Crafting a Lightweight Bayesian Inference Engine

Feng-Jen Yang, Member, IAENG

Abstract—Many expert systems are counting on Bayesian inference to perform probabilistic inferences and provide quantitative supports for decisions, hypotheses, forecasts and diagnoses. With this concern in mind, I implemented this probability-based inference engine that is domain independent and can be plugged into future systems to speed up the development life cycle of machine learning and/or inference systems.

Index Terms—Bayesian inference, Bayesian theory, Inference engine.

I. INTRODUCTION

Bayesian inference is rooted from the well-known posthumous theory of Thomas Bayes that was formulated in the 18th century and soon adopted as the mathematical rationale for the processing of uncertain information and the drawing of probabilistic conclusions based on the evidences that have been observed [2]. A counter intuitive calculation that makes Bayesian inference hard to comprehend is that it turns around the evidence and the hypothesis within a conditional probability in a way that most of the beginners are not feeling quite comfortable with. Nonetheless, this unnatural formula derivation is the essential idea that transforms the mathematical notations to meet the probabilistic inference purposes in most of the stochastic-based expert systems. Mathematically this concept can be demonstrated as computing \(P(H|E) \) in terms of \(P(E|H) \), where \(H \) is denoting a hypothesis and \(E \) is denoting an evidence to support this hypothesis.

As stated in most of the probability and statistics books, the algebra involved in this calculation of a conditional probability is illustrated as:

\[
P(H|E) = \frac{P(H \cap E)}{P(E)}
\]

From the standing point of inference, the real semantic behind this calculation is representing the inference of:

If the evidence \(E \) is observed, how much likely is the hypothesis \(H \) true?

While designing a system, if a domain expert can provide the values of \(P(H \cap E) \) and \(P(E) \) then the inference of \(P(H|E) \) is just a simple division. However, \(P(H \cap E) \) and \(P(E) \) are not friendly cognitive values that human experts can easily construct mentally. As a result, most of the knowledge engineers are trying an indirect knowledge extraction to compute \(P(H|E) \) as follows:

\[
P(H|E) = \frac{P(H \cap E)}{P(E)} = \frac{P(E|H) \times P(H)}{P(E|H) \times P(H) + P(E|\bar{H}) \times P(\bar{H})}
\]

Where \(P(H) \) is the prior probability of \(H \) being true, \(P(\bar{H}) \) is the prior probability of \(H \) being false, \(P(E|H) \) is the conditional probability of see \(E \) when \(H \) is true, \(P(E|\bar{H}) \) is the conditional probability of see \(E \) when \(H \) is false, and \(P(H|E) \) is the posterior probability of \(H \) being true by seeing \(E \).

II. THE PROBABILISTIC REASONING

A more generalized Bayesian inference can be represented as a series of mathematical derivations. Considering a given problem domain with \(n \) evidences and \(m \) hypotheses, the inference of:

If evidences \(E_1, E_2, \ldots, E_n \) are observed, how much likely is the hypothesis \(H_i \) true, where \(1 \leq i \leq m \)?

The detail inference steps can be performed by the following computations [1]:

\[
P(H_i|(E_1 \cap E_2 \cap \ldots \cap E_n)) = \frac{P(H_i \cap (E_1 \cap E_2 \cap \ldots \cap E_n))}{\sum_{j=1}^{m} P((E_1 \cap E_2 \cap \ldots \cap E_n) \cap H_j)}
\]

\[
= \frac{P(H_i \cap (E_1 \cap E_2 \cap \ldots \cap E_n))}{\sum_{j=1}^{m} P((E_1 \cap E_2 \cap \ldots \cap E_n) | H_j) \times P(H_j)}
\]

Where \(1 \leq i \leq m \).

The above series of computations are mathematically sound, but the involvement of joint conditional probabilities that have to deal with all possible combinations of evidences and hypotheses is way too complicate for any human experts to conclude from their real life experiences. To make this mathematical rationale more practical, the conditional independence among these evidences is usually assumed so that:

\[
P((E_1 \cap E_2 \cap \ldots \cap E_n) | H_i) = P(E_1|H_i) \times P(E_2|H_i) \times \ldots \times P(E_n|H_i) \times P(H_i)
\]

So the mathematical result can be further simplified into:

\[
P(H_i|(E_1 \cap E_2 \cap \ldots \cap E_n)) = \frac{P(E_1|H_i) \times P(E_2|H_i) \times \ldots \times P(E_n|H_i) \times P(H_i)}{\sum_{j=1}^{m} P(E_1|H_j) \times P(E_2|H_j) \times \ldots \times P(E_n|H_j) \times P(H_j)}
\]

Where \(1 \leq i \leq m \). This assumption significantly simplifies the complexity of the domain experts mental burden and makes the inference processing cognitively workable. Instead of considering all evidences at once, the experts are now considering an evidence and a hypothesis at a time [3].
III. THE DESIGN OF CLASS TYPES

Although this probabilistic inference process looks specific, it involves intensive calculations among prior probabilities, conditional probabilities and posterior probabilities. To design this inference engine as an open source module, four class types at the top level are presented in the following subsections.

