCC for malignant.  

Firstly, Regions of Interest (ROIs) that reflect lesion is 

being detected automatically by the proposed system from 

CT images. Secondly, the area surrounding the lesions from 

the normal liver tissue are extracted by the proposed system 

is driven to a feature extraction module, where three 

different texture feature sets are obtained using 

HarrWavelet, Tamura (Coarseness, Contrast, Directionality) 

and GaborEnergy, and seven intensity features are 

calculating through Histogram, Mean, Variance, Skewness, 

Kurtosis, Energy and Smoothness. In addition to a five 

shape features. Namely, area, dispersion, elongation, and 

two circularity of lesion features. Then, the shape features 

and combined difference between the features value (texture 

and intensity) from the lesion and the surrounding normal 

liver tissue were fed into SVM in the first phase to classify 

lesions either benign or malignant.  Naïve Bayes classifier is 

used in a second phase to classify the output from phase one 

into possible one of the four types of disease, Hemangioma, 

Cyst, HCC, and Metastasis. 

 CAD system 

The proposed CAD system consists of three main 

consecutive stages: (1) liver segmentation and cropped 

lesion as first ROI then cropped normal liver tissue 

surrounding the lesion as second ROI, (2) features extraction 

stage. Intensity and texture features extracted from the 

lesion and the surrounding area, and (3) lesion classification, 

which is divided into two stages. First stage, classifying a 

given lesion into either benign or malignant, second stage 

reclassifying previously identified benign to either 

Hemangioma or Cyst and previously identified malignant 

into either Metastasis or HCC. Figure 1 depicts the 

architecture of the proposed CAD system. 
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Fig. 1. CAD system architecture 

 

A. Liver and lesion segmentation 

The system uses two-step processes. Firstly, segment the 

liver by generating the binary liver mask. The CT grayscale 

image is split into three classes using a memory efficient 

implementation of the fuzzy c-means (FCM) clustering 

algorithm [11], [12] as illustrated in figure 2.  

 

 
Fig. 2. Liver and Lesion detection: (a) Original CT image; (b) Lesion 

highlighted; (c) Liver highlighted; (d) Other organs highlighted; (e) Liver 

mask. 

 

The computational efficiency is achieved by using the 

histogram of the image intensities during the clustering 

process instead of the raw image data. After that the 

combinations of several morphological operations were 

applied to remove the small object outside the liver region 

where the liver defined as the largest connected pixel. The 

morphological operation is defined as follows: 

             𝑓 ∗ 𝑏 = (𝑓 𝑏)০𝑏                            (1) 

Where f is the target image, b is the structuring element, 

() means morphological closing, and ০ means 

morphological opening . Then region growing is applied to 

segment tumors [13], where the region is iteratively grown 

by comparing all unallocated neighbouring pixels to the 

region.  The difference between a pixel intensity value and 

the region mean is used as a measure of similarity. The pixel 

with the smallest difference measured this way is allocated 

to the respective region.  This process stops when the 

intensity difference between region mean and new pixel 

become larger than a certain threshold (t). The optimum 

threshold was calculated based on measures of fuzziness to 

detect the ambiguous pixels, such that pixels with 

membership values greater than or equal to the threshold 

will be assigned to the appropriate clusters and those pixels 

with membership values less than the threshold will be 

marked as ambiguous cluster. The process of liver and 

lesion segmentation from CT image is presented in figure 3.  

 
Fig. 3. Liver and Lesion segmentation process: (a) Histogram for CT; (B) 

Original CT image; (C) Extracted liver with noise; (d) After morphological 

operation; (e) Detected lesion; (f) Segmented lesion. 

After extracting the liver and defined the lesion, the 

proposed system will be cropped the lesion and normal liver 

tissue that surrounding lesion where excluded the lesion area 

to extract the features from both ROI. 

B. Feature Extraction 

The next stage in our proposed system is feature 

extraction, which is considered a critical step in the CAD 

system to classify/characterise the lesion. Basically there is a 

large diverse set of features to be used. Those come under 

three categories; intensity, shape, and texture feature. 

First of all, the proposed system defines two types of ROI 

for extracting the features relating to intensity and texture. 

The first ROI is the lesion, and the second ROI is the 

surrounding normal liver tissue as shown in figure 4. The 

difference of features value between normal and lesion were 

used in classification. 

In contrast with current trends about identification of 

lesions using one ROI (lesion area only), we proposed to use 

a second ROI which surrounds the first ROI. Moreover, the 

second ROI will be used as well to extract features. The 

difference of features between the first ROI and the second 

ROI will be employed as a new feature vector. But there are 

some constrains to identify the second ROI: (1) The second 

ROI must be centrally surrounding the first ROI. (2) The 

ratio between the first and second ROIs are 1:1.5, reached 

by doing several attempts. (3) The first ROI is excluded 

from the second ROI region. As displayed in figure 4. (d). 

