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Abstract—Developed in this paper is a statistically and
computationally efficient method for association analysis of data
with a sample size n that is small relative to the number
p of explanatory variables. This so-called “curse of dimen-
sionality” is a feature of many high-dimensional studies, such
as human genomewide association studies (GWAS) concerned
with elucidating the role of genes in biological pathways of
complex diseases and other medical conditions. The proposed
method is a novel approach to multiple testing that imple-
ments nonparametric spline regression models that inherently
account for the correlation structure present in the data to
identify association patterns between subsets of the explanatory
variables and a response of interest. Additionally, a simple,
computationally efficient algorithm for identifying significant
regions of association is presented. Simulation results show that
the spline regression approach is not only more powerful but
also leads to substantial reduction in false positive findings
compared with existing methods. The method is illustrated
using data from the Wellcome Trust Case-Control Consortium
(WTCCC) study of Crohn’s disease.

Index Terms—association study, genomewide, multiple test-
ing.

I. INTRODUCTION

INARGUABLY, the most important statistical challenge
in the analysis of high-dimensional data is to reliably

identify true patterns of relationship in the data in a computa-
tionally efficient manner, yet simultaneously minimizing the
number of spurious findings. This problem is compounded
in studies with small sample sizes (n) relative to the number
of observed explanatory variables; the so called “curse of
dimensionality” [1]. Methodological publications in this area
can broadly be placed into either multiple hypothesis testing
(multiple comparison), dimension reduction or simulation-
based methods, with some overlap between groups. The gold
standard for controlling the error rate in testing multiple
hypotheses is to compare each observed test statistic with an
empirical distribution constructed from the observed data. In
the exact test the distribution is based on each possible data
permutation while in the Monte Carlo test, the distribution is
based only on a randomly selected subset of permutations.
The benefits of a permutation test are that no assumptions
regarding the null distribution of the test statistic are required
and the data’s correlation structure is potentially inherently
accounted for in the empirical distribution. However, while
resampling is suitable for smaller studies, substantial com-
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putational effort is still required in high-dimensional studies,
in spite of effort, see for example [6], to reduce this burden.

Bonferroni correction α/m, where m is the number of
hypothesis tests conducted, is the most basic method for
controlling the type I error α but it is well known to be con-
servative when the independence assumption between tests
do not hold. Furthermore, due to the large number of tests in
high-dimensional studies, there is no gain in efficiency from
using traditional modifications such as Šidák correction [17]
and Holm procedure [11]. The problem of identification of
a less conservative threshold based on formal calculation
of the effective number of independent tests Meff , among
all the tests conducted, have been considered [3], [13],
[14], [8]. This number Meff replaces m in the Bonferroni
correction. Cheverud [3] proposed that the eigenvalues of the
correlation matrix for the explanatory variables be used to
estimate Meff . However, Cheverud’s method is still overly
conservative when there is high correlation [13]. Nyholt [14]
suggested a modification of the Cheverud’s approach to
improve the adjustment by excluding all variables in per-
fect correlation except one, but this was still found to be
overly conservative. Li and Ji [13] proposed a method based
on partitioning each eigenvalue into integral and fractional
components. They argue that each integer represents identical
tests and should be counted as one in Meff . On the other
hand, the fractional part represents a partially correlated test
that should be counted as a number between 0 and 1. The
authors present results on a small number of variables only
and did not clarify how to perform the method in large
datasets. Gao et. al. [8] proposed a principal components
approach, which they call SimpleM, based on use of clusters
or small subsets of the independent variables, in an attempt
to filter out the correlation among tests. Meff is derived
from the number of principal components that explains a
certain percentage of the variability in the data. In practice,
this percentage is subjectively determined by the researcher.

