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Abstract—We study the contact interaction between a rigid
punch and a viscoelastic foundation with a thin rough coating.
The case in which the punch and the coating surfaces are
conformal (mutually repeating) is under consideration. Such
problems can arise, for example, when the punch immerses
into a solidifying coating before its complete solidification, e.g.
into some sort of glue or new concrete. The shape of the
coating roughness as well as the shape of the punch surface
may be described by fast oscillating functions. We obtain basic
integral equation and construct its solution by using a projection
method. We also discuss qualitative behavior of main contact
characteristics.

Index Terms—conformal contact, foundation, coating, rough-
ness, projection method

INTRODUCTION

THE shape of real contacting surfaces is always definitely
rough. Such a roughness can be efficiently described

only by rapidly oscillating functions. We develop a projection
method for solving multidimensional integral equations with
rapidly oscillating function in initial data. This method
allows us to solve the governing integral equation with high
accuracy in the case when the classical method of separation
of variables gives up to 100% mistake. A model contact
problem for a coating with experimental profilogram for the
shape of its surface is solved. Plots for the distribution of
contact stress are presented.

I. STATEMENT OF THE PROBLEM

We assume that a viscoelastic layer with a coating lies on
a rigid basis. At time τ0, the force P (t) with eccentricity e(t)
starts to indent a smooth rigid punch of width 2a (Fig. 1) into
the surface of such a foundation. A specific characteristic of
this contact interaction is the fact that the coating shape (the
shape of the surface of the layer packet) coincides with the
punch base shape. Such a contact interaction will be called
conformal. The coating is assumed to be thin compared with
the contact area, i.e., its thickness satisfies the condition
h(x) � 2a. Both the thin coating and the lower layer of
an arbitrary thickness H are made of viscoelastic materials.
We denote the moments of their production by τ1 and τ2,
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Fig. 1. Basic scheme of contact interaction

respectively. We assume that the coating rigidity is less than
the rigidity of the lower layer or they are of the same order
of magnitude [1–12]. We consider the case of plane strain.

We note that the simple case of conformal contact is
the contact of a punch with a plane base and a plane part
of a solid (including basements with coating of constant
thickness).

To obtain the integral equation of the problem, we replace
the punch by some normally distributed load p(x, t) =
−q(x, t) acting upon the same region (−a ≤ x ≤ a)
and equal to zero outside this region. Then the vertical
displacement of the upper face of the foundation described
above under the action of the normal force q(x, t) can be
written in the form [1, 4, 5]:

uz(x, t) = (I−V1)
θq(x, t)h(x)

E1(t− τ1)

+ (I−V2)F
2(1− ν22)q(x, t)

πE2(t− τ2)
, (1)

Ff(x, t) =

∫ a

−a
kpl

(x− ξ
H

)
f(ξ, t) dξ,

Vkf(x, t) =

∫ t

τ0

K(k)(t− τk, τ − τk)f(x, τ) dτ,

K(k)(t, τ) = Ek(τ)
∂

∂τ

[ 1

Ek(τ)
+ C(k)(t, τ)

]
, k = 1, 2,

where Ek(t) are the Young moduli of the coating (k = 1)
and the lower layer (k = 2) and ν2 is Poisson’s ratio of the
lower layer; I is the identity operator; Vk are the Volterra
integral operators with tensile creep kernels K(k)(t, τ) (k =
1, 2); C(k)(t, τ) (k = 1, 2) are the tensile creep functions;
θ is a dimensionless coefficient depending on the contact
conditions between coating and lower layer; in the case of a
smooth coating-layer contact, we have

θ = 1− ν21 ,

and in the case of an perfect contact,

θ =
1− ν1 − 2ν21

1− ν1
,
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where ν1 is Poisson’s ratio of the coating; F is the integral
operator with the known kernel of the plane contact problem
kpl[(x− ξ)/H], which has the form [1]

kpl(s) =

∫ ∞
0

L(u)

u
cos(su) du,

and, in the case of a smooth contact between the lower layer
and the rigid base,

L(u) =
cosh 2u− 1

sinh 2u+ 2u
,

and in the case of a perfect contact,

L(u) =
2κ sinh 2u− 4u

2κ cosh 2u+ 4u2 + 1 + κ2
, κ = 3− 4ν2.

