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Abstract—This paper is devoted to the corrector of the
homogenization of a quasilinear elliptic problem with oscillating
coefficients in a periodically perforated domain. A nonlinear
Robin condition is prescribed on the boundary of the holes,
which depends on a real parameter γ ≥ 1. We suppose that the
data satisfy some suitable assumptions to ensure the existence
and uniqueness of a weak solution of the problem. The periodic
unfolding method is used to prove the result.

Index Terms—correctors, homogenization, nonlinear, unfold-
ing method, quasilinear.

I. INTRODUCTION

IN this paper, we study the corrector of the homoge-
nization of a quasilinear elliptic problem with oscillating

coefficients posed in a periodically perforated domain. We
assume that the holes are of the same size as the period and
on the boundary of the holes, we prescribe a nonlinear Robin
condition, which depend on a real parameter γ ≥ 1. Some
suitable growth conditions are also assumed on the nonlinear
boundary term while a weaker than a Lipschitz condition
is prescribed on the quasilinear term. The assumptions used
here are the same as those considered in [9] and [16] (see also
[4]) for the existence and uniqueness of the weak solution
of the problem to hold.

The physical motivation is that, in several composites the
thermal conductivity depends in a nonlinear way from the
temperature itself like the case of a glass or wood, where the
conductivity is nonlinearly increasing with the temperature,
as well as ceramics, where it is decreasing, or aluminium
and semi-conductors, where the dependence is not even
monotone (see [1], [2] and [23] for details). On the other
hand, nonlinear Robin conditions appear in several physical
situations like in some chemical reactions (see for instance
[17]) or climatization (see [24]).

To prove the main result in this work, we apply the Peri-
odic Unfolding Method (PUM), a method of homogenization
recently formed for the periodic case. It was first introduced
in [11] for fixed domains (see also [12] for a general setting
and detailed proofs and [20] for more simple approach),
extended to perforated domains in [14] (see also [15] for
complete proofs and [16] for more applications), to more
general situations and comprehensive presentation in [10]
and to time-dependent functions in [22]. Some nice proper-
ties of this method are: it only deals with the classical notion
of convergences in Lp-spaces; any function in the perforated
domain is mapped to the unfolded function in a fixed domain;
and one do not need any extensions operators anymore when
dealing with nonhomogeneous boundary conditions, like the
case in this work.
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The correctors for the homogenizations of a class of linear
elliptic problem in a periodically perforated domain when
the oscillating matrix field depends on a weakly converging
sequence, a linear elliptic problem with Dirichlet condition
in a fixed domain and a linear elliptic problem with Robin
boundary conditions in a perforated domain have been done
in [8], [12] and [15], respectively, via PUM. Some corrector
results were also obtained by applying mainly some lemmas,
for composites with imperfect interface in [21] (see also
the references therein). One can also refer to [18] for a
corrector result for H-converging parabolic problems with
time-dependent coefficients via Tartar’s oscillating test func-
tions. The reader can also see [6] and the references therein,
for the corrector of some wave equation with discontinuous
coefficients in time. For the correctors for linear Dirichlet
problems with simultaneously varying operators and domains
obtained by using some special test function depending on
the varying matrices and domains, see [19]. The reader is also
referred to [3] and the references therein, for the correctors
for the homogenizations of the wave and heat equations and
to [7] for a corrector result for the wave equation with high
oscillating periodic coefficients.

Let us also mention here, that the existence and uniqueness
of a solution of the problem as well as the homogenization
were already studied in [4] and [5], respectively.

This paper is organized as follows: Section 2 gives the
geometric setting of the problem as well as the assumptions
on the data to ensure existence and uniqueness of the weak
solution of our problem; Section 3 contains a short discussion
on PUM together with the operators and the corresponding
properties that we need to prove the main result; homoge-
nization results for the problem obtained in [5], for which the
corrector result is based, are also recalled in Section 4; and
the main results for this paper, which completes the study of
the asymptotic bahavior in [5], are presented in Section 5.

II. SETTING OF THE PROBLEM

Let us recall the geometric framework for the perforated
domain (see e.g. [14]).