A. The Class Type Representing a Prior Probability

A prior probability within a Bayesian inference domain is an unconditional likelihood that supports a hypothesis without taking any evidence into consideration, such as \(P(H_1) \), \(P(H_2) \), or \(P(H_n) \). The design of methods and attributes within the prior probability class type are described in Table 1.

B. The Class Type Representing a Conditional Probability

A conditional probabilities within a Bayesian inference domain is a conditional likelihood that an evidence will be revealed if a hypothesis is true, such as \(P(E_i|H_1) \), \(P(E_i|H_2) \), or \(P(E_i|H_n) \). The design of methods and attributes within the conditional probability class type are described in Table 2.

C. The Class Type Representing a Knowledge Base

The knowledge base within a Bayesian inference domain consists of a list of prior probabilities and a list of conditional probabilities. The design of methods and attributes within the domain knowledge class type are described in Table 3.

D. The Class Type Representing a Posterior Probability

A posterior probability within a Bayesian inference domain is an inference result that represents the likelihood of a hypothesis by seeing some evidences, such as \(P(H_i|E_1 \cap E_2 \cap \ldots \cap E_n) \). The design of methods and attributes within the posterior probability class type are described in Table 4.

IV. THE IMPLEMENTATION OF THIS INFERENCE ENGINE

This inference engine consists of the aforementioned four class types is implemented in Python programming language to be a reusable module as shown in Appendix A. This module is lightweight, domain independent and can be used in future probabilistic inference applications to speed up the development life cycle.

V. A DEMONSTRATION OF HOW TO APPLY THIS INFERENCE ENGINE

A demonstration of applying this inference engine is shown in Appendix B in which the following domain knowl-
edge is instantiated:

\[P(H_1 \mid E_1) = 0.2 \]
\[P(H_2) = 0.3 \]
\[P(H_3) = 0.6 \]
\[P(E_1 \mid H_1) = 0.3 \]
\[P(E_2 \mid H_1) = 0.9 \]
\[P(E_3 \mid H_1) = 0.6 \]
\[P(E_1 \mid H_2) = 0.8 \]
\[P(E_2 \mid H_2) = 0.1 \]
\[P(E_3 \mid H_2) = 0.7 \]
\[P(E_1 \mid H_3) = 0.5 \]
\[P(E_2 \mid H_3) = 0.7 \]
\[P(E_3 \mid H_3) = 0.9 \]

and the following three posterior probabilities are inferred:
\[P(H_1 \mid E_1 \cap E_2 \cap E_3) = 0.136 \]
\[P(H_2 \mid E_1 \cap E_2 \cap E_3) = 0.071 \]
\[P(H_3 \mid E_1 \cap E_2 \cap E_3) = 0.793 \]

The program output from this demonstration are shown in Appendix C.

VI. CONCLUSION

Nowadays, Bayesian theorem has offered a stochastic foundation for expert systems to deal with forecast and classification problems, ranging from pattern recognition, medical diagnostic, weather forecast, to natural language processing [4].

This inference engine is based on the theory of Nave Bayesian Network and implemented in Python programming language. In light of its ubiquity, this inference is designed to be domain-independent. As a performance-centered design this inference engine is functioning comprehensively without consuming excessive computation resources. I am aiming at publishing this inference engine as an open source to further benefit both industrial application developments and academic researches.