By equating the vertical displacements of the upper face
of the coating with the displacement of the rigid punch
and taking into account (1) and the fact that the contact
interaction is conformal, we obtain the integral equation of
our problem in the form

(I−V1)
θq(x, t)h(x)

E1(t− τ1)
+ (I−V2)F

2(1− ν22)q(x, t)

πE2(t− τ2)

= δ(t) + α(t)x (−a 6 x 6 a), (2)

where δ(t) is the punch settlement and α(t) is its tilt angle.
We supplement Eq. (2) with the condition of the punch

equilibrium on the foundation∫ a

−a
q(ξ, t) dξ = P (t),

∫ a

−a
ξq(ξ, t) dξ = M(t). (3)

Here M(t) = e(t)P (t) denotes the moment of application
of the force P (t).

In (2) and (3), we make the change of variables by the
formulas

x∗ = x/a, ξ∗ = ξ/a, t∗ = t/τ0, τ∗ = τ/τ0,

τ∗1 = τ1/τ0, τ∗2 = τ2/τ0, λ = H/a,

δ∗(t∗) =
δ(t)

a
, α∗(t∗) = α(t), c∗(t∗) =

E2(t− τ2)

E1(t− τ1)
,

m∗(x∗) =
θ

1− ν22
h(x)

2a
, q∗(x∗, t∗) =

2(1− ν22)q(x, t)

E2(t− τ2)
,

P ∗(t∗) =
2P (t)(1− ν22)

E2(t− τ2)a
, M∗(t∗) =

2M(t)(1− ν22)

E2(t− τ2)a2
,

V∗kf(x∗, t∗) =

∫ t∗

1

Kk(t∗, τ∗)f(x∗, τ∗) dτ∗, k = 1, 2,

(4)

K1(t∗, τ∗)=
E1(t−τ1)

E1(τ−τ1)

E2(τ−τ2)

E2(t−τ2)
K(1)(t− τ1, τ − τ1)τ0,

K2(t∗, τ∗) = K(2)(t− τ2, τ − τ2)τ0,

F∗f(x∗, t∗)=

∫ 1

−1
k∗pl(x

∗, ξ∗)f(ξ∗, t∗) dξ∗,

k∗pl(x
∗, ξ∗)=

1

π
kpl

(x− ξ
H

)
=

1

π
kpl

(x∗ − ξ∗
λ

)
.

Then, omitting the asterisks, we obtain a mixed integral
equation in the form

c(t)m(x)(I−V1)q(x, t) + (I−V2)Fq(x, t)

= δ(t) + α(t)x (−1 6 x 6 1) (5)

with the auxiliary conditions∫ 1

−1
q(ξ, t) dξ = P (t),

∫ 1

−1
ξq(ξ, t) dξ = M(t). (6)

Now we divide Eq. (5) by
√
m(x) and introduce the

notation

Q(x, t) =
√
m(x)q(x, t), k(x, ξ) =

kpl(x, ξ)√
m(x)

√
m(ξ)

,

AQ(x, t) =

∫ 1

−1
k(x, ξ)Q(ξ, t) dξ.

Then integral equation (5) can be reduced to the following
integral equation with the Hilbert–Schmidt kernel k(x, ξ)
(see, e.g. [13]):

c(t)(I−V1)Q(x, t) + (I−V2)AQ(x, t)

=
δ(t)√
m(x)

+
α(t)x√
m(x)

(−1 6 x 6 1). (7)

The auxiliary conditions (6) have the form∫ 1

−1

Q(ξ, t)√
m(ξ)

dξ = P (t),

∫ 1

−1

Q(ξ, t)√
m(ξ)

ξ dξ = M(t). (8)

In what follows, we construct the solution of the two-
dimensional equation (7), which contains integral operators
with constant as well as variable limits of integration, with
the auxiliary conditions (8) taken into account.