Another technique for reducing the multiple testing burden
aggregates the hypothesis tests within a joint test. Classic
aggregation approaches include combining the p-values from
single hypothesis tests [7] and assessing the smallest p-
value within the set of m values [18]. In situations where
the tests are not independent, Fisher’s method tend to be
anti-conservative while Tippett’s method has well-controlled
type I error rate but has been shown to have low power to
identify small effect sizes, such as in genetic studies [4].
Modifications of Fisher’s method proposed for genomewide
studies, based on use of only a subset of the p-values in
calculating the test statistic, include the threshold truncated
product [23], the rank truncated product [5] and the adaptive
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rank truncated product [22] methods. The difference between
the threshold and rank truncated methods is that the test
statistic in the former is calculated using only those p-values
smaller than some pre-specified threshold while in the latter
it is calculated using a pre-specified quantity of the smallest
p-values. For dependent single hypothesis tests, the overall
significance level is obtained by a permutation method. The
adaptive rank truncated method extends the rank truncated
method by first calculating test statistics for a pre-specified
range of possible truncation points in the ordered set of all p-
values from the single hypothesis tests. These test statistics
may then be compared with the relevant distributions and
the p-value for the global hypothesis test is then the smallest
among the set of p-values obtained.

A limitation of the above modifications of Fisher’s method
is the need to pre-specify truncation points or thresholds,
the choice of which can be somewhat arbitrary and can
affect the power to detect true associations in, for example,
genomewide studies [2]. To avoid the threshold selection
problem, Chen et. al. [2] proposed a sequential method for
rejecting the global null hypothesis based on the cumu-
lative product of the ordered p-values. More specifically,
p-values from the single hypothesis tests are first ordered
from smallest to largest and a sequence of test statistics
are constructed. The first element of this sequence is the
smallest p-value, the second element is the product of the
first element and second smallest p-value, the third element
of the sequence is the product of its second element and
the third smallest p-value, and so on. The distributions
of these test statistics are obtained using a permutation
procedure and the thresholds for declaring significance are
determined numerically. The authors present simulation re-
sults suggesting that the type I error rate will be close to the
nominal value and that the power of the test procedure is
comparable to the above modifications of Fisher’s method.
However, while the aggregation methods described herein
attempt to capitalise on the correlation between explanatory
variables, it is not always straight-forward to properly define
the grouping structure. Additionally, these methods tend to
be computationally burdensome with test statistics that have
complex null distributions of which very little is currently
known.

This paper proposes a novel spline regression method
for interpreting results from single hypothesis tests that
capitalises on the correlation between explanatory variables
to reliably identify true associations between subsets of
the explanatory variables and a response of interest and,
at the same time, to reduce the number of false positive
signals. The proposed methodology is premised on the fact
that the majority of explanatory variables observed are not
associated with the response and hence the collection of p-
values from single hypothesis tests will mainly comprise
of non-significant results, or noise, possibly interspersed
with true signals of association. Then the challenge is to
distinguish these rare signals from the noise. Framed in this
context, the problem is similar to other application areas
requiring signal cleaning such as microarray experiments
where nonparametric regression is frequently used to remove
systematic biases arising from the technology used to obtain
the data, for example see [12] for details.

II. METHOD

The general nonparametric regression model with one
predictor variable may be written as

ui = b(xi) + εi , (1)

where ui and xi are the ith response and predictor, respec-
tively, i = 1, . . . ,m and b(·) is an arbitrary function of x. In
this paper ui is the − log10 transformation of the p-value pi
from the association test of the ith explanatory variable while
xi marks the position of this variable relative to the others
in the observed set. As in linear regression, it is standard to
assume that the εi’s are independent identically distributed
N(0, σ2). Unlike linear regression, the function b(·) is not
specified in advance via a set of parameters and hence fitting
the model involves estimating b(·) directly, rather than via
parameter estimation. Most methods implicitly assume that
b(·) is a smooth, continuous function and thus nonparametric
regression may be viewed as nonlinear regression, but with-
out explicitly stating the form of the function to be fitted.