REFERENCES

APPENDIX A
THE IMPLEMENTATION OF THE BAYESIAN INFERENCE ENGINE

File Name: bayesian.py
Creator: Feng-Jen Yang
Purpose: Implementing a Bayesian inference engine

class PrioProb(object):
 """Representing a prior probability"""
 def __init__(self, initHypo, initProb):
 """Initializing the prior probability"""
 self.hypo = initHypo
 self.prob = initProb

 def __str__(self):
 """Returning a string representation of the prior probability"""
 return "P(" + self.hypo + ") = " + str(self.prob)

class CondProb(object):
 """Representing a conditional probability"""
 def __init__(self, initEvid, initHypo, initProb):
 """Initializing the conditional probability"""
 self.evid = initEvid
 self.hypo = initHypo
 self.prob = initProb

 def __str__(self):
 """Returning a string representation of the conditional probability"""
 return "P(" + self.evid + ")\mid" + self.hypo + ") = " + str(self.prob)

class KnowledgeBase(object):
 """Representing a knowledge domain"""
 def __init__(self, initPrioProbs, initCondProbs):
 """Initializing the prior probabilities and conditional probabilities"""
 self.listOfPrioProbs = initPrioProbs
 self.listOfCondProbs = initCondProbs

 def __str__(self):
 """Returning a string representation of the knowledge base"""
 result = "The Knowledge Base:
 for p in self.listOfPrioProbs:
 result += "\n" + str(p)
 for p in self.listOfCondProbs:
 result += "\n" + str(p)
 return result

class PostProb(object):
 """Representing Bayesian inference"""
 def __init__(self, initKB, initHypo, initEvids):
 """Initializing the knowledge base"""
 self.kb = initKB
 self.hypo = initHypo
 self.listOfEvids = initEvids

 def inference(self):
 """Computing the posterior probability"""
numerator = 1
for cp in self.kb.listOfCondProbs:
 if (cp.hypo == self.hypo) and (cp.evid in self.listOfEvids):
 numerator *= cp.prob
for pp in self.kb.listOfPrioProbs:
 if pp.hypo == self.hypo:
 numerator *= pp.prob
 break

denominator = 0
for pp in self.kb.listOfPrioProbs:
 term = 1
 for cp in self.kb.listOfCondProbs:
 if (cp.hypo == pp.hypo) and (cp.evid in self.listOfEvids):
 term *= cp.prob
 term *= pp.prob
 denominator += term
return round(numerator/denominator, 3)

def __str__(self):
 """Returning a string representation of the inference result""
 result = "The Posterior Probability:\nP(" + self.hypo + "|{"
 for e in self.listOfEvids:
 result += e
 if e != self.listOfEvids[-1]:
 result += "\n "
 result += "}) = " + str(self.inference())
 return result

APPENDIX B

A DEMONSTRATION OF APPLYING THIS INFERENCE ENGINE

File Name: demo.py
Creator: Feng-Jen Yang
Purpose: A demonstration of using this Bayesian inference engine

from bayesian import *

def main():
 """The main function that coordinates the program execution""

 # Instantiate the prior probabilities
 listOfPrioProbs = [PrioProb("h1", 0.2), PrioProb("h2", 0.3), PrioProb("h3", 0.6)]

 # Instantiate conditional probabilities
 listOfCondProbs = [CondProb("e1", "h1", 0.3), CondProb("e2", "h1", 0.9),
 CondProb("e3", "h1", 0.6), CondProb("e1", "h2", 0.8),
 CondProb("e2", "h2", 0.1), CondProb("e3", "h2", 0.7),
 CondProb("e1", "h3", 0.5), CondProb("e2", "h3", 0.7),
 CondProb("e3", "h3", 0.9)]

 # Instantiate the knowledge base
 kb = KnowledgeBase(listOfPrioProbs, listOfCondProbs)

 # Display the knowledge base
 print(kb, "\n")

 # Perform the Bayesian inference to compute the posterior probability
pp = PostProb(kb, "h1", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#Perform the Bayesian inference to compute the posterior probability
pp = PostProb(kb, "h2", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#Perform the Bayesian inference to compute the posterior probability
pp = PostProb(kb, "h3", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#The entry point of program execution
main()

APPENDIX C

THE RESULTS OF THE DEMONSTRATION

The Knowledge Base:
P(h1) = 0.2
P(h2) = 0.3
P(h3) = 0.6
P(e1|h1) = 0.3
P(e2|h1) = 0.9
P(e3|h1) = 0.6
P(e1|h2) = 0.8
P(e2|h2) = 0.1
P(e3|h2) = 0.6
P(e1|h3) = 0.5
P(e2|h3) = 0.7
P(e3|h3) = 0.9

The Posterior Probability:
P(h1|(e1&e2&e3)) = 0.136

The Posterior Probability:
P(h2|(e1&e2&e3)) = 0.071

The Posterior Probability:
P(h3|(e1&e2&e3)) = 0.793