There exist four different versions of the substitution: 1)
the settlement and the tilt angle of the punch are known (i.e.,
the right-hand side of the integral equation is given); 2) the
punch settlement and the force moment are known; 3) the tilt
angle of the punch and the indenting force are known; 4) the
indenting force and its moment application are known. Each
of these statements is a separate problem with its specific
integral operator, and it is necessary to construct four systems
of eigenfunctions for these problems.

In what follows we will construct the solution of the third
problem.

II. SOLUTION FOR KNOWN FORCE AND TILT ANGLE

Consider the following statement of a problem: it is neces-
sary to find the eccentricity e(t) of the indenting force P (t)
in order to provide the prescribed tilt angle α(t). It is
considered that the force P (t) is known.

We assume that function α(t) in (7) is given and the
first auxiliary condition (8) holds and the second auxiliary
condition (8) leads to the formula

e(t) =
1

P (t)

∫ 1

−1

Q(ξ, t)√
m(ξ)

ξ dξ. (9)

We seek the solution of Eq. (7) under the first condition (8)
using (9) in the class of functions continuous in time t in the
Hilbert space L2[−1, 1] (e.g., see [4]). To this end, we at first
construct an orthonormal system of functions in L2[−1, 1]
which contains 1/

√
m(x) and remaining basis functions

can be written as the products of functions depending on
x and weight function 1/

√
m(x). The system of functions
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which satisfies the above conditions can be obtained by the
following formulas [14]:∫ 1

−1
pi(ξ)pj(ξ) dξ = δij , pn(x) =

Pn(x)√
m(x)

,

P0(x) =
1√
J0
, Jn =

∫ 1

−1

ξn

m(ξ)
dξ,

Pn(x) =
1√

∆n−1∆n

∣∣∣∣∣∣∣∣∣
J0 J1 · · · Jn
J1 J2 · · · Jn+1

...
...

. . .
...

1 x · · · xn

∣∣∣∣∣∣∣∣∣ , (10)

∆−1 = 1, ∆n =

∣∣∣∣∣∣∣∣∣
J0 J1 · · · Jn
J1 J2 · · · Jn+1

...
...

. . .
...

Jn Jn+1 · · · J2n

∣∣∣∣∣∣∣∣∣ .
Note that if m(x) = const then the polynomials pn(x) are
the orthonormal Legendre polynomials.

The Hilbert space L2[−1, 1] can be presented as the direct
sum of orthogonal subspaces L2[−1, 1] = L

(1)
2 [−1, 1] ⊕

L
(2)
2 [−1, 1], where L(1)

2 [−1, 1] is the Euclidean space with
the basis {p0(x)} and L(2)

2 [−1, 1] is the Hilbert space with
the basis {p1(x), p2(x), p3(x), . . .}. The integrand and the
right-hand side of (7) can also be presented in the form of the
algebraic sum of functions continuous in time t and ranging
in L(1)

2 [−1, 1] and L(2)
2 [−1, 1], respectively, i.e.,

Q(x, t) = Q1(x, t) +Q2(x, t),

f(x, t) = f1(x, t) + f2(x, t),

Q1(x, t) = z0(t)p0(x),

f1(x, t) =
δ(t)√
m(x)

=
√
J0δ(t)p0(x),

f2(x, t) ≡ α(t)x√
m(x)

.

Note that the formula for Q(x, t) contains known term
Q1(x, t) which is determined by the first auxiliary condition
(1.8)

z0(t) =
P (t)√
J0
,

and the term Q2(x, t) must be found. Conversely, for the
right-hand side, one should find f1(x, t), while f2(x, t) ≡ 0.
These peculiarities permit one to class the resulting problem
as a specific case of the generalized projection problem stated
in [15].

We can introduce the orthogonal projection operator map-
ping the space L2[−1, 1] onto subspace L(1)

2 [−1, 1]

P1φ(x, t) =

∫ 1

−1
φ(ξ, t)[p0(x)p0(ξ)] dξ.

Obviously, the orthoprojector P2 = I − P1 maps the
space L2[−1, 1] onto L(2)

2 [−1, 1]. In addition, the following
relations hold

Pif(x, t) = fi(x, t), PiQ(x, t) = Qi(x, t), i = 1, 2.