In this paper, the function b(x) is approximated by a
spline and the resulting model is fitted using least squares.
The cubic spline is a popular choice as it often has 2
continuous derivatives and therefore provide a reasonably
smooth approximation to most non-linear functions [9]. The
other reason why the cubic spline is popular is related to
the number of used knots, or points at which the splines are
joined. While increasing the number of knots tend to improve
the fit of the data [9], fitting a spline with knots at every
data point will result in over-parametrisation as the regression
model will now consist of p + 1 + n parameters and only
n observations. A solution is however provided by standard
penalised least squares. It turns out that a cubic spline is
the solution to the problem of minimising the penalised sum
of squares

∑
[yi − f(xi)]

2 + h
∫ xmax

xmin
[f ′′(u)]2du over all

functions f that are twice continuously differentiable. This
leads to the problem of selecting the number of knots being
reduced to finding a value of the smoothing parameter h.
Details of this approach to spline regression can be found
in [9], for example.

The value of the smoothing parameter h is very important
when fitting a nonparametric regression model as too large a
value results in oversmoothing and potential loss in informa-
tion while too small a value leads to insufficient accounting
of the noise in the data. Unfortunately, the consensus is that
the optimal smoothing parameter is difficult to find, is data
specific, and existing methods [21], [10] are computationally
expensive. Additionally, the guiding principle underlying
commonly used cross validation methods is optimisation of
the predictive power of the fitted regression curve. This is not
the objective in this paper. Rather, of interest is identification
of significant regions or contiguous sections of the fitted
curve that are highly unlikely to confirm to any of the
possible patterns under the global null hypothesis. This is
achievable by finding the smoothing parameter that produces
a good estimate of the noise. In this light, it is proposed to
select a smoothing parameter satisfying the condition that
the average squared residuals from the fitted model equals
the difference estimate [19] of the variance σ2 defined as

s2d =
1

2m

m−1∑
i=1

(ui+1 − ui)
2 . (2)
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The use of s2d is justifiable on the basis that it is adjusted for
the correlation structure in the explanatory variables. Indeed,
s2d is expected to be a slight underestimate of the true noise,
which is appropriate for the stated objective of finding local
structures in the data. Details of the theoretical development
and evaluation of this method is provided in Kirdwichai [15].

A. Algorithm for identifying significant regions

An efficient algorithm that can perform the task of iden-
tifying significant regions is necessary due to the large
dimension of the data and one was therefore developed using
the R software [16]. The primary objective was to avoid use
of conditional statements and loops as these are well-known
to be computationally time consuming. Assuming that data
points with values greater than some predefined threshold are
coded to 1 and those below the threshold are coded to 0. This
provides a sequence of ones and zeros with each significant
region being represented by a sub-sequence of contiguous
ones. An example of five regions is given below.

0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 .

The objective of the algorithm is to identify the number of
sub-sequences within this sequence. One approach would be
to use conditional ”if” statements in R. Alternatively, it is
noticed that all that is required is to be able to identify
the borders of each sub-sequence of ones, which can be
achieved by subtraction. The proposed algorithm first aligns
two identical copies of the sequence as follows:

0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0

Notice that the first copy has a trailing zero added while the
second copy has a leading zero added (shown in bold). This
ensures that regions at the ends of the sequence are correctly
identified.

Next, using the vector data structure in R, subtract the
second copy from the first. In the example, this produces,

0 0 1 −1 0 0 1 0 −1 0 0 0 1 −1 0 0 1 0 −1 0 0 0 1 0 0 −1 0 0

As can be seen in this sequence of differences, left borders
of regions are now marked by a 1 while right borders are
marked by a −1, and all other values are 0. Additionally,
summing the absolute values of the elements of this sequence
of differences and dividing by 2 will provide the number of
regions.