 
Fig. 4. Lesion and normal liver tissue segmentation: (a) Original CT image; 

(b) First ROI is red box for lesion and second ROI is blue box for 

surrounding normal liver tissue; (c) cropped lesion box; (d) cropped 

surrounding normal liver tissue box. 

The most prominent features (intensity features and 

texture features) that represent various sets of features 

depend on their pixel intensity relationship and statistics. In 

our proposed system, we extracted intensity and texture 

features from the lesion and surrounding area from normal 

liver tissue were used the difference between them in 

classifier as shown in figure 5. 
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Fig. 5. Features extraction process 

The intensity features derived from histogram features, 

which describe the relative frequency of pixel intensity 

value in the image which consider Mean, Standard 

Deviation, Skewness, Kurtosis [16]–[18]. The mean (µ) 

calculates the estimation of the average level of intensity in 

the ROI region. 

                      µ =
1

𝑁
 𝐼(𝑥, 𝑦)(𝑥 ,𝑦)∈𝑅𝑂𝐼

                           
(2) 

Where, I(x,y) is the gray level at pixel (x,y), and I is the 

total number of pixel inside the ROI. The difference of mean 

gray level between the lesion and surrounding normal liver 

tissue is: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝜇 =
1

𝑁
 𝐼𝑁𝑜𝑟𝑚𝑎𝑙 𝑥 ,𝑦 ∈𝑅𝑂𝐼  𝑥, 𝑦 −

                                   
1

𝑀
 𝐼𝑙𝑒𝑠𝑖𝑜𝑛(𝑥 ,𝑦)∈𝑅𝑂𝐼 (𝑥, 𝑦)                      (3) 

where INormal(x,y) means the gray level at pixel (x,y) of 

normal surrounding liver tissue ROI, ILesion(x,y)means the 

gray level at pixel (x,y) of lesion ROI, M is the total number 

of pixels inside the ROI of normal liver and N is the total 

number of pixels inside the ROI of lesion. 

Standard deviation (σ) is a measure of the dispersion of 

intensity 

                         σ =  
1

𝑁
 (𝑥𝑖 − μ)2𝑁

𝑖=1                                (4) 

Skewness (γ1) is a measure of histogram symmetry 

                               γ1 =
1

𝑁∗𝜎3
 (𝑥𝑖 − μ)3𝑁

𝑖=1                             (5) 

Kurtosis (K) is a measure of the tail of the histogram. 

                  𝐾 =
1

N∗𝜎4
 (𝑥𝑖 − μ)4𝑁

𝑖=1                                (6) 

Where the difference of Standard deviation, Skewness, 

and kurtosis between normal liver tissue and lesion is 

calculated in the same way as mentioned previously in the 

mean calculation. 

As well as, three types of texture features (HaarWavelet, 

Gabor energy, and Tamura (Coarseness, Contrast, and 

Directionality)) were extracted for each ROI. Gabor feature 

used to measure the similarities between Gabor mask and 

neighbourhoods in the image. Each Gabor mask consists of 

Gaussian windowed sinusoidal waveforms. While Tamura’s 

feature extracted to calculate coarseness, contrast, and 

directionality. The difference of features was used to replace 

the lesion features absolute value.  
For each lesion ROI, the feature extraction module 

calculates a five shape feature. Namely, area, dispersion, 

elongation, and two circularity of lesion features. 

Area of the segmented lesion is computed by counting the 

number of pixels inside the ROI1. 

                            𝐴 = 𝑛[ROI1]                                      (7) 

Where, n[ROI1] represents the count of number of the 

pixel inside lesion. 

Dispersion property is estimating the irregularity of the 

lesion, which identifies the irregular shape by the equation 

below. 

                    Dispersion =
𝑀𝑎𝑥  𝑅𝑎𝑑𝑖𝑢𝑠

𝐴𝑟𝑒𝑎
                            (8) 

Elongation property is differentiating the regular oval 

mass from the irregular. This value is given by the following 

equation. 