Using [15], we apply the orthogonal projection operator
P2 to Eq. (7). As a result, we obtain the equation for

determining Q2(x, t) with a known right-hand side

c(t)(I−V1)Q2(x, t) + (I−V2)P2AQ2(x, t)

= −(I−V2)P2AQ1(x, t). (11)

It is necessary to construct its solution in the form of an
expansion in the eigenfunctions of the operator P2A which
is a compact, strong positive, and self-adjoint operator from
L
(2)
2 [−1, 1] into L

(2)
2 [−1, 1]. The system of eigenfunctions

of such an operator is a basis in the space L(2)
2 [−1, 1]. The

spectral problem for the operator P2A can be written in the
form

P2Aϕk(x) = γkϕk(x),

ϕk(x) =
∞∑
i=1

ϕ
(k)
i pi(x), k = 1, 2, . . . ,

k(x, ξ) =
∞∑
m=0

∞∑
n=0

Rmnpm(x)pn(ξ),

Rmn =

∫ 1

−1

∫ 1

−1
k(x, ξ)pm(x)pn(ξ) dx dξ,

Rnm = Rmn, m, n = 0, 1, . . . ,

and hence
∞∑
n=1

Rmnϕ
(k)
n = γkϕ

(k)
m , k, m = 1, 2, . . .

We expand the function Q2(x, t) with respect to the new
basis functions ϕk(x) (k = 1, 2, . . .) in L(2)

2 [−1, 1], i.e.,

Q2(x, t) =

∞∑
k=1

zk(t)ϕk(x).

Substituting this equation into (11) and taking into account
that the unknown expansion functions zk(t) (k = 1, 2, . . .)
can be determined by the formula

zk(t) = −(I + Wk)
−α(t)gαk + (I−V2)z0(t)Kα

k

c(t) + γk
,

Kα
k =

∞∑
n=1

R0nϕ
(k)
n ,

gαk =

√
J0J2 − J2

1

J0

∫ 1

−1
p1(ξ)ϕk(ξ) dξ=ϕ

(k)
1

√
J0J2 − J2

1

J0
,

Wkf(x, t) =

∫ t

1

R∗k(t, τ)f(x, τ) dτ,

where R∗k(t, τ) (k = 1, 2, . . .) is the resolvent of the kernel

K∗k(t, τ) =
c(t)K1(t, τ) + γkK2(t, τ)

c(t) + γk
.

Note that the final solution has the following structure

q(x, t) =
1

m(x)

[
z0(t)P0(x) + . . .

]
,

i.e., one can explicitly write out the weight function m(x) in
the solution. Note that the coating thickness function h(ax)
is related to m(x) in the relations of change of variables
(4). The formulas obtained permit obtaining efficient analytic
solutions for the layers with rough coatings which can be
described by complicated and rapidly oscillating functions.
Such a result can hardly be done by other known methods.
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Hence, we have found the contact pressure q(x, t) under
the punch and now can find the load eccentricity using (9):

e(t) =
1

P (t)

[
J1√
J0
z0(t) +

∞∑
i=1

gαi zi(t)

]

=
J1
J0

+
1

P (t)

∞∑
i=1

ϕ
(i)
1

√
J0J2 − J2

1

J0
zi(t).

In particular it is possible to obtain the absence of the tilt of
the punch at any instant (α(t) ≡ 0).

In order to find the unknown punch settlement we act
Eq. (1.7) by operator P1

δ(t) =
1√
J0

{
−α(t)

J1√
J0

+ c(t)(I−V1)z0(t)+

(I−V2)

[
R00z0(t) +

∞∑
k=1

Kα
k zk(t)

]}
.

III. SOLUTION FOR A GIVEN SETTLEMENT AND MOMENT

We consider one more version of the problem statement.
Let the punch settlement δ(t) and moment M(t) (or ec-
centricity e(t))are prescribed. It is necessary to find the
force P (t), the tilt angle α(t) and the contact pressure q(x, t).

