
 

  
Abstract— In practice, a unique solution is selected from a 

representative set of optimal solutions for solving a 
multiresponse optimization problem. However, the 
reproducibility of these solutions has been ignored so far, which 
may jeopardize the usefulness of some optimal solutions. Here, 
it is shown that the quality of prediction of each optimal 
solution is different, which may justify the lack of the 
reproducibility of Pareto solutions in some real-life situations. 
This means that the decision-maker has to take into account the 
solutions quality of prediction when he/she selects a solution. 
For this purpose, a metric to assess the solutions quality of 
prediction is suggested. A bi-objective problem is used as 
example and results displayed graphically. 
 

Index Terms— Compromise, Conflict, Multiresponse, 
Optimal, Optimization, Variance. 
 

I. INTRODUCTION 

NDUSTRIAL problems are, by nature, multidimensional 
so the optimization of multiobjective (multiresponse) 

problems has been an active research field. Conflicting 
responses are usual in these problems and their simultaneous 
optimization has been recommended and an often used 
practice to generate compromise solutions. A desired 
condition for any candidate solution to multiresponse 
problems is that the solution is non-dominated. This means 
that better values for one or more responses cannot be 
achieved in one solution without degrading the value of, at 
least, another response.  
A representative set of optimal or non-dominated solutions 
constitutes the so-called Pareto front, and provides the most 
favorable alternative choices for solving a multiresponse 
optimization problem (MROp). However, assuming that the 
Pareto front was appropriately generated, the decision-maker 
faces another issue: how to choose an optimal solution from 
the generated set. This is not a trivial task, because the 
reproducibility of optimal solutions cannot be ignored by the 
decision-maker. In fact, there is no guarantee that product or 
process performs as expected when is run at a chosen input 
variable location due to the natural process variability and 
the estimated solutions uncertainty. This means that the 
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quality of prediction for each optimal solution has to be 
assessed and considered in the decision process, which has 
been ignored so far. Therefore, the objective of this 
manuscript is to introduce a metric to assess the solutions 
quality of prediction and help the decision-maker in making 
a more informed decision in the solution selection process.  

II.  PARETO OPTIMALITY - DOMINANCE RELATION 

A MROp can be defined as follows: 

Minimize f(r , M) 
x            (1) 

subject to 
g(x, b) ≤ 0 
h(x, b) = 0 
xl ≤ x ≤xu 

where f is a scalar valued function, M represents the set of 
user-specified or preference parameters (weights, priorities, 
shape factors, …), and r  is the vector of responses 

),...,1( pr = . The called design parameters, which are not 

controlled by the DM, are denoted by b. Design or input 

variables, denoted by vector x, with lower bound xl and 
upper bound xu. Constraints are represented by g(x, b) and 
h(x, b).  

In contrast to single response optimization problems, 
where the optimal solution is defined easily, for a MROp a 
solution is more of a concept than a definition [1]. In 
practice, a compromise solution has to be selected, because 
the utopia point (the variables setting that yields a solution 
with all responses at their target value) for formulation (1) 
cannot be achieved.  

A predominant concept in defining a non-dominated 
solution is that of Pareto optimality. For a minimization 
problem like that formulated in Eq. (1), a solution (a vector 
of responses; r1) dominates another one (r2), and is Pareto 
optimal, if both the following conditions are true: 

--First, the value of any response in r1 is no worse (is 
lower or equal) than those of r2;  

--Second, the value of at least one response in r1 is strictly 
better (is lower) than those of r2. 

Pareto frontiers can be displayed graphically only for 
problems with two or three responses, and consensus on 
what qualities a representation of the non-dominated set 
should possess do not exist. According to [2], quality 
measures that have been proposed and may be useful to this 
end are the following: 1- measures of cardinality (which 
refer to the number of points in a representation); 2- 
coverage (which refer to the regions of the outcome set that 
are represented); 3- spacing (which refer to the distance 
between points in the representation). Hybrid measures 
which overlap the above three categories have been also 
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introduced in the literature. An example is the hypervolume 
measure, a well-established indicator of the front’s quality 
[3-4].  

A representative set of non-dominated solutions for 
solving a MROp is helpful, since it provides a broad 
overview of alternative solutions. However, in practice, only 
one solution is selected. This leads to a critical question: 
which optimal solution should be chosen? 

III.  REPRODUCIBILITY OF NON-DOMINATED SOLUTIONS 

A discrete representation of a Pareto frontier (a collection 
of solutions distributed along the Pareto front that provides a 
finite and manageable alternative set of solutions to the 
decision-maker) is, in general, sufficient for selecting a 
solution for a MROp. Majority of the literature has focused 
on how to find the PF with its most promising choices 
without providing more insights on how to proceed from 
those choices to a final decision [5]. However, it is important 
to be aware that some Pareto solutions may lead to operation 
conditions more hazardous, more costly or more difficult to 
implement and control than others. In fact, the responses’ 
quality of prediction is not the same for all the Pareto 
solutions and, if it is ignored, can potentially lead to 
suboptimal choices and the selected solution may yield, in 
practice, unexpected results. To minimize the gap between 
the theoretical and practical results, the decision-maker must 
estimate the solutions quality of prediction. For this purpose, 
and assuming that Ordinary Least Squares regression 
technique is used to fit models to each response, the 
proposed metric is 

 









= ∑ *)x( 

ŷ
traceQoP ϕ        (2) 

 
where ϕ is a matrix whose elements are 2)/(1 iiii LU −=ϕ  

and jiLULU jjiiij ≠−−= for     ))(/(1ϕ , with nji  ..., ,2 ,1, = , 

and ∑ŷ *)x(  represents the variance-covariance matrix of 

the n estimated responses at optimal location x*. When all 
the models fitted to responses have the same regressors, one 
can write 

 

∑= −∑ ˆx)( x )x( *1'**
ˆ XXT
y        (3) 

where X is the model matrix, Nee j
T
i /ˆˆ  ˆ =∑ , ê  represents the 

estimated residuals (difference between the observed 
response value and the corresponding estimated value) and 
N is the number of experimental observations [6]. If the SUR 
technique is used, the reader is referred to [7] where a 
variant of the QoP metric is defined and illustrated.  