                  Elongation =
𝐴𝑟𝑒𝑎

(2∗𝑀𝑎𝑥  𝑅𝑎𝑑𝑖𝑢𝑠 )2                       (9) 

The circularity of the lesion is expressed by the following 

equation. Where the result takes a value of 1 for perfect 

circles. 

           circularity 1 =  
𝐴𝑟𝑒𝑎

(𝜋∗ 𝑀𝑎𝑥  𝑅𝑎𝑑𝑖𝑢𝑠 2)
                      (10) 

Moreover, the following formula is useful in 

differentiating circular/ oval lesion from irregular. Where 

the result takes a value of 1 for perfect circles. This value 

measures how a lesion is similar to an ellipse. 

          circularity 2 =  
 𝑀𝑖𝑛  𝑅𝑎𝑑𝑖𝑢𝑠

𝑀𝑎𝑥  𝑅𝑎𝑑𝑖𝑢𝑠
                              (11) 

C. Classification 

Classification is the last stage in an automated CAD 

system, where its input is the extracted set of feature 

vectors(s) from the previous stage. The goal of the 

classification stage is to apply a learning-based approach 

considering its input feature vector(s), for the purpose of 

disease diagnosis. 

After extraction the features from liver lesion and normal 

liver tissues that surrounding the lesion then the difference 

between them is computed and used as an input to the 2-

phase classifier. Phase-1 uses Support Vector Machine 

(SVM) to classify lesion as benign or malignant and phase-2 

uses Naïve Bayes (NB) to classify types of liver disease.  

IV. EXPERIMENTAL RESULTS 

This section contains the experimental model. The dataset 

(presented later) divided into testing data and training data. 

The experiment focused on extract the features from both of 

lesion and normal liver tissue that surround the lesion then 

use the difference between of them to build a feature vector. 

A new feature vector used to feed the classifier to 

differentiate between liver lesion into benign or malignant 

for the first phase and then reclassify as a type of disease in 

the second phase. As shown in figure 6.  

Fig. 6. Model of experiment 
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A. Dataset and experimental setup 

We obtained 60 patient cases, where liver lesions are 

identified in CT scan and divided into malignant (18 

Metastases, 15 HCC) and benign (14 Cysts, 13 

Hemangioma) for training. The CT images had varied 

resolutions (x: 190-308 pixels, y: 213-387 pixels, slices: 41-

588) and spacing (x, y: 0.674-1.007mm, slice: 0.399-

2.5mm). 

The experiments have been done on Intel Core I5- 3.40 

GHz computer with 8 Gigabytes of RAM under windows 7 

64-bit operating system. The Matlab R2014a was used to 

run experiments and extract the features and Weka 3.6.11 

machine learning tool [21] was used for classification. 

B. Evaluation and result 

This section will be displayed the evaluation and result 

for each segmentation stage and classification lesion in our 

proposed system. 

 Segmentation phase 

The proposed system was tested on whole dataset. To 

measure the segmentation performance in all cases the two 

coefficients are used to obtain the accuracy of the liver 

segmentation, namely: Jaccard similarity metric (JC), also 

known as the Tanimoto coefficient [14], and Dice 

coefficient [15]. 

 

Fig. 7. evaluation of Liver segmentation: (a) Ground truth of Liver 

segmentation by radiologist; (b) Overlap liver segmentation proposed 

system and ground truth; (c) Box is ground truth of the lesion drawn by 

expert and red area is the mask generated by proposed system; (d) Set 

matching indicated are the true negative, false positive, false negative, and 

true positive areas. 

 

As shown in figure 7, we define X as a set of all pixels in 

the image. The ground truth T ∈ X as the set of pixels that 

were labelled as liver by the radiologist. Similarly, we 

defined S ∈ X as the set of pixels that were labelled as liver 

by the proposed system. 

A true positive set is defined as TP = T ∩ S, the set of 

pixels common to T and S. True negative is define as TN =

T ∩ S , the set of pixels that were labelled as non-liver in 

both sets. Similarly, the false positive set is FP = T ∩ S and 

the false negative set is FN = T ∩ S . 

Jaccard similarity metric, 𝐽 𝑇, 𝑆 =
 𝑇∩𝑆 

 𝑇∪𝑆 
=

 𝑇𝑃 

 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
(12) 

Dice coefficient, 𝐷 𝑇, 𝑆 =
2∗  𝑇∩𝑆 

 𝑇 + 𝑆 
=

2 ∗  𝑇𝑃 

 𝑇𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃 
 (13) 

 The evaluate accuracy of the proposed liver segmentation 

method compared to the ground truth; we utilise Jaccard and 

Dice coefficient method which depicted in the equation 7 

and 8. The accuracy of segmentation was 0.82 and 0.9 

respectively. 