Let b = (b1, b2, . . . , bN ) be a basis of RN (the set of
reference periods) and Y a subset of RN such that,

RN =
∑
k∈ZN

Y +
N∑
j=1

kjbj

 =
∑
ξ∈G

(Y + ξ) ,

where

G =

{
ξ ∈ RN | ξ =

N∑
i=1

kibi, (k1, . . . , kN ) ∈ ZN
}
,

and
Ξε = {ξ ∈ G, ε(ξ + Y ) ⊂ Ω} .
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For z ∈ RN , we let [z]Y =
N∑
j=1

kjbj , be the unique integer

combination of periods such that z − [z]Y is in Y , and

{z}Y = z − [z]Y .

That is,
z = {z}Y + [z]Y , z ∈ RN .

Fig. 1. The numbers {z}Y and [z]Y .

The set Y = (0, 1)N is called the reference cell, that is,

Y =

{
y ∈ RN |y =

N∑
i=1

yibi, (y1, . . . , yN ) ∈ Y

}
.

Let {ε} be a positive sequence converging to zero and for
each positive ε, one can write

x = ε
({x

ε

}
Y

+
[x
ε

]
Y

)
,

for all x ∈ RN .
Denote a bounded open set on RN by Ω. Let also S, a

compact subset of Y , be the reference hole and suppose that
S has a Lipschitz continuous boundary with a finite number
of connected components. Let us also define Y ∗ = Y \S the
perforated reference cell.

The perforated domain Ω∗ε is then given by

Ω∗ε = Ω \ Sε, where Sε =
⋃
ξ∈G

ε(ξ + S).

As introduced in [10] (see also [12]), we set

Ω̂ε = interior

 ⋃
ξ∈Ξε

ε(ξ + Ȳ )

 and Λε = Ω\Ω̂ε,

that is, Ω̂ε is the interior of the largest union of ε(ξ + Ȳ )
cells fully contained in Ω, and Λε contains the parts from
the ε(ξ + Ȳ ) cells that intersects the boundary ∂Ω.

The corresponding perforated sets are then, given by,

Ω̂∗ε = Ω̂ε \ Sε and Λ∗ε = Ω∗ε\Ω̂∗ε.

The boundary of the perforated domain Ω∗ε is,

∂Ω∗ε = Γε0 ∪ Γε1, where Γε1 = ∂Ω̂∗ε ∩ ∂Sε

and
Γε0 = ∂Ω∗ε \ Γε1.

Thus, Γε1 is the boundary of the set of holes contained in Ω̂ε.
In the perforated domain in Figure 2 below, the dark

perforated part is the set Ω̂∗ε and the boundary of the holes
contained is Γε1 while the remaining part is the set Λ∗ε , the
boundary of the holes contained being the Γε0.

Fig. 2. The perforated domain Ω∗ε
and its boundary ∂Ω∗ε = Γε0 ∪ Γε1.

Lastly, let α, β ∈ R with 0 < α < β, and denote by
M(α, β, Y ) the set of N ×N matrix fields

A = (aij)1≤i,j≤N ∈ (L∞(Y ))N×N ,

satisfying

(A(y)λ, λ) ≥ α|λ|2 and |A(y)λ| ≤ β|λ|,

for all λ ∈ RN and a.e. in Y .
The goal of this paper is to provide a corrector result

for the homogenization of the following quasilinear elliptic
problem (P):
− div(Aε(x, uε)∇uε) = f in Ω∗ε,

uε = 0 on Γε0,

Aε(x, uε)∇uε · n+ εγτε(x)h(uε) = gε(x) on Γε1,

where n is the unit exterior normal to Ω∗ε and γ is a real
parameter, with γ ≥ 1.

Let us denote by MO the mean value of an integrable
function on O, given by

MO(Φ) =
1

|O|

∫
O

Φ(y)dy, ∀Φ ∈ L1(O).

We also set
τε(x) = τ

(x
ε

)
,

gε(x) =

{
g
(
x
ε

)
if M∂S(g) = 0,

εg
(
x
ε

)
if M∂S(g) 6= 0,

and

Aε(x, t) = A
(x
ε
, t
)
, for every (x, t) ∈ RN × R.