The second auxiliary condition (8) gives the formula for
the force

P (t) =

∫ 1

−1

Q(ξ, t)√
m(ξ)

dξ, (12)

and the first auxiliary condition (8) holds.
The Hilbert space L2[−1, 1] can be represented as the di-

rect sum of orthogonal subspaces L2[−1, 1] = L̃
(1)
2 [−1, 1]⊕

L̃
(2)
2 [−1, 1], where L̃(1)

2 [−1, 1] is the Euclidean space with
basis {p̃0(x)} and L̃(2)

2 [−1, 1] is the Hilbert space with basis
{p̃1(x), p̃2(x), p̃3(x), . . .}. Here the basis functions can be
found as follows:

p̃0(x) =
x√

J2m(x)
,

p̃1(x) =
J2 − J1x√

J2(J0J2 − J2
1 )m(x)

,

p̃k(x) ≡ pk(x), k = 2, 3, . . .

For the integrand and the right-hand side of (7):

Q(x, t) = Q̃1(x, t) + Q̃2(x, t),

f(x, t) = f̃1(x, t) + f̃2(x, t),

f̃1(x, t) =
α(t)x√
m(x)

, f̃2(x, t) =
δ(t)√
m(x)

,

where Q̃i(x, t), f̃i(x, t) are functions continuous in time t
and ranging in L̃(1)

2 [−1, 1] and L̃(2)
2 [−1, 1], respectively.

The representation for Q(x, t) contains the known first
term, and the second term is to be found. Conversely, for
the right-hand side, one should find f̃1(x, t), while f̃2(x, t)
in unknown.

The orthogonal projection operator, mapping the space
L2[−1, 1] onto L̃(1)

2 [−1, 1] can be introduced by formulas

P̃1φ(x, t) =

∫ 1

−1
φ(ξ, t)p̃0(x)p̃0(ξ) dξ.

The orthoprojector P̃2 = I − P̃1 maps the space L2[−1, 1]

onto L̃(2)
2 [−1, 1].

We apply the orthogonal projection operator P̃2 to Eq. (7).
As a result, we obtain the equation for determining Q̃2(x, t)
with a known right-hand side. It is necessary to construct its
solution in the form of a series in the eigenfunctions of the
operator P̃2A. The spectral problem for this operator can be
written in the form

P̃2Aϕ̃k(x) = γ̃kϕ̃k(x),

ϕ̃k(x) =
∞∑
i=1

ϕ̃
(k)
i p̃i(x), k = 1, 2, . . . ,

k(x, ξ) =
∞∑
m=0

∞∑
n=0

R̃mnp̃m(x)p̃n(ξ),

R̃mn =

∫ 1

−1

∫ 1

−1
k(x, ξ)p̃m(x)p̃n(ξ) dx dξ,

R̃nm = R̃mn, m, n = 0, 1, . . . ,

and, hence,

∞∑
n=1

R̃mnϕ̃
(k)
n = γ̃kϕ̃

(k)
m , k, m = 1, 2, . . .

Final formulas for contact pressure under the punch have
the form

q(x, t) =
Q(x, t)√
m(x)

,

Q(x, t) = z̃0(t)p̃0(x) +
∞∑
k=1

z̃k(t)ϕ̃k(x),

z̃0(t) =
M(t)√
J2

,

z̃k(t) = −(I + W̃k)
−δ(t)gδk + (I−V2)z̃0(t)Kδ

k

c(t) + γ̃k
,

Kδ
k =

∞∑
n=1

R̃0nϕ̃
(k)
n ,

gδk=

√
J0J2 − J2

1

J2

∫ 1

−1
p̃1(x)ϕ̃k(ξ) dξ= ϕ̃

(k)
1

√
J0J2 − J2

1

J2
,

W̃kf(x, t) =

∫ t

1

R̃∗k(t, τ)f(x, τ) dτ.

Kernels Ř∗k(t, τ) (k = 1, 2, . . .) are the resolvents of the
kernels

K̃∗k(t, τ) =
c(t)K1(t, τ) + γ̃kK2(t, τ)

c(t) + γ̃k
.

