
Crafting a Lightweight Bayesian Inference Engine
Feng-Jen Yang, Member, IAENG

Abstract—Many expert systems are counting on Bayesian
inference to perform probabilistic inferences and provide
quantitative supports for decisions, hypotheses, forecasts and
diagnoses. With this concern in mind, I implemented this
probability-based inference engine that is domain independent
and can be plugged into future systems to speed up the
development life cycle of machine learning and/or inference
systems.

Index Terms—Bayesian inference, Bayesian theory, Inference
engine.

I. INTRODUCTION

BAYESIAN inference is rooted from the well-known
posthumous theory of Thomas Bayes that was formu-

lated in the 18th century and soon adopted as the math-
ematical rationale for the processing of uncertain infor-
mation and the drawing of probabilistic conclusions based
on the evidences that have been observed [2]. A counter
intuitive calculation that makes Bayesian inference hard to
comprehend is that it turns around the evidence and the
hypothesis within a conditional probability in a way that
most of the beginners are not feeling quite comfortable with.
Nonetheless, this unnatural formula derivation is the essential
idea that transforms the mathematical notations to meet the
probabilistic inference purposes in most of the stochastic-
based expert systems. Mathematically this concept can be
demonstrated as computing P (H|E) in terms of P (E|H),
where H is denoting a hypothesis and E is denoting an
evidence to support this hypothesis.

As stated in most of the probability and statistics books,
the algebra involved in this calculation of a conditional
probability is illustrated as:

P (H|E) =
P (H ∩ E)

P (E)

From the standing point of inference, the real semantic
behind this calculation is representing the inference of:

If the evidence E is observed, how much likely is the
hypothesis H true?

While designing a system, if a domain expert can provide
the values of P (H ∩ E) and P (E) then the inference of
P (H|E) is just a simple division. However, P (H ∩ E)
and P (E) are not friendly cognitive values that human
experts can easily construct mentally. As a result, most of
the knowledge engineers are trying an indirect knowledge

Manuscript received March 2, 2016; revised March 16, 2016. This
research is funded by the Seed Grant of Florida Polytechnic University to Dr.
Feng-Jen Yang. The implementation detail of this project does not reflect
the policy of Florida Polytechnic University and no official endorsement
should be inferred.

F. Yang is with the Department of Computer Science and Informa-
tion Technology, Florida Polytechnic University, FL 33805, USA, e-mail:
fyang@flpoly.org.

extraction to compute P (H|E) as follows:

P (H|E) =
P (H ∩ E)

P (E)

=
P (E|H)× P (H)

P (E|H)× P (H) + P (E|H̄)× P (H̄)

Where P (H) is the prior probability of H being true, P (H̄)
is the prior probability of H being false, P (E|H) is the
conditional probability of see E when H is true, P (E|H̄)
is the conditional probability of see E when H is false, and
P (H|E) is the posterior probability of H being true by seeing
E.

II. THE PROBABILISTIC REASONING

A more generalized Bayesian inference can be represented
as a series of mathematical derivations. Considering a given
problem domain with n evidences and m hypotheses, the
inference of:

If evidences E1, E2, ... and En are observed, how much
likely is the hypothesis Hi true, where 1 ≤ i ≤ m?

The detail inference steps can be performed by the fol-
lowing computations [1]:

P (Hi|(E1 ∩ E2 ∩ ... ∩ En))

=
P (Hi ∩ (E1 ∩ E2 ∩ ... ∩ En))

P (E1 ∩ E2 ∩ ... ∩ En)

=
P ((E1 ∩ E2 ∩ ... ∩ En) ∩Hi)∑m
j=1 P ((E1 ∩ E2 ∩ ... ∩ En) ∩Hj)

=
P ((E1 ∩ E2 ∩ ... ∩ En)|Hi)× P (Hi)∑m

j=1 P ((E1 ∩ E2 ∩ ... ∩ En)|Hj)× P (Hj)

Where 1 ≤ i ≤ m.
The above series of computations are mathematically

sound, but the involvement of joint conditional probabilities
that have to deal with all possible combinations of evidences
and hypotheses is way too complicate for any human ex-
perts to conclude from their real life experiences. To make
this mathematical rationale more practical, the conditional
independence among these evidences is usually assumed so
that:

P ((E1 ∩ E2 ∩ ... ∩ En)|Hi)

= P (E1|Hi)× P (E2|Hi)× ...× P (En|Hi)× P (Hi)

So the mathematical result can be further simplified into:

P (Hi|(E1 ∩ E2 ∩ ... ∩ En))

=
P (E1|Hi)× P (E2|Hi)× ...× P (En|Hi)× P (Hi)∑m

j=1 P (E1|Hj)× P (E2|Hj)× ...× P (En|Hj)× P (Hj)

Where 1 ≤ i ≤ m. This assumption significantly simplifies
the complexity of the domain experts mental burden and
makes the inference processing cognitively workable. Instead
of considering all evidences at once, the experts are now
considering an evidence and a hypothesis at a time [3].

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

TABLE I
THE DESIGN OF THE PRIOR PROBABILITY CLASS TYPE

Class Name: PrioProb

Purpose: Representing a prior probability

Method What It Does
Constructor Initializing the prior probability

ToString Converting the prior probability into a string
representation

Attribure What It Means
hypo The hypothesis in the prior probability

prob The likelihood value of the prior probability

TABLE II
THE DESIGN OF THE CONDITIONAL PROBABILITY CLASS TYPE

Class Name: CondProb

Purpose: Representing a conditional probability

Method What It Does
Constructor Initializing the conditional probability

ToString Converting the conditional probability into a
string representation

Attribure What It Means
hypo The hypothesis in the conditional probability

evid The evidence in the conditional probability

prob The likelihood value of the conditional prob-
ability

III. THE DESIGN OF CLASS TYPES

Although this probabilistic inference process looks spe-
cific, it involves intensive calculations among prior probabil-
ities, conditional probabilities and posterior probabilities. To
design this inference engine as an open source module, four
class types at the top level are presented in the following
subsections.

A. The Class Type Representing a Prior Probability

A prior probability within a Bayesian inference domain
is an unconditional likelihood that supports a hypothesis
without taking any evidence into consideration, such as
P (H1), P (H2), ,or P (Hn). The design of methods and
attributes within the prior probability class type are described
in Table 1.

B. The Class Type Representing a Conditional Probability

A conditional probabilities within a Bayesian inference
domain is a conditional likelihood that an evidence will be re-
vealed if a hypothesis is true, such as P (Ei|H1), P (Ei|H2),
,or P (Ei|Hn). The design of methods and attributes within
the conditional probability class type are described in Table
2.

C. The Class Type Representing a Knowledge Base

The knowledge base within a Bayesian inference domain
consists of a list of prior probabilities and a list of conditional
probabilities. The design of methods and attributes within the
domain knowledge class type are described in Table 3.

TABLE III
THE DESIGN OF THE KNOWLEDGE BASE CLASS TYPE

Class Name: KnowledgeBase

Purpose: Representing a knowledge domain

Method What It Does
Constructor Initializing the knowledge base

ToString Converting the knowledge base into a string
representation

Attribure What It Means
listOfPriorProbs The list of prior probabilities in the knowl-

edge domain

listOfCondProbs The list of conditional probabilities in the
knowledge domain

TABLE IV
THE DESIGN OF THE POSTERIOR PROBABILITY CLASS TYPE

Class Name: PostProb

Purpose: Representing a resultant posterior probability

Method What It Does
Constructor Initializing the domain knowledge

Inference Applying Bayesian inference to compute the
resultant posterior probability

ToString Converting the resultant posterior probability
into a string representation

Attribure What It Means
kb The current knowledge base

hypo The hypothesis of the posterior probability

listOfEvids The list of evidences observed

D. The Class Type Representing a Posterior Probability

A posterior probability within a Bayesian inference do-
main is an inference result that represents the likelihood of
a hypothesis by seeing some evidences, such as P (Hi|(E1∩
E2 ∩ ... ∩En)).The design of methods and attributes within
the posterior probability class type are described in Table 4.