Suppose that the data satisfy the following assumptions:
A1. f, g, τ are functions such that for every ε,

(i) f ∈ L2(Ω∗ε),
(ii) g is a Y -periodic function in L2(Γε1),

(iii) τ is a positive Y -periodic function in L∞(∂S);

A2. h is a function from R to R such that
(i) h is an increasing function in C1(R) such that

h(0) = 0,
(ii) there exists a constant C > 0 and an exponent q

with 1 ≤ q ≤ ∞ if N = 2 and 1 ≤ q ≤ N

N − 2
if

N > 2 such that ∀s ∈ R,

|h′(s)| ≤ C(1 + |s|q−1);
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A3. A : Y × R 7−→ RN2

, is a matrix field satisfying the
following conditions:

(i) A is a Caratheodory function and Y−periodic
for every t

(ii) for every t ∈ R, A(·, t) ∈M(α, β, Y ),
(iii) there exists a function ω : R 7→ R such that

a. ω is continuous, nondecreasing and ω(t) > 0
for all t > 0,

b. |A(y, t) − A(y, t1)| ≤ ω(|t − t1|) a.e. y ∈ Y,
for t 6= t1 ∈ R,

c. for any r > 0, lim
s→0+

∫ r

s

dt

ω(t)
= +∞.

Now, for p ∈ [1,+∞), we define

V pε =
{
φ ∈W 1,p(Ω∗ε) | φ = 0 on Γε0

}
and

Vε = V 2
ε ,

which is a Banach space for the norm

‖u‖V p
ε

= ‖∇u‖Lp(Ω∗
ε) ∀u ∈ V

p
ε .

The variational formulation (VF) of problem P is then
given by

Find uε ∈ Vε such that∫
Ω∗

ε

Aε(x, uε)∇uε∇v dx+ εγ
∫

Γε
1

τε(x)h(uε)v dσx

=

∫
Ω∗

ε

fv dx+

∫
Γε
1

gε(x)v dσx, ∀ v ∈ Vε.

Under assumptions A1 − A3, the existence and uniqueness
of a solution for problem VF has been proved in [4].

III. A SHORT REVIEW OF THE UNFOLDING METHOD

In this section, we briefly recall the main definitions and
properties of the unfolding operators under PUM, that we
need.

DEFINITION 1. For any Lebesgue-measurable function φ on
Ω∗ε , the unfolding operator T ∗ε is a function from Lp(Ω∗ε) to
Lp(Ω× Y ∗), and is defined by

T ∗ε (φ)(x, y) =

 φ
(
ε
[x
ε

]
Y

+ εy
)
, a.e. in Ω̂ε × Y ∗,

0, a.e. in Λε × Y ∗.

PROPOSITION 2. [10], [12], [14], [15]
Let p ∈ [1,+∞).
1) T ∗ε is linear and continuous.

2) T ∗ε (φψ) = T ∗ε (φ)T ∗ε (ψ) for every φ, ψ ∈ Lp(Ω∗ε).

3) For w ∈ Lp(Ω),

T ∗ε (w)→ w strongly in Lp(Ω× Y ∗).

4) For all φ ∈ L1(Ω∗ε) one has∫
Ω̂∗

ε

φ(x) dx =

∫
Ω∗

ε

φ(x) dx−
∫

Λ∗
ε

φ(x) dx

=
1

|Y |

∫
Ω×Y ∗

T ∗ε (φ)(x, y) dx dy.

5) ∇yT ∗ε (φ)(x, y) = εT ∗ε (∇xφ)(x, y) for every (x, y)
in RN × Y ∗.

6) Let φε ∈ Lp(Ω) such that

φε → φ strongly in Lp(Ω).

Then

T ∗ε (φε)→ φ strongly in Lp(Ω× Y ∗).

DEFINITION 3. For p ∈ [1,+∞], the averaging operator
U∗ε : Lp(Ω× Y ∗) 7−→ Lp(Ω∗ε) is defined as

U∗ε (Φ)(x) =
1

|Y ∗|

∫
Y ∗

Φ
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dz,

a.e. for x ∈ Ω̂∗ε and,

U∗ε (Φ)(x) = 0,

a.e. for x ∈ Λ∗ε .

One has
U∗ε
(

Φ|Ω×Y ∗

)
= Uε (Φ)|Ω∗

ε
,

when Φ belongs to Lp(Ω× Y ∗).
Some of the properties of the averaging operator are given

in the next two propositions.

PROPOSITION 4. [10], [12], [14], [15]
Let p ∈ [1,+∞[.