So, having defined the contact pressure q(x, t) under the
punch, using (12) we can find the force

P (t) =
J1√
J2
z̃0(t) +

∞∑
i=1

gδi z̃i(t)

=
J1
J2
M(t) +

∞∑
i=1

ϕ̃
(i)
1

√
J0J2 − J2

1

J2
z̃i(t). (13)

We can obtain exact formula for the force P (t) if the
eccentricity e(t) is given and layers are made of elastic
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materials. In this case

c(t) ≡ c,
Vi = W̃k = 0, i = 1, 2, k = 1, 2, . . . ,

K1(t, τ) = K2(t, τ) ≡ 0.

and we can write formula (13) in the form

P (t) =
J1
J2
M(t) +

∞∑
i=1

gδi z̃i(t)

=
J1
J2
M(t) +

∞∑
i=1

gδi
δ(t)gδi − z̃0(t)Kδ

i

c+ γ̃i

=
J1
J2
M(t) + δ(t)

∞∑
i=1

(gδi )
2

c+ γ̃i
− M(t)√

J2

∞∑
i=1

gδiK
δ
i

c+ γ̃i
.

=
M(t)√
J2

[
J1√
J2
−
∞∑
i=1

gδiK
δ
i

c+ γ̃i

]
+ δ(t)

∞∑
i=1

(gδi )
2

c+ γ̃i
.

Using notation M(t) = P (t)e(t) one can obtain equation for
the force P (t)

P (t) =
P (t)e(t)√

J2

[
J1√
J2
−
∞∑
i=1

gδiK
δ
i

c+ γ̃i

]
+ δ(t)

∞∑
i=1

(gδi )
2

c+ γ̃i
.

Hence, we obtain

P (t) =

δ(t)
∞∑
i=1

(gδi )
2

c+ γ̃i

1− e(t)
[
J1
J2
− 1√

J2

∞∑
i=1

gδiK
δ
i

c+ γ̃i

] . (14)

This relation allows one to define the magnitude of the
indenting force using measured force eccentricity and punch
settlement.

Note that the expansion coefficients R̃mn of the ker-
nel k(x, ξ) can be written through coefficients Rmn. Basis
functions p̃k(x) (k = 0, 1) can be written through pk(x)
(k = 1, 2),

p̃0(x) = k
(0)
0 p0(x) + k

(0)
1 p1(x),

p̃1(x) = k
(1)
0 p0(x) + k

(1)
1 p1(x),

k
(0)
0 = −k(1)1 =

J1√
J0J2

,

k
(0)
1 = k

(1)
0 =

√
1− J2

1

J0J2
,

and expansion coefficients R̃mn can be written in the form

R̃mn =
2∑

i,j=1

k
(m)
i k

(n)
j Rij = k

(m)
0 k

(n)
0 R00

+ [k
(m)
0 k

(n)
1 + k

(m)
1 k

(n)
0 ]R01 + k

(m)
1 k

(n)
1 R11,

m, n = 0, 1,

R̃nk = R̃kn =
2∑
i=1

k
(n)
i Rik = k

(n)
0 R0k + k

(n)
1 R1k,

n = 0, 1, k = 2, 3, . . . ,

R̃kl = Rkl, k, l = 2, 3, . . .

Now we can find the unknown tilt angle

α(t) =
1√
J2

{
−δ(t) J1√

J2
+ c(t)(I−V1)z̃0(t)

+ (I−V2)

[
R̃00z̃0(t) +

∞∑
k=1

Kδ
k z̃k(t)

]}
.

In the case of elastic layers and given eccentricity we
obtain the formula

α(t) =

{
δ(t)

[
1√
J2

∞∑
k=1

gδkK
δ
k

c+ γ̃k
− J1
J2

]
+
P (t)e(t)

J2

[
c+ R̃00 −

∞∑
k=1

(Kδ
k)2

c+ γ̃k

]}
.