IV. THE IMPLEMENTATION OF THIS INFERENCE ENGINE

This inference engine consists of the aforementioned four
class types is implemented in Python programming language
to be a reusable module as shown in Appendix A. This
module is lightweight, domain independent and can be used
in future probabilistic inference applications to speed up the
development life cycle.

V. A DEMONSTRATION OF HOW TO APPLY THIS
INFERENCE ENGINE

A demonstration of applying this inference engine is
shown in Appendix B in which the following domain knowl-

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

edge is instantiated:

P (H1|E1) = 0.2

P (H2) = 0.3

P (H3) = 0.6

P (E1|H1) = 0.3

P (E2|H1) = 0.9

P (E3|H1) = 0.6

P (E1|H2) = 0.8

P (E2|H2) = 0.1

P (E3|H2) = 0.7

P (E1|H3) = 0.5

P (E2|H3) = 0.7

P (E3|H3) = 0.9

and the following three posterior probabilities are inferred:

P (H1|(E1 ∩ E2 ∩ E3) = 0.136

P (H2|(E1 ∩ E2 ∩ E3) = 0.071

P (H3|(E1 ∩ E2 ∩ E3) = 0.793

The program output from this demonstration are shown in
Appendix C.

VI. CONCLUSION

Nowadays, Bayesian theorem has offered a stochastic
foundation for expert systems to deal with forecast and
classification problems, ranging from pattern recognition,
medical diagnostic, weather forecast, to natural language
processing [4].

This inference engine is based on the theory of Nave
Bayesian Network and implemented in Python programming
language. In light of its ubiquity, this inference is designed
to be domain-independent. As a performance-centered design
this inference engine is functioning comprehensively without
consuming excessive computation resources. I am aiming
at publishing this inference engine as an open source to
further benefit both industrial application developments and
academic researches.

REFERENCES

[1] T. Bayes, ”An Essay Towards Solving a Problem in the Doctrine of
Chances,” Philosophical Transactions of the Royal Society, Volume 53,
Issue 1, pp. 370-418, 1763.

[2] J. Tabak, Probability and Statistics: The Science of Uncertainty, NY:
Facts On File, Inc., USA, pp. 46-50, 2004.

[3] F. Yang, ”Eliciting an Overlooked Aspect of Bayesian Reasoning,” ACM
SIGCSE Bulletin, Volume 39, Issue 4, pp. 45-48, 2007.

[4] G. DAgnostini, Bayesian Reasoning in Data Analysis: A Critical
Introduction, NJ: World Scientific Publishing Co., Pte. Ltd., USA, 2003

Dr. Feng-Jen Yang became a Member (M) of IAENG in 20012. He received
the B.E. degree in Information Engineering from Feng Chia University,
Taichung, Taiwan, in 1989, the M.S. degree in Computer Science from
California State University, Chico, California, in 1995, and the Ph.D. degree
in Computer Science from Illinois Institute of Technology, Chicago, Illinois,
in 2001, respectively. Currently, he is an associate professor of Computer
Science and Information Technology at Florida Polytechnic University.
Besides the currently academic career, he also has some prior research
experiences. He once was a research assistant at the Chung Shan Institute of
Science and Technology (CSIST), Taoyuan, Taiwan, from 1989 to 1993, as
well as an engineer at the Industrial Technology Research Institute (ITRI),
Hsinchu, Taiwan, from 1995 to 1996. His research areas include Artificial
Intelligence, Expert Systems, and Software Engineering.

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

APPENDIX A
THE IMPLEMENTATION OF THE BAYESIAN INFERENCE ENGINE

"""
File Name: bayesian.py
Creator: Feng-Jen Yang
Purpose: Implementing a Bayesian inference engine
"""

class PrioProb(object):
"""Representing a prior probability"""

def __init__(self, initHypo, initProb):
"""Initializing the prior probability"""
self.hypo = initHypo
self.prob = initProb

def __str__(self):
"""Returning a string representation of the prior probability"""
return "P(" + self.hypo + ") = " + str(self.prob)

class CondProb(object):
"""Representing a conditional probability"""

def __init__(self, initEvid, initHypo, initProb):
"""Initializing the conditional probability"""
self.evid = initEvid
self.hypo = initHypo
self.prob = initProb