1) U∗ε is linear and continuous.
2) U∗ε is almost a left inverse of T ∗ε on Ω∗ε .
3) For any φ in Lp(Ω),

‖φ− U∗ε (φ)‖Lp(Ω∗
ε) → 0.

4) Let wε be in Lp(Ω∗ε). Then the following are equivalent:
(i) T ∗ε (wε)→ ŵ strongly in Lp(Ω× Y ∗)

and
∫

Λ∗
ε

|wε|p dx→ 0,

(ii) ‖wε − U∗ε (ŵ)‖Lp(Ω∗
ε) → 0.

PROPOSITION 5. [10] For p ∈ [1,+∞), suppose that ρ
is in Lp(Ω) and θ in L∞(Ω;Lp(Y )). Then the product
Uε(ρ)Uε(θ) belongs to Lp(Ω) and

Uε(ρ θ)− Uε(ρ)Uε(θ)→ 0 strongly in Lp(Ω).

Let us now define the boundary unfolding operator. Here,
we assume that p ∈]1,+∞[ and that ∂S has a finite number
of connected components.

DEFINITION 6. For any Lebesgue-measurable function ϕ
on ∂Ω̂∗ε ∩ ∂Sε, the boundary unfolding operator is defined
by

T bε (ϕ)(x, y) =

{
ϕ
(
ε
[x
ε

]
Y

+ εy
)
, a.e. in Ω̂ε × ∂S,

0 a.e. in Λε × ∂S.

PROPOSITION 7. [10], [15] Let p ∈ [1,∞[. Then
1) T bε is a linear operator.
2) T bε (φψ) = T bε (φ)T bε (ψ) for every φ, ψ ∈ Lp(∂Sε).
3) Let φ ∈ Lp(∂S) be a Y -periodic function.

Set φε(x) = φ
(
x
ε

)
. Then

T bε (φε)(x, y) = φ(y).

4) For all φ ∈ L1(∂Sε), the integration formula is given
by∫

Γε
1

φ(x) dσx =
1

ε|Y |

∫
Ω×∂S

T bε (φ)(x, y) dxdσy.
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5) Let φ ∈ Lp(∂Sε). Then

T bε (φ)→ φ strongly in Lp(Ω× ∂S).

IV. SOME KNOWN RESULTS

In this section, we recall the homogenization results as
obtained in [5], on which the corrector result will be based
upon.

THEOREM 8. Under assumptions A1 − A3, let uε be the
unique solution of VF and γ ≥ 1. Then, there exists (u0, û)
in H1

0 (Ω)×L2(Ω;H1
per(Y

∗)) withMY ∗(û) = 0, such that:
(i) T ∗ε (uε)→ u0 strongly in L2(Ω;H1(Y ∗)),

(ii) T ∗ε (∇uε) ⇀ ∇u0 +∇yû weakly in L2(Ω× Y ∗),

(iii)T bε (h(uε)) ⇀ h(u0) weakly in Lt(Ω;W 1− 1
t ,t(∂S)).

Case 1. If γ = 1, the couple (u0, û) is the unique solution
in the space H1

0 (Ω)×L2(Ω;H1
per(Y

∗)) with MY ∗(û) = 0,
of the limit equation∫

Ω×Y ∗
A(y, u0)(∇u0 +∇yû)(∇φ(x) +∇yΨ(x, y)) dx dy

+|∂S|M∂S(τ)

∫
Ω

h(u0)φ dx

= |Y ∗|
∫

Ω

fφ dx+ |∂S|M∂S(g)

∫
Ω

φ dx

for all φ ∈ H1
0 (Ω) and Ψ ∈ L2(Ω;H1

per(Y
∗)).

Case 2. If γ > 1, the couple (u0, û) is the unique solution
in the space H1

0 (Ω)×L2(Ω;H1
per(Y

∗)) with MY ∗(û) = 0,
of the limit equation∫

Ω×Y ∗
A(y, u0)(∇u0 +∇yû)(∇φ(x) +∇yΨ(x, y)) dx dy

= |Y ∗|
∫

Ω

fφ dx+ |∂S|M∂S(g)

∫
Ω

φ dx

for all φ ∈ H1
0 (Ω) and Ψ ∈ L2(Ω;H1

per(Y
∗)).