 

 Classification phase 

The proposed system was tested on a CT image dataset 

through used 12 pathological CT sets, divided into 

malignant (3 Metastases, 3 HCC) and benign (3 Cysts, 3 

Hemangioma). The classifier output compared with original 

class attribute to generate confusion matrix and identifying 

True Positive (TP) were malignant disease classified as 

malignant disease correctly, True Negative (TN) benign 

disease classified as benign disease correctly, False Positive 

(FP) classified benign disease incorrectly as malignant 

disease, and False Negative (FN) classified malignant 

disease incorrectly as benign disease. 

To evaluate the proposed classification performance 

several standard measures were used, as defined as below: 

    Accuracy= (TP+TN)/ (TP+TN+FP+FN)                (14) 

    Sensitivity=TP/ (TP+FN)                                        (15) 

    Specificity=TN/ (TN+FP)                                       (16) 

The result of the experiments is presented in table II. It 

shows that higher accuracy classification result is achieved 

when divided classification into two stages and using the 

novelty feature difference between normal liver tissue 

around the lesion and the lesion to record 97.5% comparing 

with other experiments without divided into two phases, and 

the accuracy obtained 94.17%. As The ROC curve is 

presented in figure 10. 

 
Fig. 10. ROC curve of accuracy for the diagnosis of four types of lesion, 

using a two phases for classification and direct classification. 

 

 

TABLE II 

RESULT OF THE EXPERIMENT FOR BOTH PHASES (DIFFERENCE OF FEATURES 

TECHNIQUE WERE USED) 

  Phase 1 Phase 2 
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Accuracy  98.3% 98.3 96.7% 98.3% 98.3% 96.7% 

Sensitivity  97% 100% 100% 93.3% 100% 84.6% 

Specificity  100% 97% 95.2% 100% 97.8% 100% 

The proposed system used two type of classifier SVM and 

Naïve Bayes. SVM adopted to classify liver lesion into 

benign and malignant. Naïve Bayes used to reclassify 

benign into Cyst and Hemangioma, Malignant into 

Metastasis and HCC, where used accuracy, sensitivity and 

specificity to measure the performance of the proposed 

system as mentioned in table II. 

According to the experiment the highest results obtained 

when used SVM classifier in phase one and NB classifier in 

phase two, compared to using SVM or NB for two stages, as 

depicted in figure 11. This due to the high performance of 

NB with small datasets [19], [20]. 
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Fig. 11. ROC curve for SVM and NB: (a) ROC curve SVM in phase one; 

(b) ROC curve NB in phase one; (c) ROC curve SVM in phase two; (d) 

ROC curve NB in phase two. 

The baseline Doron et al [10] is already introduced in 

detail in literature section. This baseline is selected since it’s 

the most recent baseline. Moreover, it represents the state-

of-art with its high accuracy. Due to the limited availability 

of the used dataset, we have regenerated the baseline by 

implementing [10] and applying it on our dataset. The result 

of the proposed system compared, to the baseline, is shown 

in Table III. 
TABLE III 

COMPARISON BETWEEN PROPOSED METHODS AND BASELINE 

 

Malignant/Benign 

M
et

a
st

a
si

s 

H
C

C
 

C
y

st
s 

H
em

a
n

g
io

m
a

 

Baseline 91.7% 93.2% 91.5% 94.9% 93.2% 

Proposed 98.3% 96.7% 98.3% 98.3% 96.7% 

 

The importance of the proposed system is the ability to 

classify the liver lesion into benign and malignant with the 

high accuracy 98.3% through the novelty of building feature 

vector based on the difference of feature between a lesion 

and normal liver tissue that surround the lesion and 

reclassify benign and malignant into a specific type of liver 

disease (HCC, Cyst, Hemangioma, and Metastasis) to record 

the average accuracy 97.5%. 

V. CONCLUSION 

This paper proposed a two phases approach to classify 

liver diseases, depending on a feature-difference approach, 

from CT scan images. In the first phase, it classifies a lesion 

into benign or malignant. Then, in the second phase, it 

further classifies the lesion into Cysts, Hemangioma, 

Metastasis, or HCC. The novelty of the proposed approach 

is the use of difference-of-features (DOF) from the lesion 

and the surrounding normal tissues. Also, the hierarchical 

classification approach helps in improving the classification 

further into the four diseases.  This DOF has improved the 

accuracy to 98.3% for benign and malignant in the first 

phase, and to 97.5% for Cysts, Hemangioma, HCC and 

Metastasis in the second phase. More importantly, the DOF 

helps overcoming one of the major issues, namely the 

variation of intensity and texture ranges between different 

patients, ages, demographics and/or imaging devices. The 

proposed system can be extended for other types of liver 

diseases such as cholangiocarcinoma, and abscesses and 

also for other types of medical images like MRI. 
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