def __str__(self):
"""Returning a string representation of the conditional probability"""
return "P(" + self.evid + "|" + self.hypo + ") = " + str(self.prob)

class KnowledgeBase(object):
"""Representing a knowledge domain"""

def __init__(self, initPrioProbs, initCondProbs):
"""Initializing the prior probabilities and conditional probabilities"""
self.listOfPrioProbs = initPrioProbs
self.listOfCondProbs = initCondProbs

def __str__(self):
"""Returning a string representation of the knowledge base"""
result = "The Knowledge Base:"
for p in self.listOfPrioProbs:

result += "\n" + str(p)
for p in self.listOfCondProbs:

result += "\n" + str(p)
return result

class PostProb(object):
"""Representing Bayesian inference"""
def __init__(self, initKB, initHypo, initEvids):

"""Initializing the knowledge base"""
self.kb = initKB
self.hypo = initHypo
self.listOfEvids = initEvids

def inference(self):
"""Computing the posterior probability"""

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

numerator = 1
for cp in self.kb.listOfCondProbs:

if (cp.hypo == self.hypo) and (cp.evid in self.listOfEvids):
numerator *=cp.prob

for pp in self.kb.listOfPrioProbs:
if pp.hypo == self.hypo:

numerator *= pp.prob
break

denominator = 0
for pp in self.kb.listOfPrioProbs:

term = 1
for cp in self.kb.listOfCondProbs:

if (cp.hypo == pp.hypo) and (cp.evid in self.listOfEvids):
term *=cp.prob

term *= pp.prob
denominator += term

return round(numerator/denominator, 3)

def __str__(self):
"""Returning a string representation of the inference reault"""
result = "The Posterior Probability:\nP(" + self.hypo + "|("
for e in self.listOfEvids:

result += e

if e != self.listOfEvids[-1]:
result += "ˆ"

result += ")) = " + str(self.inference())
return result

APPENDIX B
A DEMONSTRATION OF APPLYING THIS INFERENCE ENGINE

"""
File Name: demo.py
Creator: Feng-Jen Yang
Puopose: A demonstration of using this Bayesian inference engine
"""

from bayesian import *

def main():
"""The main function that coordinates the program execution"""

#Instantiate the prior probabilities
listOfPrioProbs = [PrioProb("h1", 0.2), PrioProb("h2", 0.3), PrioProb("h3", 0.6)]

#Instantiate conditional probabilities
listOfCondProbs = [CondProb("e1", "h1", 0.3), CondProb("e2", "h1", 0.9),\

CondProb("e3", "h1", 0.6), CondProb("e1", "h2", 0.8),\
CondProb("e2", "h2", 0.1), CondProb("e3", "h2", 0.7),\
CondProb("e1", "h3", 0.5), CondProb("e2", "h3", 0.7),\
CondProb("e3", "h3", 0.9)]

#Instantiate the knowledge base
kb = KnowledgeBase(listOfPrioProbs, listOfCondProbs)

#Display the knowledge base
print(kb, "\n")

#Perform the Bayesian inference to compute the posterior probability

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

pp = PostProb(kb, "h1", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#Perform the Bayesian inference to compute the posterior probability
pp = PostProb(kb, "h2", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#Perform the Bayesian inference to compute the posterior probability
pp = PostProb(kb, "h3", ["e1", "e2", "e3"])

#display the inference result
print(pp, "\n")

#The entry point of program execution
main()

APPENDIX C
THE RESULTS OF THE DEMONSTRATION

The Knowledge Base:
P(h1) = 0.2
P(h2) = 0.3
P(h3) = 0.6
P(e1|h1) = 0.3
P(e2|h1) = 0.9
P(e3|h1) = 0.6
P(e1|h2) = 0.8
P(e2|h2) = 0.1
P(e3|h2) = 0.7
P(e1|h3) = 0.5
P(e2|h3) = 0.7
P(e3|h3) = 0.9

The Posterior Probability:
P(h1|(e1ˆe2ˆe3)) = 0.136

The Posterior Probability:
P(h2|(e1ˆe2ˆe3)) = 0.071

The Posterior Probability:
P(h3|(e1ˆe2ˆe3)) = 0.793

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