COROLLARY 9. Under assumptions A1−A3, let uε be the
unique solution of VF. Then, if γ ≥ 1,

ũε ⇀
|Y ∗|
|Y |

u0 weakly in L2(Ω),

where ˜ denotes the extension by 0 to Ω.
If γ = 1, the function u0 is the unique solution of the limit

problem
− div(A0(u)∇u0) +

|∂S|
|Y |
M∂S(τ)h(u0)

=
|Y ∗|
|Y |

f +
|∂S|
|Y |
M∂S(g) in Ω

u0 = 0 on ∂Ω.

If γ > 1, the function u0 is the unique solution of the problem − div(A0(u)∇u0) =
|Y ∗|
|Y |

f +
|∂S|
|Y |
M∂S(g) in Ω

u0 = 0 on ∂Ω.

The homogenized matrix field A0(t) is given by

A0(t)λ =
1

|Y |

∫
Y ∗
A(y, t)∇wλ(t, y)dy, ∀λ ∈ RN ,

where wλ(y, t) = −χλ(y, t) + λ · y a.e. in Y ∗ and χλ(·, t)
is, for every t, the solution of the cell problem

− div(A(·, t)∇χλ(·, t) = − div(A(·, t)λ in Y ∗,

A(·, t)∇χλ(·, t) · n = 0 on ∂S,

χλ(·, t) Y − periodic,
MY ∗(χλ(·, t)) = 0.

REMARK 10. One has (see e.g. [13] for the details of the
computation),

û(x, y) = −
N∑
i=1

χ
ei

(y, u0(x))
∂u0

∂xi
(x), (1)

where u0 is the one given in Theorem 8.

V. MAIN RESULT

First we recall a classical result that we need to prove the
main result given in Theorem 14.

LEMMA 11. [10] Let {Dε} be a sequence of n× n matrix
fields in M(α, β,O) for some open set O, such that

Dε → D a.e. on O,

(or more generally, in measure in O). If the sequence {ζε}
converges weakly to ζ in [L2(O)]N , then

lim inf
ε→0

∫
O
Dεζεζε dx ≥

∫
O
Dζζ dx.

Furthermore, if

lim sup
ε→0

∫
O
Dεζεζε dx ≤

∫
O
Dζζ dx,

then ∫
O
Dζζ dx = lim

ε→0

∫
O
Dεζεζε dx,

and
ζε → ζ strongly in [L2(O)]N .

Next, we present a proposition which is also essential in
proving the corrector result.

PROPOSITION 12. Let γ ≥ 1 and suppose M∂S(g) 6= 0.
Under the assumptions in Theorem 8, one has

T ∗ε (∇uε)→ ∇u0 +∇yû strongly in L2(Ω× Y ∗), (2)

and
lim
ε→0

∫
Λε

|∇uε|2 dx = 0. (3)

Proof:
We prove the case γ = 1. When γ > 1, the proof is similar

but the the nonlinear term in the boundary approaches 0 at
the limit.

By applying PUM,∫
Ω∗

ε

fuε dx =
1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (uε) dx dy,

so that from Proposition 2-3) and Theorem 8 convergence
(i),

lim
ε→0

∫
Ω∗

ε

fuε dx =
1

|Y |
lim
ε→0

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (uε) dx dy

=
1

|Y |

∫
Ω×Y ∗

fu0 dx dy.
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Since f and u0 are just functions of x, one gets

lim
ε→0

∫
Ω∗

ε

fuε dx =
|Y ∗|
|Y |

∫
Ω

fu0 dx. (4)

Also, from Proposition 3.5 of [10],∫
Γε
1

gε(x)uε dσx =
|∂S|
|Y |
M∂S(g)

∫
Ω

u0 dx. (5)

Moreover,

ε

∫
Γε
1

τε(x)h(uε)uε dσx

=
1

|Y |

∫
Ω×∂S

τ(y)T bε (h(uε))T ∗ε (uε) dx dσy,

from Proposition 7. Thus, one obtains from Theorem 8 (i)
and (iii) that,

1

|Y |
lim
ε→0

(∫
Ω×∂S

τ(y)T bε (h(uε))T ∗ε (uε) dx dσy

)

=
|∂S|
|Y |
M∂S(τ)

∫
Ω

h(u0)u0 dx,

which yields,

lim
ε→0

(
ε

∫
Γε
1

τε(x)h(uε)uε dσx

)

=
|∂S|
|Y |
M∂S(τ)

∫
Ω

h(u0)u0 dx.