III. RESULTS

The proposed method is evaluated by simulating data
under logistic regression models with correlated binary
explanatory variables on which a metric is defined; an
example is single nucleotide polymorphisms (SNPs) on a
chromosome. Evaluations are conducted by simulating data
assuming two of the explanatory variables, denoted X1 and
X2, act independently on response so that each success is
generated with probability

πx1,x2
=

eβ0+β1x1+β2x2

1 + eβ0+β1x1+β2x2
, (3)

where x1 and x2 are binary indicators and β1, β2 are the
effect sizes as well as by simulating data under the interaction
model

πx1,x2 =
eβ0+βintx1×x2

1 + eβ0+βintx1×x2
. (4)

Logistic regression models are next separately fitted for X1

and X2 as well as for each of approximately 14,000 other
explanatory variables not associated with the response and
the − log10 p-values obtained are then used as the responses
in the nonparametric spline regression models fitted using
the smoothing parameter selection procedure described in the
Methods section. The estimated true positive (TP) rate is the
proportion of studies for which at least one of the two regions
containing X1 and X2 were detected while the false positive
(FP) rate is the number of regions found to be significant
but do not contain either X1 or X2. Shown in Figures 1-
4 are ROC curves of the estimated TP against FP rates
for varying significance threshold values. Simulation results
for the proposed method are compared with Bonferroni
correction for various false positive rates α,

α′B,α =
α

m
. (5)
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Fig. 1. ROC curves of false positive (FP) and true positive (TP) detection
rates based on finding at least one of X1, X2 as significant by using
spline regression and Bonferroni correction when correlation r2 between
X1 and X2 is low, in studies of size n = 1000 with true effect sizes
β1 = β2 = 0.2.

Shown in Figures 1 and 2 are rates when the effect size is
0.2 for X1 and X2 acting independently and with correlations
r2 = 3.15 × 10−9 and r2 = 0.4045, respectively. Clearly
the proposed spline regression approach outperforms the
Bonferroni method with comparable FP rates but with TP
rates that are much higher. Figures 3 and 4 presents the error
rates when data is simulated under the interaction model with
effect size βint = 0.2. The TP rates are generally extremely
low but, nevertheless, the proposed nonparametric regression
method again clearly produces the better result.
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Fig. 2. ROC curves of false positive (FP) and true positive (TP) detection
rates based on finding at least one of X1, X2 as significant by using spline
regression and Bonferroni correction when correlation r2 between X1 and
X2 is moderate, in studies of size n = 1000 with true effect sizes
β1 = β2 = 0.2.
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Fig. 3. ROC curves of false positive (FP) and true positive (TP) detection
rates based on finding at least one of X1, X2 as significant by using spline
regression and Bonferroni correction when correlation r2 between X1 and
X2 is low, in studies of size n = 1000 with true effect sizes effect size
βint = 0.2.

The method was applied to data from the WTCCC
study of Crohn’s disease [20]. The dataset used has 14,292
SNPs on Chromosome 16 and comprise 2, 005 individuals
with Crohn’s disease and 3, 004 without the disease. The
WTCCC study reports evidence for disease-gene association
at SNP rs17221417 located on gene NOD2 and cites sig-
nificant region of size 1, 250, 000 basepairs to either side
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Fig. 4. ROC curves of false positive (FP) and true positive (TP) detection
rates based on finding at least one of X1, X2 as significant by using spline
regression and Bonferroni correction when correlation r2 between X1 and
X2 is moderate, in studies of size n = 1000 with true effect sizes effect
size βint = 0.2.

of rs17221417. The boundaries of this region, which was
pointed out to experience high levels of recombination, were
chosen to coincide with SNPs for which the − log10 p-values
were deemed to have returned to expected levels under no
genetic effect. Two significant regions were found when the
proposed method was applied to this dataset. The larger of
the two regions found is located at a distance of around
4.9×107 basepairs and contains SNP rs17221417 at 16, 508
basepairs from its left boundary. The second region detected
consists of only three SNPs located within an intron at locus
NR-002453.4. These findings concur with the results in [20].