Using equation (14) one can obtain the following formula

α(t) = δ(t)

{
k2 +

k1e(t)

J2[1+k2e(t)]

[
c+ R̃00 −

∞∑
k=1

(Kδ
k)2

c+γ̃k

]}
,

where

k1 =
∞∑
i=1

(gδi )
2

c+ γ̃i
, k2 =

1√
J2

∞∑
i=1

gδiK
δ
i

c+ γ̃i
− J1
J2

IV. SOLUTION FOR A GIVEN SETTLEMENT
AND TILT ANGLE

This method allowed us to construct the solution of the
problem with given right-hand side, i.e., when the settle-
ment δ(t) and tilt angle α(t) of the punch are given. It is
necessary to define the force P (t) and the eccentricity e(t)
(or the moment M(t)).

Auxiliary conditions (8) allow to obtain formulas for
definition of functions P (t) and e(t):

P (t) =

∫ 1

−1

Q(ξ, t)√
m(ξ)

dξ,

e(t) =
1

P (t)

∫ 1

−1

Q(ξ, t)√
m(ξ)

ξ dξ.

(15)

The right-hand side of Eq. (7) is known and P̂1 = 0.
It is quite clear that P̂2 = I. The spectral problem for the
operator P̂2A can be written in the form

P̂2Aϕ̂k(x) = γ̂kϕ̂k(x),

ϕ̂k(x) =
∞∑
i=1

ϕ̂
(k)
i pi(x), k = 0, 1, . . . ,

k(x, ξ) =
∞∑
m=0

∞∑
n=0

Rmnpm(x)pn(ξ),

Rmn =

∫ 1

−1

∫ 1

−1
k(x, ξ)pm(x)pn(ξ) dx dξ,

Rnm = Rmn, m, n = 0, 1, . . . ,

and hence
∞∑
n=1

Rmnϕ̂
(k)
n = γ̂kϕ̂

(k)
m , k, m = 0, 1, . . .

Proceedings of the World Congress on Engineering 2016 Vol II 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



We avoid technical details and give the final formulas for
contact pressure under the punch

q(x, t) =
Q(x, t)√
m(x)

,

Q(x, t) =
∞∑
k=0

ẑk(t)ϕ̂k(x),

ẑk(t) = (I + Ŵk)
δ(t)ĝδk + α(t)ĝαk

c(t) + γ̂k
,

Ŵkf(x, t) =

∫ t

1

R̂∗k(t, τ)f(x, τ) dτ,

ĝαk =
J1√
J0

∫ 1

−1
p0(ξ)ϕ̂k(ξ) dξ

+

√
J0J2 − J2

1

J0

∫ 1

−1
p1(ξ)ϕ̂k(ξ) dξ

= ϕ̂
(k)
0

J1√
J0

+ ϕ̂
(k)
1

√
J0J2 − J2

1

J0
,

ĝδk =
√
J0

∫ 1

−1
p0(ξ)ϕ̂k(ξ) dξ = ϕ̂

(k)
0

√
J0.

The functions pk(x) can be calculated using Eq. (10) where
R̂∗k(t, τ) (k = 0, 1, . . .) is resolvent of the kernel

K̂∗k(t, τ) =
c(t)K1(t, τ) + γ̂kK2(t, τ)

c(t) + γ̂k
.

Hence, the contact pressure q(x, t) under the punch has
been obtained using (15) and one can find the force P (t)
and the eccentricity e(t):

P (t) =
∞∑
i=0

ϕ̂
(i)
0

√
J0ẑi(t),

e(t) =
1

P (t)

∞∑
i=0

(
ϕ̂
(i)
0

J1√
J0

+ ϕ̂
(i)
1

√
J0J2 − J2

1

J0

)
ẑi(t).

V. CONCLUSIONS

In the present paper, we consider the conformal contact of
solids which is the generalization of the interaction between
a flat punch and a plane surface. We pose and solve plane
problems of conformal contact between viscoelastic aging
foundations with rough coatings and rigid punches. We show
that it is important to take the conformal contact into account.
We also demonstrate the efficiency of the projection method
for solving multidimentional integral equations of contact
mechanics. The solution of the contact problem has been
obtained in analytic form and the formula for the contact
stress contains the shape function of the coating surface in
explicit form. The latter allows one to perform computations
for the actual shape of the coating roughness which usually
can be described by rapidly oscillating function (Fig. 2).
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