(6)

Now, using Lemma 11 with

Dε = T ∗ε (Aε(x, uε)) and ζε = T ∗ε (∇uε),

together with (4)-(6), one obtains

1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)(∇u0 +∇yû) dx dy

≤ lim inf
ε→0

(
1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε)∇uε∇uε) dx dy
)

≤ lim sup
ε→0

(
1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε)∇uε∇uε) dx dy
)

≤ lim sup
ε→0

∫
Ω∗

ε

Aε(x, uε)∇uε∇uε dx

= lim sup
ε→0

(∫
Ω∗

ε

fv dx+

∫
Γε
1

gε(x)v dσx

−εγ
∫

Γε
1

τε(x)h(uε)v dσx

)

=
|Y ∗|
|Y |

∫
Ω

fu0 dx+
|∂S|
|Y |
M∂S(g)

∫
Ω

u0 dx

−|∂S|
|Y |
M∂S(τ)

∫
Ω

h(u0)u0 dx

=
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)

(∇u0 +∇yû) dx dy,

by choosing φ = u0 and Ψ = û in the limit equation for
Case 1 in Theorem 8. Thus,

lim
ε→0

(
1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε)∇uε∇uε) dx dy
)

=
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)

(∇u0 +∇yû) dx dy

(7)

which implies, using Lemma 11, the convergence given in
(2).

On the other hand, from Proposition 2-4) and the ellipticity
of Aε,

α

∫
Λε

|∇uε|2 dx ≤
∫

Λε

Aε(x, uε)∇uε∇uε dx

=

∫
Ω∗

ε

Aε(x, uε)∇uε∇uε dx

− 1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε))T ∗ε (∇uε)T ∗ε (∇uε) dx dy.

This, together with (7) gives the second convergence in (3).
�

REMARK 13. From the computations above, we have the
following convergence of the energy:

lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇uε∇uε dx

=
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)(∇u0 +∇yû) dx dy.

Let us now have the main result in this paper, the corrector
result.

THEOREM 14. Let γ ≥ 1 and supposeM∂S(g) 6= 0. Under
the assumptions in Theorem 8, we have∥∥∥∥∥∇uε −∇u0 +

N∑
i=1

U∗ε (∇yχei(y, u0(x)))U∗ε
(
∂u0

∂xi

)∥∥∥∥∥
L2(Ω∗

ε)

converges to 0.

Proof:
From Proposition 12, and Proposition 4-4), one has

‖∇uε − U∗ε (∇u0 +∇yû)‖L2(Ω∗
ε) → 0.

This together with Proposition 4-1),3) gives

‖∇uε −∇u0 − U∗ε (∇u0) + U∗ε (∇u0)− U∗ε (∇yû)‖L2(Ω∗
ε)

≤ ‖∇uε − U∗ε (∇u0)− U∗ε (∇yû)‖L2(Ω∗
ε)

+ ‖∇u0 − U∗ε (∇u0)‖L2(Ω∗
ε)

→ 0.

Thus, from (1), Proposition 5 and the computations above,
one obtains∥∥∥∥∥∇uε −∇u0 − U∗ε

(
−

N∑
i=1

∇yχei(y, u0(x))
∂u0

∂xi

)

+U∗ε

(
−

N∑
i=1

∇yχei(y, u0(x))
∂u0

∂xi

)
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−

(
−

N∑
i=1

U∗ε (∇yχei(y, u0(x)))U∗ε
(
∂u0

∂xi

))∥∥∥∥∥
L2(Ω∗

ε)

≤

∥∥∥∥∥U∗ε
(
−

N∑
i=1

∇yχei(y, u0(x))
∂u0

∂xi

)
−

(
−

N∑
i=1

U∗ε (∇yχei(y, u0(x)))U∗ε
(
∂u0

∂xi

))∥∥∥∥∥
L2(Ω∗

ε)

+

∥∥∥∥∥∇uε −∇u0 − U∗ε

(
−

N∑
i=1

∇yχei(y, u0(x))
∂u0

∂xi

)∥∥∥∥∥
L2(Ω∗

ε)

→ 0,

which yields the desired result. �
Remark: The case M∂S(g) = 0 has been recently done in
[8].
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