IV. CONCLUSION

This paper tackled the current, unresolved problem of
the statistical analysis of high dimensional data such as
obtained in many genetic association studies of complex
diseases. A novel method utilising concepts borrowed from
nonparametric regression was developed and evaluated. The
proposed method was shown to reduce the number of false
positives found but still is more efficient than existing
multiple comparison methods in detecting true positives.
Unlike existing methods which attempt to increase power by
aggregating the effects of tests, the approach in this paper
was premised on treating true associations as rare signals
to be identified among the noise generated by the large
number of explanatory variables that are not associated with
the response. The benefits of this approach over aggregation
methods are that it is efficient and less computationally
demanding, and the grouping is driven entirely by the data.

It is generally agreed that finding the optimal smoothing
parameter for any given problem is difficult and, as often
happens when using cross validation methods, is also com-
putationally demanding and data specific. A novel selection
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method based on the use of an internal estimate of noise that
inherently accounts for correlation in the data was proposed.
The methodology is easily implemented via a simple search
for the optimal bandwidth over a range of bandwidth values.
The nonparametric regression approach is a promising alter-
native to existing methods in terms of improved efficiency
and lower false positive rates. In contrast to most proposed
methods in this area, the approach was seen to be more
powerful than Bonferroni correction and with lower false
positive findings. Perhaps the method’s greatest appeal is as
an exploratory analysis tool for association patterns that can
subsequently be used to guide development of more in-depth,
targeted studies. Finally, it is hoped that the method can be
used to alleviate the problem of efficiently finding association
in, for example, genomewide studies and can serve as a
precursor to the further development of multiple hypothesis
testing methods.

REFERENCES

[1] R. E. Bellman, “Dynamic Programming,” Dover Books on Computer
Science Series, New York: Dover Publications, 2003.

[2] H-S. Chen and R. M. Pfeiffer and S. Zhang, “A powerful method for
combining p-values in genomic studies,” Genetic Epidemiology, vol.
37, no. 8, pp. 814-819, 2013.

[3] J. M. Cheverud, “A simple correction for multiple comparisons in
interval mapping genome scans,” Heredity, vol. 87, pp. 52-58, 2001.

[4] H. Dai and R. Charnigo and T. Srivastava and Z. Talebizadeh and S. Q.
Ye, “Integrating p-values for genetic and genomic data analysis,” Bio-
metrica and Biostatistics, 3, e117. doi:10.4172/2155-6180.1000e117,
2012.

[5] F. Dudbridge and B. P. C. Koeleman, “Rank truncated product of p
values, with application to genomewide association scans,” Genetic
Epidemiology, vol. 25, pp. 360-366, 2003.

[6] F. Dudbridge and A. Gusnanto, “Estimation of significance thresholds
for genomewide association scans,” Genetic Epidemiology, vol. 32, no.
3, pp. 227-234, 2008.

[7] R. A. Lee, Statistical methods for research workers, London: Oliver
and Boyd, 1932.

[8] X. Gao and L. C. Becker and and D. M. Becker and J. D. Starmer and
M. A. Province, “Avoiding the high bonferroni penalty in genome-wide
association studies,” Genetic Epidemiology, vol. 34, pp. 100-105, 2010.

[9] P. J. Green and B. W. Silverman, Nonparametric regression and
generalized linear models, London: Chapman and Hall, 1994.

[10] W. Härdle, Applied nonparametric regression, Cambridge: Cambridge
University Press, 1990.

[11] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, pp. 65-70, 1979.

[12] M. Lee, Analysis of microarray gene expression data, Belgium:
Springer-Verlag, 2004.

[13] J. Li and L. Ji, “Adjust multiple testing in multilocus analyses using
the eigenvalues of a correlation matrix,” Heredity, vol. 95, pp. 221-227,
2005.

[14] D. R. Nyholt, “A simple correction for multiple testing for single-
nucleotide polymorphisms in linkage disequilibrium with each other,”
American Journal of Human Genetics, vol. 74, no. 4, pp. 765-769, 2004.

[15] P. Kirdwichai, “A nonparametric regression approach to the analysis
of genomewide association studies,” PhD thesis, University of Reading,
2014.

[16] R Core Team, “R: A Language and Environment for Statistical
Computing,” R Foundation for Statistical Computing, Vienna, Austria,
2012.
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