IV.  EXAMPLES 

The objective of this example is to determine the settings 
for reaction time (x1), reaction temperature (x2), and amount 
of catalyst (x3) to maximize the conversion (y1) of a polymer 
and achieve a target value for the thermal activity (y2). A 
central composite design with four center points was run and 

the (mean) models fitted to responses are 
 

1µ̂ = 81.0943 + 1.02901x + 4.0426 2x  + 6.2060 3x
 
− 

1.8377
2
1x + 2.9455

2
2x  − 5.2036

2
3x + 2.1250 21 xx  + 

11.3750 31 xx  − 3.8750 32xx  

 

2µ̂  = 59.8505 + 3.58551x  + 0.2547 2x  + 2.2312 3x  + 

0.8360
2
1x  + 0.0742

2
2x  + 0.0565

2
3x

 
− 0.3875 21 xx  − 

0.0375 31 xx
 
+ 0.3125 32xx

 
 

The range values for y1 and y2 are [80, 100] and [55, 60], 
respectively. Assuming that y1 is a LTB-type response (the 
estimated response value is expected to be equal or larger 
than an upper bound), the target value is set equal to 100; y2 
is a NTB-type response (its estimated response value is 
expected to be equal to a target value) and the target value is 
set equal to 57.5. The constraints for the input variables are 

)321(  682.1  682.1 , , ixi =≤≤− . 

Figure 1 displays the Pareto front generated with the 
compromise programming-based criterion proposed by [8], 
varying the shape factor 121 ≤≤ iω  in increments of one 

unit, using a SQP algorithm. This example deals with the 
optimization of two responses so it was possible to display 
the Pareto frontier graphically, and one can see that 
responses are in conflict: when 1µ̂  increases, 2µ̂  deviates 

from target and vice-versa.  
Figures 2 shows that choosing a solution based on 

technical, economic or decision-maker preferences may not 
produce the expected results in practice, because the 
solutions quality of prediction is not homogeneous. In this 
example, QoP value ranges from 6.5 to 25 units. This values 
range is not as small as desired, and may lead to criticisms 
on the time and cost spent in the study and skepticism on the 
use (or more widespread use) of statistically-based 
approaches and tools to solve industrial problems as well as 
attacking some challenging and exciting real problems 
arising today [9]. 

 

 
 
Figure 1 – Pareto front 
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Figure 2 – Quality of Predictions 

 

V. RESULTS DISCUSSION 

A compromise solution to solve a MROp must be selected 
among those of the Pareto front. However, those solutions 
may not yield the expected practical result if the quality of 
prediction value of selected optimal solution is (excessively) 
high. The QoP values can be displayed graphically for 
problems with two responses, such as Figure 2 shows, and 
may help the decision-maker in making a more informed 
optimal solution selection. The optimal solution selection is 
more complicated and Pareto front visualization impossible 
for more than four responses so alternative tools such as 
tabular lists are necessary to highlight more favorable 
solutions in a more effective manner. Nevertheless, the 
decision-maker needs always to balance the conflict between 
responses’ priority and responses’ quality of prediction. For 
example, in the problem considered here, if priority is 
setting 2µ̂  on target value ( τµ =2ˆ  see Figure 1), one can see 

from Figure 2 that the first solution, as well as solutions 
slightly deviated from target ( τµ ≠2ˆ ), as instance the 

solutions number 6 and 10, can be a good choice. If priority 
is setting 1µ̂  on target value, Figure 2 shows that QoP value 

is undesirably higher for solution number 42 (the solution 
with the highest 1µ̂  value) than for other optimal solutions, 

as instance, the thirty-fourth and thirty-fifth solutions, 
though their 1µ̂  value is slightly worst.  

These results confirm that a compromise is necessary to 
select a solution for MROp and show that information about 
solutions reproducibility (QoP value) cannot be ignored. In 
fact, the QoP value for some responses is undesirably high 
and likely lead to less favorable results in practice. 
Confirmatory runs can help in the decision-making process. 
Nevertheless, the decision-maker must be aware that 
solutions whose response values are slightly deviated from 
target and QoP is lower can be effective alternatives for 
solving MROp and must be tested in practice. 

VI.  CONCLUSIONS AND FUTURE WORK 

This work investigates the Pareto front solutions quality, 
and shows that quality of prediction value is different for 
most Pareto front solutions. From a theoretical point of 

view, it is desirable to select Pareto solutions with the lowest 
quality of prediction value. However, this may not be 
possible due to the conflict between responses priority and 
solutions’ quality of prediction. In fact, the quality of 
prediction value may be undesirably higher for response 
values of interest. Thus, in practice, a compromise between 
technical and economic considerations will dictate the final 
decision about the most favorable solution.  

To help the decision-maker in making more informed 
decisions, future work shall investigate the impact of models 
coefficient uncertainty in Pareto fronts. Optimal solutions 
built on the worst-case estimated responses must be 
generated and other metric(s) developed to evaluate optimal 
solutions. 
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