
 

  

Abstract— A problem of optimal control of vibrations in a 

hyperbolic distributed system is considered by applying 

pointwise actuators.  Modal space technique simplifies this 

problem to an optimal control of a linear time-invariant 

lumped-parameter system. A direct computational method is 

then used to evaluate the modal optimal control and trajectory. 

The method is based, in general, on various orthogonal 

expansions that approximate the modal state variables. The 

formulation is straightforward and convenient for digital 

computation. 

 

 
Index Terms— Pointwise actuators, Distributed parameter 

systems, Lumped parameter system, Hyperbolic partial 

differential equation, Optimal control, Orthogonal polynomials 

 

I. INTRODUCTION 

PTIMAL control of hyperbolic distributed parameter 

systems (DPS) has a wide range of applications in the 

modern engineering structures. Control of undesired 

vibrations in mechanical systems has been a challenging 

problem in many engineering applications. Active vibration 

suppression is one of the many approaches to control 

structural vibrations by incorporating actuators [1]-[2]. The 

number of actuators and their locations optimally are 

important factors in studying vibration control of mechanical 

systems [3]. 

Some orthogonal functions are convenient and sharp tools 

for obtaining approximate solutions of dynamic systems [4]-

[11]. These techniques are linear, non-iterative, non-

differential, non-integral, and appropriate for computation. 

Here, we solve the optimal problem by applying state and/or 

control parametrization by orthogonal expansion that results 

to finite-term series whose coefficients are determined 

optimally [12]. In fact, the problem reduces to an algebraic 

system of equations, thus avoiding the difficult integral 

equations created from variational methods and the 

maximum principle [13]. It is an approach different from the 

standard variational method [14], which offers an attractive 

computational scheme. 
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This paper studies the active control of vibrations for 

hyperbolic distributed systems using pointwise actuators that 

suppress unwanted vibrations in the system. The equation of 

motion is given by a partial differential equation that 

includes Dirac functions due to the pointwise actuators. The 

objective function is specified as a weighted quadratic 

functional of the dynamic responses of the hyperbolic 

system, which is to be minimized at a specified terminal time 

using continuous piezoelectric patches (voltages). The 

expenditure of the control force is included in the objective 

function as a penalty term. In this paper, we employ the 

suggested technique to a wave equation subject to the initial 

and boundary conditions and then minimize the cost 

functional in a given time period. A detailed formulation of 

the method is given in sections 3, 4 and 5.  

  

II. CONTROL PROBLEM 

We consider a control system based on the wave equation 
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where δ  is the Dirac delta function; tf is the terminal time; 

( )2( , ) [0, ] [0, ]
f

u x t L l t∈ ×  denotes the deflection of the 

mechanical system and for each n, 
nx  is a location of 

actuator with ( )nh t , the corresponding applied control 

voltage, to be determined. After changing the right side of 

the above equation to vector form, we have 
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consider (1) subject to the homogeneous boundary 

conditions 

 

(0, ) ( , ) 0,u t u l t= =  (2) 

 

along with the initial and terminal conditions 
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The problem is to determine the solution from the admissible 

set 
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which solves the minimization problem 
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Here, 
1 2 3, ,µ µ µ  are nonnegative weighting constants 

satisfying the conditions 
1 2 30, 0.µ µ µ+ > >   

  

III. MODAL SPACE OPTIMIZATION PROBLEM 

We transform the DPS optimization problem (5) into a 

modal lumped parameter (MLP) problem by means of the 

eigenfunction ( ) sin ,j jx xφ λ=  1,2,3,j = …  where 

/j j lλ π=  are the corresponding eigenvalues. To do this, 

we substitute 

 

1

( , ) ( ) ( )
N

n n

n

u x t z t xφ
=

=∑  (7) 

 

in (1), and then use the orthogonal properties of ( )j xφ  over 

interval [0, l]. This results to 
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over-dots represent the 2nd derivative with respect to time.  

In a similar manner, the initial and terminal conditions (3) 

are replaced by 
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 Λ =   in order to have (8)-(9) in the vector 

form: 
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Here, 
, ,

1
( )

M
T

M L m L
m

t
=

 Φ =  φφφφ is an M L×  matrix. The optimal 

problem (4)-(6) thus reduces to an equivalent MLP problem: 
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IV. STATE PARAMETRIZATION 

This section deals with developing a direct method [12] 

for solving the model control problem (11) by means of 

orthogonal functions ( )np t  over time interval [0, tf]. We 

parametrize ( )mz t  by setting 
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where , 1, 2,3, ,mka k K= … , are unknown coefficients. 

Next, we set ( ) diag T
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allows us to express the vectors ( )Z t  and Zɺɺ  as 
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The minimization problem from (11) thus takes the form 
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V. SOLUTION OF MAIN PROBLEM 

The second order differential equation in (10) after using 

(13) is written as 
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Thus, the control vector ( )H t  in (14), after slight algebraic 

manipulations, turns out as an explicit function of A, i. e., 
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Ψ = Φ Φ is an M x M matrix. With this, 

we arrive at a simple alternate form of problem (14) stated 

below 
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Now the cost functional 
, ( )M KJ A  in (17) can be 

differentiated easily with respect to A. The necessary 

condition for optimality ‘
,( ( )) / 0M Kd J dt =A ’ thus leads 

us to an MK linear algebraic equations that determine the 

unknown vector A.  The optimal value of 
, ( )M KJ A  brings 

to an approximate solution of the desired problem (4)-(7).  

  

VI. A NOTE ON SIMULATIONS 

Different kinds of orthogonal functions may be applied to 

parameterize the state variable in section 4. These include 

shifted Legendre and Radau polynomials. In addition, we 

may consider specific orthogonal interpolants ( )kp t  [15] 

that have additional properties like (0) 0
k

p =
 

and/or 

(0) 0,
k

p =ɺ  1,2,3, ,k K= … . These functions prove useful 

in numerical computation of the optimal value.  
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